RU2072323C1 - Автоклавная установка для гидрохимической обработки пульп - Google Patents

Автоклавная установка для гидрохимической обработки пульп Download PDF

Info

Publication number
RU2072323C1
RU2072323C1 SU904820228A SU4820228A RU2072323C1 RU 2072323 C1 RU2072323 C1 RU 2072323C1 SU 904820228 A SU904820228 A SU 904820228A SU 4820228 A SU4820228 A SU 4820228A RU 2072323 C1 RU2072323 C1 RU 2072323C1
Authority
RU
Russia
Prior art keywords
autoclaves
autoclave
heating
steam
reaction
Prior art date
Application number
SU904820228A
Other languages
English (en)
Inventor
В.М. Тыртышный
Original Assignee
Всероссийский научно-исследовательский и проектный институт алюминиевой, магниевой и электродной промышленности
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Всероссийский научно-исследовательский и проектный институт алюминиевой, магниевой и электродной промышленности filed Critical Всероссийский научно-исследовательский и проектный институт алюминиевой, магниевой и электродной промышленности
Priority to SU904820228A priority Critical patent/RU2072323C1/ru
Application granted granted Critical
Publication of RU2072323C1 publication Critical patent/RU2072323C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

Изобретение относится к установкам для гидрохимической обработки пульпы, позволяющим совместить выщелачивание бокситов и многократной упарки раствора, с помощью которой интенсифицируется перемешивание пульпы и повышение концентрации. Установка состоит из греющих автоклавов 1 с теплообменниками 2, струйным подогревателем 3, насосами 4 для перекачки пульпы между автоклавами, реакционных автоклавов 6 с теплообменниками и сепараторами 7. Верхние и нижние части теплообменников 2 соединены с автоклавами трубками 8 для циркуляции пульпы. Верхние части реакционных автоклавов 6 соединены с подогревателями 3 последнего греющего автоклава и теплообменником предпоследнего автоклава трубой 9. Каждые последующие греющие автоклавы 1 соединены попарно паропроводами 10 с теплообменниками 2 предыдущих автоклавов 1, а также часть автоклавов 1 снабжены паропроводами отбора пара 11 с регуляторами 12. Подогреватель 3 состоит из сопла 13, трубы 14 с отбойником 15. 1 з. п. ф-лы, 2 ил.

