RU2082182C1 - Устройство для регистрации изображений распределения радиоактивных препаратов - Google Patents

Устройство для регистрации изображений распределения радиоактивных препаратов Download PDF

Info

Publication number
RU2082182C1
RU2082182C1 RU93025641A RU93025641A RU2082182C1 RU 2082182 C1 RU2082182 C1 RU 2082182C1 RU 93025641 A RU93025641 A RU 93025641A RU 93025641 A RU93025641 A RU 93025641A RU 2082182 C1 RU2082182 C1 RU 2082182C1
Authority
RU
Russia
Prior art keywords
mask
radiation
collimator
scintillator
base part
Prior art date
Application number
RU93025641A
Other languages
English (en)
Other versions
RU93025641A (ru
Inventor
В.К. Архипов
С.В. Марков
А.Л. Буглак
Original Assignee
Московский Инженерно-Физический Институт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Московский Инженерно-Физический Институт filed Critical Московский Инженерно-Физический Институт
Priority to RU93025641A priority Critical patent/RU2082182C1/ru
Publication of RU93025641A publication Critical patent/RU93025641A/ru
Application granted granted Critical
Publication of RU2082182C1 publication Critical patent/RU2082182C1/ru

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

Использование: в устройствах для регистрации источников радиоактивного проникающего излучения, при визуализации изображений распределения радиоактивных препаратов, введенных в организм объекта при медицинских исследованиях. Сущность изобретения: устройство состоит из коллиматора и сцинтиллятора, расположенных в двух параллельных плоскостях, перпендикулярных направлению распространения излучения, позиционно-чувствительного детектора, блока определения координат сигналов, компьютера и дисплея. Коллиматор выполнен в виде двумерной кодирующей маски. Маска состоит из базовой части, образованной периодом двоичной псевдослучайной последовательности, и ее циклического продолжения с возможностью перемещения параллельно плоскости сцинтиллятора. Выходы позиционно-чувствительного детектора, соответствующие циклическим продолжениям базовой части маски, соединены с входами блока определения координат сигналов через ключи с внешним управлением, например, вручную. Устройство позволяет быстро дистанционно обнаруживать местонахождение источников радиоактивного излучения, в том числе скрытых визуально, определять количество источников, не требуя кропотливых и длительных измерений "на ощупь" по мере приближения к источникам. Указанные приборы позволяют снизить необходимую интенсивность излучения препаратов при радиологической диагностике, облегчают контроль за экологическим состоянием среды в части ионизирующих излучений и могут найти применение для обнаружения несанкционированного транспортирования радиоактивных материалов. 2 ил.

