RU2078306C1 - Устройство определения линейных размеров движущихся объектов - Google Patents

Устройство определения линейных размеров движущихся объектов Download PDF

Info

Publication number
RU2078306C1
RU2078306C1 SU5043615A RU2078306C1 RU 2078306 C1 RU2078306 C1 RU 2078306C1 SU 5043615 A SU5043615 A SU 5043615A RU 2078306 C1 RU2078306 C1 RU 2078306C1
Authority
RU
Russia
Prior art keywords
input
output
hole
signal processing
irradiator
Prior art date
Application number
Other languages
English (en)
Inventor
Александр Абрамович Часовский
Original Assignee
Александр Абрамович Часовский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Абрамович Часовский filed Critical Александр Абрамович Часовский
Priority to SU5043615 priority Critical patent/RU2078306C1/ru
Application granted granted Critical
Publication of RU2078306C1 publication Critical patent/RU2078306C1/ru

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

Использование: измерительная техника. Сущность изобретения: устройство содержит панель сброса 1, выходом соединенную с первым входом блока индикации 5, второй вход которого соединен с выходом блока обработки сигналов 3. Вдоль станины, сопряженной с суппортом 13, движется платформам 8. На станине расположены датчик скорости 6, непрерывный лазерный передатчик 7, отражательное зеркало 12 с отверстием и фотоприемник. 4 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для определения линейных размеров изделий в процессе их механической обработки.
Известно устройство для измерения размеров объектов, в котором с помощью непрерывного лазера осуществляется измерение линейных размеров объекта (1). Лазер устанавливается на платформе, перемещаемой с помощью привода, управляемого блоком управления приводом. Датчик скорости перемещения платформы выдает информацию о скорости перемещения платформы в блок обработки, куда поступают также сигналы с выхода фотоприемника, оптически связанного с облучателем. Блок обработки сигналов фиксирует окончательную информацию о размере объекта после облучения непрерывным лучом лазера.
Недостаток устройства необходимость дополнительного освещения объекта и невозможность измерения линейных размеров изделия в процессе его механической обработки.
Наиболее близким техническим решением к изобретению является устройство для измерения линейных размеров движущихся объектов, в котором с помощью непрерывного лазерного передатчика осуществляется облучение измеряемого объекта (2). Излучаемая световая энергия проходит через отверстие отражательного зеркала с отверстием и облучатель, установленный на платформе; отраженная световая энергия снова отражается от облучателя и отражательного зеркала с отверстием и попадает на фотоприемник, где преобразуется в электрический сигнал, который поступает в блок обработки сигнала. Блок обработки сигнала осуществляет выделение сигнала по амплитуде и ожидаемой конфигурации объекта и на основании данных о скорости движения платформы, поступающих с датчика скорости, выдает определенное количество следующих друг за другом импульсов, которое характеризует линейный размер объекта. Количество этих импульсов подсчитывается и высвечивается в блоке индикации, который устанавливается в исходное состояние с помощью панели сброса.
Недостаток устройства невозможность измерения линейных размеров изделия в процессе его механической обработки резанием на токарном или фрезерном станке.
Технической задачей изобретения является обеспечение измерения линейных размеров изделия в процессе его механической обработки.
Технический результат достигается введением панели ввода кода поправки и умножителя, выходом соединенного с третьим входом блока индикации, выход которого соединен с первым входом умножителя, соединенного вторым входом с выходом панели вводя кода поправки.
На фиг. 1 показано устройство; на фиг. 2 и 3 пример выполнения оптико-механических узлов в процессе обработки детали, вид сверху и спереди; на фиг. 4 блок индикации.
Приняты следующие обозначения: 1 панель ввода кода поправки; 2 панель сброса; 3 блок обработки сигналов; 4 умножитель; 5 блок индикации; 6 - датчик скорости; 7 непрерывный лазерный передатчик; 8 подвижная платформа; 9 привод; 10 блок управления приводом; 11 облучатель; 12 отражательное зеркало с отверстием; 13 станина сопряженная с суппортом; 14 фотоприемник; 15 суппорт; 16 резец; 17 обрабатываемая деталь; 18 передняя бабка; 19 задняя бабка; 20 световой луч; 21 первая линия задержки; 22 счетчик; 23 вторая линия задержки; 24 инвертор; 25 схема совпадения; 26 схема ИЛИ; 27 цифровой индикатор.
Выход панели сброса 1 соединен с первым входом блока индикации 5, имеющего второй вход, соединенный с выходом блока обработки сигналов 3, первый вход которого соединен с выходом датчика скорости 6, а второй вход с выходом
фотоприемника 14, на который поступает отраженная световая энергия от отражательного зеркала с отверстием 12, куда она поступает от облучателя 11, на который также поступает световой луч через это отражательное с отверстием 12, на которое световой луч поступает с непрерывного лазерного передатчика 7, кроме того облучатель 11 жестко связан с подвижной платформой 8, имеющей жесткую связь с отражательным зеркалом с отверстием 12, с фотоприемником 14, непрерывным лазерным передатчиком 7, станиной, сопряженной с суппортом 13, датчиком скорости 6 с приводом 9, имеющим вход, соединенный с выходом блока управления приводом 10, к тому же выход блока индикации 5 соединен с первым входом умножителя 4, имеющим второй вход, соединенный с выходом панели ввода кода поправки 1, а выход соединен с третьим входом блока 5 индикации.
Работа устройства осуществляется следующим образом.
Вдоль станины, сопряженной с суппортом 13, движется подвижная платформа 8 с помощью привода 9, который управляется блоком управления приводом 10, т. е. задается определенная скорость движения.
На станине, сопряженной с суппортом 13, расположен датчик скорости 6, непрерывный лазерный передатчик 7, отражательное зеркало с отверстием 12 и фотоприемник 14. С помощью непрерывного лазерного передатчика 7 осуществляется облучение детали в процессе ее обработки резанием на токарном или фрезерном станке.
Излучаемая световая энергия проходит через отверстие отражательного зеркала с отверстием 12 и облучатель 11, установленный на подвижной платформе 8. Отраженная от обрабатываемой детали световая энергия снова отражается от облучателя 11 и отражательного зеркала с отверстием 12 и попадает на фотоприемник 14.
Подвижная платформа 8 вместе с облучателем 11 двигается вдоль станины, сопряженной с суппортом 13, в прямом и обратном направлении (показано стрелкой). Суппорт 15 вместе с резцом 16 движется в направлении, показанном стрелкой, в процессе обработки детали 17, закрепленной с помощью передней и задней бабок 18 и 19. Таким образом, облучение детали осуществляется после снятия стружки с ее поверхности. Световой луч 20, отразившись от обрабатываемой детали 17 в процессе ее обработки (в данном примере ширины), попадает на фотоприемник 14, где преобразуется в электрический сигнал и попадает в блок обработки сигнала 3 (фиг. 2).
Блок обработки сигнала 3 осуществляет выделение сигнала по амплитуде и на основании данных о скорости движения подвижной платформы 8, поступающих с датчика скорости 6, выдает определенное количество следующих друг за другом импульсов, которое характеризует размер детали в процессе ее обработки.
Количество импульсов, следующих друг за другом, подсчитывается с помощью блока индикации 5. Импульсы с блока обработки сигнала 3 через линию задержки 21 поступают на вход счетчика 22, который считает количество этих импульсов, одновременно эти импульсы поступают на первый вход схемы совпадения 25 и через линию задержки 23, инвертор 24 на второй вход схемы совпадения 25. Величина линии задержки 23 равна периоду следования между двумя импульсами. В момент прихода первого импульса на выходе инвертора 24 будет присутствовать разрешение на его прохождение через схему совпадения 25. В моменты же прихода последующих импульсов такого разрешения не будет. Этот первый импульс, пройдя через схему ИЛИ 26, установит в исходное положение счетчика 22, а через время, превышающее длительность импульса, устанавливаемое с помощью линии задержки 21, начинает счет этих импульсов счетчиком 22. Информация с этого счетчика поступает через выход блока индикации 5 на первый вход умножителя 4. На второй вход умножителя 4 поступает код поправки в виде коэффициента с выхода панели 1 ввода кода поправки. Он определяется при юстировки путем сравнения фактического размера обрабатываемой детали с измеренным и зависит от погрешности установки облучателя и обрабатываемой детали относительно друг друга. Откорректированный размер детали вновь поступает с выхода умножителя 4 в блок индикации 5 для отображения на цифровом индикаторе 27. Сброс цифрового индикатора может осуществляться автоматически перед началом измерения и с помощью панели сброса, с выхода которой сигнал сброса проходит в блок индикации и далее через схему ИЛИ 26 на установку в исходное состояние счетчика 22, после чего устанавливается в исходное состояние и цифровой индикатор 27.
Устройство может быть использовано в процессе обработки деталей, при этом отпадает необходимость остановки станка для осуществления измерений размеров детали, что увеличивает производительность труда, чем обеспечивается эффективность применения устройства.