Description

Изобретение относится к устройствам для регистрации источников радиоактивного проникающего излучения и может быть применено как при визуализации изображения распределения радиоактивных препаратов, введенных в организм объекта при медицинских исследованиях, так и при дистанционном выявлении расположения визуально скрытых источников и тем самым осуществлять часть процесса лечения, диагностику некоторых заболеваний, а также осуществлять контроль экологического состояния среды по ионизирующему излучению.
Известно устройство "камера-обскура", которая позволяет производить регистрацию изображения не только оптического, но и ионизирующего излучения. Камера-обскура состоит из камеры и коллиматора с единственным отверстием малого размера в непрозрачном для данного вида излучения материале. Изображение источника проецируется на противоположную отверстию стенку камеры, куда помещен позиционно-чувствительный элемент плоский сцинциллятор, на котором возникает проекция распределения интенсивности излучения препарата и преобразуется в видимое изображение [1, рис. 6.25] Выход сцитиллятора соединен с входом соответствующего запоминающего устройства (например, фотоаппарата), которым производится регистрация. Камера-обскура обладает низкой эффективностью регистрации, т.к. для получения необходимой резкости изображения требуется уменьшение диаметра отверстия (в пределе до величины
Figure 00000002
где λ длина волны излучения; a расстояние от отверстия до сцинтиллятора), что приводит к соответствующему уменьшению количества регистрируемых квантов излучения источника в единицу времени, уменьшению отношения сигнал/помеха. Поэтому необходимая интенсивность излучения препарата должна быть высокой.
Наиболее близким техническим решением к настоящему по большому количеству сходных технических признаков является устройство, содержащее многоканальный коллиматор с большим количеством отверстий в пластине из материала непрозрачного для данного вида излучения с диаметром отверстий меньше толщины пластины, позиционно-чувствительный элемент, представляющий собой плоский сцинтиллятор, размещенные в двух параллельных плоскостях, перпендикулярных направлению распространения излучения, с фиксированным расстоянием между плоскостями, выход сцинтиллятора оптически соединен с входами позиционно-чувствительного детектора, выходы которого соединены с входами блока определения координат сигналов, расположенного в свинцовом кожухе и представляющего собой "гамма-камеру" [1, с. 213,214] выход блока определения координат сигналов последовательно соединен с входами компьютера и дисплея, расположенных вне гамма-камеры.
Устройство работает следующим образом. Регистрируемое излучение проходит через коллиматор, который селектирует кванты, излучаемые источником по направлению и пропускает на регистрацию только те кванты, которые движутся перпендикулярно к поверхности пластины коллиматора или с небольшим углом отклонения от перпендикулярности, определяемым отношением диаметра отверстия канала к сумме расстояния от элементарного источника до коллиматора и длины канала в коллиматоре [1, рис. 6.22, 6.23] Таким образом, коллиматор выделяет из изотропно направленного излучения ряд однонаправленных пучков в соответствии с числом и диаметром каналов. В каждом канальном пучке содержаться кванты, излучаемые в данном направлении всеми элементарными источниками, находящимися на продолжении оси отверстия канала так, что на плоскость сцинтиллятора проецируется яркостная проекция трехмерного распределения радиоактивного препарата в виде отдельных точек по числу каналов коллиматора, при этом распределение каналов коллиматора равномерное.
Выходные световые сигналы сцинтиллятора подаются на входы позиционно-чувствительного детектора, состоящего из набора ФЭУ, который преобразует эти сигналы в электрические, которые с выходов позиционно-чувствительного детектора подаются на входы блока определения координат сигналов, что соответствует координатам места попадания квантов на сцинтилляторе и их интенсивности, с выхода блока определения координат сигналы подаются на вход компьютера, где они накапливаются в ЗУ и в результате соответствующей обработки информация в виде точечного изображения отображается на дисплее, документируется.
Устройством-прототипом не достигаются высокая эффективность регистрации, что требует повышенного значения необходимой интенсивности излучения препарата, введенного в организм объекта (пациента); возможность определения глубины расположения препарата внутри организма объекта.
Сущность устройства для регистрации изображений распределения радиоактивных препаратов, состоящего из коллиматора, позиционно-чувствительного элемента, расположенных в двух параллельных плоскостях в направлении, перпендикулярном распространению излучения, позиционно-чувствительного детектора, входы которого оптически соединены с выходами позиционно-чувствительного элемента, выходы детектора последовательно соединены с входами блока определения координат сигналов, компьютера и дисплея, согласно изобретению достигается тем, что коллиматор выполнен в виде двухмерной кодирующей маски, которая состоит из двух частей: базовой маски, выполненной, например, на основе двоичной псевдослучайной последовательности, и циклического продолжения маски, маска выполнена подвижной, так что расстояние от плоскости маски до плоскости позиционно-чувствительного детектора может изменяться в пределах от нуля до величины, равной нескольким (5-10) размерам маски, с внешним управлением, например, вручную, часть выходов позиционно-чувствительного детектора, соответствующих циклическому продолжению кодирующей маски, соединены с блоком определения координат сигналов через ключи с внешним управлением, например, вручную. Соответствующая селекция сигналов, осуществляемая при помощи ключей, может быть осуществлена также программным путем при обработке данных.
На фиг. 1 представлена структурная схема устройства для регистрации изображений распределения радиоактивных препаратов.
Устройство содержит двумерную кодирующую маску 1, состоящую из базовой части 11 и ее циклических продолжений 12 по периферии. Базовая часть маски соответствует двоичной псевдослучайной последовательности. Также в состав устройства входят плоский позиционно-чувствительный элемент (ПЧЭ) 2, позиционно-чувствительный детектор 3, блок 4 определения координат сигналов, компьютер 5 и дисплей 6, ключи 7 с внешним управлением, например, вручную, расстояние от маски до позиционно-чувствительного элемента "а". При этом двумерная кодирующая маска 1 и плоский позиционно-чувствительный элемент 2 расположены таким образом, что при освещении маски источником излучения на позиционно-чувствительном элементе формируется тень, создаваемая маской. Выходы позиционно-чувствительного элемента 2 оптически соединены с входами позиционно-чувствительного детектора 3, выходы позиционно-чувствительного детектора 3 соединены с входами блока 4 определения координат сигналов, при этом выходы позиционно-чувствительного детектора, соответствующие периферийной части маски, соединены с входами блока определения координат сигналов через ключи 7 с внешним управлением, например, вручную, выходы блока 4 определения координат сигналов последовательно соединены с входами компьютера 5 и дисплея 6.
Устройство работает следующим образом. Регистрируемое излучение проходит через двумерную кодирующую маску 1, представляющую собой пластину из материала, непрозрачного для данного вида излучения, например из свинца, в которой имеются отверстия и непрозрачные элементы, расположенные на поверхности пластины по закону двоичной псевдослучайной (ПС) последовательности, где прозрачные участки соответствуют "1", а непрозрачные участки соответствуют "0".
От элементарного точечного источника маска отбрасывает соответствующую тень на позиционно-чувствительном элементе (ПЧЭ). Таким образом, маска кодирует тот или иной источник излучения соответствующей тенью излучения по координате и по амплитуде. Поле зрения в плоскости источников ограничено свинцовым тубусом в соответствии с размерами ПЧЭ. От каждого отдельно взятого элементарного источника излучения маска пропускает на регистрацию значительно большее число квантов по сравнению с известным устройством, т.к. суммарный телесный угол, в котором регистрируются кванты, определяется произведением числа отверстий в маске на телесный угол пропускания квантов одним отверстием. Таким образом, достоверность регистрации каждого элементарного источника при помощи маски выше, чем в известном устройстве.
Оптические сигналы с выхода ПЧЭ (сцинтиллятора) 2 поступают на входы позиционно-чувствительного детектора 3, где преобразуются в электрические сигналы, с выхода которого сигналы поступают на вход блока 4 определения координат сигналов, где каждому импульсу придается признак канала (координата). Изображение от многих элементарных источников представляется в виде массива чисел Pk,l, где k, l дискретные координаты элементов массива P в плоскости позиционно-чувствительного элемента, с выхода блока 4 определения координат сигналов сигналы поступают на вход компьютера и запоминаются ЗУ. Затем при математической обработке по запомненному в ЗУ массиву P получают информацию о распределении интенсивности излучения препарата в виде массива чисел F, используя формулу
Figure 00000003