Claims (1)

  1. Устройство определения линейных размеров движущихся объектов, содержащее панель сброса, блок обработки сигнала, блок индикации, датчик скорости, непрерывный лазерный передатчик, подвижную платформу, привод, блок его управления, облучатель, отражательное зеркало с отверстием и фотоприемником, при этом оптический выход непрерывного лазерного передатчика через отверстие отражательного зеркала оптически сопряжен с облучателем, который оптически сопряжен через отражательное зеркало с отверстием с фотоприемником, выходом соединенным с первым входом блока обработки сигналов, второй вход которого соединен с датчиком скорости, жестко связанного с подвижной платформой, облучателем и приводом, вход которого соединен с выходом блока его управления, выход блока обработки сигналов соединен с первым входом блока индикации, вторым входом соединенного с панелью сброса, отличающееся тем, что в него введены панель ввода кода поправки и умножитель, выходом соединенный с третьим входом блока индикации, выход которого соединен с первым входом умножителя, соединенного вторым входом с выходом панели ввода кода поправки.
SU5043615 1992-01-28 1992-01-28 Устройство определения линейных размеров движущихся объектов RU2078306C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5043615 RU2078306C1 (ru) 1992-01-28 1992-01-28 Устройство определения линейных размеров движущихся объектов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5043615 RU2078306C1 (ru) 1992-01-28 1992-01-28 Устройство определения линейных размеров движущихся объектов

Publications (1)

Publication Number Publication Date
RU2078306C1 true RU2078306C1 (ru) 1997-04-27

Family

ID=21604952

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5043615 RU2078306C1 (ru) 1992-01-28 1992-01-28 Устройство определения линейных размеров движущихся объектов

Country Status (1)

Country Link
RU (1) RU2078306C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1173178, кл. G 01 B 11/04, 1981. Авторское свидетельство СССР N 1610269, кл. G 01 B 21/00, 1990. *

Similar Documents

Publication Publication Date Title
US4968146A (en) Optical depth measuring device to be mounted on drilling power tool
EP0134597B2 (en) Measuring system based on the triangulation principle for the dimensional inspection of an object
US3870890A (en) Method and apparatus for measuring mutually perpendicular dimensions
EP1480006A3 (en) Laser measurement apparatus
AU697118B2 (en) Apparatus and method for measuring visibility and present weather
EP0394888A3 (en) Object detection apparatus of the photoelectric reflection type
JPS5722506A (en) Optical noncontact type detector
JPS5449147A (en) Recorder
RU2078306C1 (ru) Устройство определения линейных размеров движущихся объектов
JPS5492155A (en) Retrieval device
EP0391278A3 (en) Doppler velocity meter
GB1373241A (en) Method and apparatus for detecting defects or irregularities in glass sheet
US5541732A (en) Method and apparatus for measuring a relative movement between two elements
JPS5593003A (en) Measuring method for plate thickness of plate-shape transparent body
SU1585670A1 (ru) Способ измерени толщины стенки прозрачных труб и устройство дл его осуществлени
RU2164004C2 (ru) Устройство для измерения линейных размеров объектов
JPS5459166A (en) Visual sensibility measuring apparatus of interferometer
SU1610269A1 (ru) Устройство дл измерени линейных размеров движущихс объектов
SU1067353A1 (ru) Устройство дл измерени перемещений объекта
SU1675659A1 (ru) Лазерна двухкоординатна измерительна система дл измерени линейных перемещений
JPS6488302A (en) Position detecting device
SU1174744A1 (ru) Устройство дл измерени линейных перемещений
SU1601510A1 (ru) Позиционно-чувствительное устройство дл контрол перемещений объектов
RU2209390C2 (ru) Устройство измерения линейных размеров
SU1462098A1 (ru) Дифференциальный интерферометр дл изменени угловых перемещений