где G массив чисел, состоящий из "1" и "-1", полученный из двоичного массива маски заменой "0" на "-1", заранее введенный в память ПЭВМ вместе с программой обработки; i, j дискетные координаты элементарных источников; r, s число элементов маски по длине и ширине.
Результаты обработки представляются на дисплее 6.
Следует отметить, что формирование подобного массива и соответствующая регистрация могут быть также осуществлены при использовании в устройстве других по исполнению позиционно-чувствительного элемента 2 и позиционно-чувствительного детектора 3. Например, указанный узел может быть выполнен в виде пропорциональной камеры с газовым наполнением, состав которого определяется энергией регистрируемых квантов излучения, с нитевидными электродами в двух параллельных плоскостях с направлением по двум перпендикулярным осям X и Y.
При попадании кванта внутрь камеры за счет ионизации газа возникает электрический импульс, координаты которого соотносятся с двумя близлежащими нитями, расположенными по осям X и Y. В этом случае чувствительный элемент и детектор составляют одну общую конструкцию. На фиг. 2 представлена упрощенная структурная схема узла маски и позиционно-чувствительного элемента. На фиг. 2 обозначено: 2 позиционно-чувствительный элемент (ПЧЭ); 11 базовая маска, содержащая полный период ПС-последовательности; 12 часть циклического продолжения базовой маски; a расстояние от ПЧЭ до маски; b - расстояние от маски для плоскости источников; 8 тубус, ограничивающий поле зрения; 9 элементарные источники излучения.
Работа устройства осуществляется в двух режимах: первый режим дальнего источника (фиг. 2а), при котором b>a, и второй режим ближнего источника (фиг. 2б), при котором b=a. В случае дальнего источника пучок излучения от него, падающий на маску, можно принять параллельным, в случае ближнего источника этого принять нельзя, пучок является расходящимся. Практически при расстоянии b= 0,5м и размерах маски 10-15 см пучок падающего излучения можно считать параллельным (фиг. 2а). В этом случае регистрация производится на центральной части ПЧЭ и детектора, соответствующей размерам базовой маски. Участки детектора c и d, соответствующие циклическим продолжениям маски, отключены от блока определения координат сигналов, так как ключи 7 разомкнуты (подобное отключение может быть осуществлено программно). На детекторе регистрируется полный период тени маски и информация восстанавливается полностью. Визуально информация представляется на дисплее в виде проекции элементарных точечных источников с распределением интенсивности на плоскости источников. Постепенно уменьшая вручную расстояние b, приходим к случаю ближнего источника (фиг. 2б), при этом регистрация осуществляется на полной поверхности детектора, соответствующей размерам базовой маски и размерам циклических продолжений маски. Ключи 7 на фиг. 1 замкнуты. В случае a=a1 <b= b1 на детекторе регистрируется необходимое количество информации, определяемое базовой маской, и дополнительное количество информации, определяемое частью циклических продолжений маски, что позволяет получить на дисплее необходимую информацию при наличии помех. В случае a=a2 > b=b2 информация не восстанавливается, т. к. регистрируемая на детекторе тень маски не содержит полного периода ПС-последовательности. На дисплее отсутствует изображение источников излучения, имеются помехи наподобие сильно расфокусированного изображения оптического объектива. В случае a=a0=b=b0 имеем оптимальное изображение на дисплее. Четкое изображение источников излучения на дисплее является признаком равенства расстояний a и b и соответственно глубины расположения радиоактивного препарата в организме объекта.
Только применение в устройстве кодирующей маски на основе двоичной ПС-последовательности для разделения потока излучения позволяет значительно снизить требуемую интенсивность излучения радиоактивного препарата, вводимого в организм объекта, а также определить глубину расположения этого препарата внутри объекта в целях лечения и диагностики.
Данное устройство позволяет не только регистрировать распределение радиоактивного препарата внутри организма объекта в медицинских целях, но и дистанционно обнаруживать местонахождение источников излучения, в том числе скрытых визуально, определять количество источников, не требуя кропотливых и длительных измерений "на ощупь", по мере приближения к источникам.
Практически целиком устройство построено на хорошо опробованных в практике медицинских исследований и освоенных промышленностью блоках и элементах и не требует больших затрат. Описанный прибор облегчает контроль за экологическим состоянием среды в части ионизирующих излучений и может найти применение для обнаружения несанкционированного транспортирования радиоактивных материалов.

Claims (1)

  1. Устройство для регистрации изображений распределения радиоактивных препаратов, состоящее из коллиматора и сцинтиллятора, расположенных последовательно в двух параллельных плоскостях, перпендикулярных направлению распространения излучения, позиционно-чувствительного детектора, входы которого оптически соединены с выходами сцинтиллятора, а выходы последовательно соединены с входами блока определения координат сигналов, компьютера и дисплея, отличающееся тем, что коллиматор выполнен в виде двумерной кодирующей маски, состоящей из базовой части, образованной периодом двоичной псевдослучайной последовательности, и ее циклического продолжения с возможностью перемещения параллельно плоскости сцинтилятора на расстояние до 5 10 размеров маски, выходы позиционно-чувствительного детектора, соответствующие циклическим продолжениям базовой части маски, соединены с входами блока определения координат сигналов через ключи с внешним управлением, например, вручную.
RU93025641A 1993-04-28 1993-04-28 Устройство для регистрации изображений распределения радиоактивных препаратов RU2082182C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU93025641A RU2082182C1 (ru) 1993-04-28 1993-04-28 Устройство для регистрации изображений распределения радиоактивных препаратов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU93025641A RU2082182C1 (ru) 1993-04-28 1993-04-28 Устройство для регистрации изображений распределения радиоактивных препаратов

Publications (2)

Publication Number Publication Date
RU93025641A RU93025641A (ru) 1995-06-27
RU2082182C1 true RU2082182C1 (ru) 1997-06-20

Family

ID=20141208

Family Applications (1)

Application Number Title Priority Date Filing Date
RU93025641A RU2082182C1 (ru) 1993-04-28 1993-04-28 Устройство для регистрации изображений распределения радиоактивных препаратов

Country Status (1)

Country Link
RU (1) RU2082182C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2562915C2 (ru) * 2010-03-25 2015-09-10 ВизуРэй Текнолоджи Лтд Устройство для регистрации фотонов и ионизирующих частиц с одновременным определением, для каждого фотона или ионизирующей частицы, направления движения в канале, заполненном текучей средой

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Физика визуализации изображений в медицине. Т.1 /Под ред. С.Уэбба.- М.: Мир, 1991. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2562915C2 (ru) * 2010-03-25 2015-09-10 ВизуРэй Текнолоджи Лтд Устройство для регистрации фотонов и ионизирующих частиц с одновременным определением, для каждого фотона или ионизирующей частицы, направления движения в канале, заполненном текучей средой

Similar Documents

Publication Publication Date Title
US5905263A (en) Depth dose measuring device
US3978337A (en) Three-dimensional time-of-flight gamma camera system
US4521688A (en) Three-dimensional and tomographic imaging device for x-ray and gamma-ray emitting objects
US3011057A (en) Radiation image device
US7655912B2 (en) Direction finding radiation detector, and radiation monitoring method and apparatus
ITRM950481A1 (it) Sonda chirurgica per la locazione di tumori per uso laparoscopico o intracavitario.
US3979594A (en) Tomographic gamma ray apparatus and method
GB2198620A (en) A scintillation detector and a positron ct apparatus incorporating it
US4843245A (en) Scintillation detector for tomographs
GB1513792A (en) Radiation detector
US5151599A (en) Device to display disintegrations of positrons using barycentric and time of flight measurements
Kroll et al. Preliminary investigations on the determination of three‐dimensional dose distributions using scintillator blocks and optical tomography
US3612865A (en) Tomographic radiation camera
Manfredi et al. The single-volume scatter camera
CN112285757B (zh) 辐射监测装置与方法
RU2082182C1 (ru) Устройство для регистрации изображений распределения радиоактивных препаратов
JP2001013251A (ja) MSGCによる反跳電子の軌跡映像からのγ線入射方向決定方法及びその装置
Redus et al. A combined video and gamma ray imaging system for robots in nuclear environments
Redus et al. An imaging nuclear survey system
Guru et al. A portable gamma camera for radiation monitoring
Ruch et al. Position sensitivity within a bar of stilbene coupled to silicon photomultipliers
US4135089A (en) Method of and apparatus for producing images for stereoscopic viewing of annihilation radiation sources
US4639600A (en) Radiation detector
US3758780A (en) Optical-binary coded position-sensitive radiation detector
Kronenberg et al. Directional detector for arrays of gamma ray and X-ray sources