Description

Изобретение относится к оборудованию глиноземного производства, конкретно к автоклавным установкам для выщелачивания боксита. Известна автоклавная установка, состоящая из последовательно соединенных, насоса высокого давления, автоклавов с мешалками и греющими элементами в виде змеевиков и сепараторов (Патент Франции N 1169818). В настоящее время такие установки нашли наиболее широкое распространение в передовых странах.
Основное преимущество таких установок заключается в наименьшем зарастании греющих элементов, так как многоступенчатый нагрев, обеспечивающийся соединениями паропроводов, сепараторов со змеевиками автоклавов пульпы сопровождается выдержкой пульпы в автоклавах для снятия пересыщения по инкрустирующим примесям.
Недостатком таких установок является:
1. Большой расход металла из-за необходимости изготовления всех автоклавов на высокое давление, соответствующее наиболее высокой температуре в последнем автоклаве, запасу давления для исключения кипения пульпы и на преодоление сопротивления труб между автоклавами, а также из-за большого числа греющих элементов змеевиков, работающих с наиболее низкими коэффициентами теплопередачи 300 500 ккал/м2 часoC и необходимости сооружения сложных размешивающих устройств.
2. Большие трудозатраты на замену сальников, мешалок, подпятников, змеевиков, работающих в высокоабразивной среде и горячего щелочного раствора.
3. Ограниченность возможности сооружения установок большой единичной мощности из-за большой толщины стенок всех автоклавов и трудности создания насосов высокого давления 50 60 атм большой производительности.
4. Значительный расход электроэнергии на перемешивание пульпы.
Наиболее близким по технической сущности является установка по заявке N 4395926/23-02 (042495) с решением о выдаче авт.св. от 27.02.89 года. Эта установка состоит из последовательно соединенных греющих и реакционных автоклавов, снабженных паролифтами для перемешивания в виде труб, с целью снижения зарастания и повышения эффективности обескремнивания, она снабжена струйными подогревателями, расположенными над уровнем пульпы в греющих автоклавах для конденсации отработанного пара и насосом, установленным между ними, при этом верхние части первого и второго греющего автоклава соединены трубами со сливными трубопроводами, а верхняя часть по крайней мере одного сепаратора, соединена трубой с паролифтом первого автоклава.
Преимущества этой установки по сравнению с автоклавной установкой, состоящей из автоклавов с механическим перемешиванием, заключается в снижении энергетических и капитальных затрат за счет исключения мешалок и расхода электроэнергии на перемешивание.
Недостатком этой установки является отсутствие греющих элементов, приводящих к значительному разбавлению пульпы конденсатом пара и отсутствию возврата конденсата пара на ТЭЦ. В связи с этим, подобные установки могут применяться для процессов, где разбавление раствора паром полезно, например, при процессе обескремнивания растворов. Процесс выщелачивания боксита наоборот усиливается при повышении концентрации щелочи.
Целью изобретения является снижение капитальных и энергетических затрат в автоклавах за счет совмещения выщелачивания с многократной выпаркой раствора, с помощью которой обеспечивается повышение концентрации щелочи и интенсификация перемешивания пульпы.
Указанная цель достигается тем, что в автоклавной установке для гидрохимической переработки пульп глиноземного производства, содержащей ряд последовательно установленных греющих автоклавов с подогревателями в их верхней части и реакционных, соединенных паропроводом с подогревателем последнего греющего автоклава, сепараторов соединенных паропроводами с перемешивающими устройствами и насосов для перекачки пульпы из нижней части предыдущего автоклава в подогреватель последующего, при этом перемешивающие устройства соединены патрубками в верхней и нижней части с греющими и реакционными автоклавами, а перемешивающее устройство по крайней мере одного реакционного автоклава, соединено с патрубком для подвода пара от внешнего источника, в качестве устройства для перемешивания, нагрева и испарения используются трубчатые теплообменники, при этом паропровод, соединяющий реакционные автоклавы соединен с трубчатым теплообменником предпоследнего греющего автоклава, а верхние части последующих греющих автоклавов соединены паропроводами с трубчатыми теплообменниками предыдущих, кроме того, по крайней мере один автоклав снабжен регулятором отбора вторичного пара.
Использование трубчатых теплообменников, соединенных с автоклавами в верхней и нижней части обеспечивает более интенсивные перемешивание, нагрев и испарение пульпы в автоклавах по сравнению с автоклавами с мешалками, объем которых заполнен тормозящими перемешивание, греющими элементами и исключает расход электроэнергии на перемешивание; а также разбавление раствора конденсатом греющего пара. Соединение паропроводами верхней части реакционных автоклавов с подогревателем последнего греющего автоклава и теплообменником предпоследнего, межтрубное пространство которого соединено паропроводом с сепаратором и теплообмеником предыдущего, как и все последующие до первых автоклавов, снабженных устройством для регулируемого отбора пара, например, на выпарку и нагрев воды, обеспечивают многократное использование вторичного пара для усиления перемешивания пульпы в автоклавах и повышения концентрации раствора пропорционально количеству отбираемого пара при сокращении давления в установке и, соответственно, расхода металла в 4 5 раз и с использованием преимуществ автоклавных установок, в которых в несколько раз меньше зарастают поверхности нагрева за счет использования емкостей автоклавов для снятия пересыщения раствора по накипеобразующим примесям и работе в области более низких температурах и более высокой концентрации щелочи.
Использование струйного подогревателя, приспособленного для нагрева абразивной пульпы с отбойником, позволяющим повысить эффективность нагрева пульпы за счет повышения поверхности контакта пульпы с паром (испытания аналогичного струйного подогревателя показали, что установка отбойника полностью исключает недогрев пульпы до температуры кипения).
Реакционные автоклавы работают при максимальном давлении в связи с этим, для упрощения их изготовления они могут изготовляться меньших диаметров, в тоже время, выщелачивание, например, боксита в греющих автоклавах, уменьшит крупность частиц и перемешивание пульпы станет менее необходимым, при этом установка простых дополнительных реакционных автоклавов без перемешивания может оказаться целесообразной.
На фиг. 1 изображена схема заявленной автоклавной установки; на фиг. 2 - установка струйного подогревателя. Установка состоит из греющих автоклавов 1 с теплообменниками 2 и струйным подогревателем 3 и центробежными насосами 4 для последовательной перекачки пульпы из автоклава в автоклав, греющего автоклава 5 и реакционных автоклавов 6 с теплообменником 2, а также сепараторами 7. Верхние и нижние части теплообменников 2 соединены с автоклавами трубками 8, по которым осуществляется циркуляция пульпы.
Верхние части реакционных автоклавов 6 соединены с подогревателем 3 и теплообменником 2 предпоследнего греющего автоклава трубой 9 для использования вторичного пара реакционных автоклавов на нагрев пульпы в подогревателе 3 и испарения пульпы в теплообменнике 2.
Каждые последующие греющие автоклавы 1 соединены попарно паропроводом 10 с теплообменниками 2 предыдущих автоклавов 1, а так же один или несколько автоклавов снабжены трубами отбора пара 11 с регулятором 12 для последовательного многократного использования пульпы и повышения концентрации раствора.
Каждый струйный подогреватель 3 состоит из сопла 13, трубы конденсации пара 14 и отбойника 15 и, служит для подогрева пульпы и конденсации части пара после теплообменника 2. Предотвращение зашламления автоклавов, поддержание необходимых уровней и опорожнение автоклавов при остановке осуществляется с помощью сифонообразных перетоков 16.
Установка работает следующим образом.
Исходная пульпа поступает через сопло 13 в трубу 14 и отбойник 15 в первый греющий автоклав 1 с теплообменником 2, при этом струя пульпы попадая в трубу 14 засасывает в нее пар из теплообменника 2 и пульпа нагревается. Окончательный догрев пульпы до температуры кипения происходит на поверхности контакта пульпы с паром в объеме автоклава, образующейся с помощью отбойника 15.
При нагреве пульпы разбавляется паром, что способствует процессу обескремнивания раствора перед поступлением по нижней трубе 8 в теплообменник 2. В трубках теплообменников 2 происходит упаривание раствора, при этом повышение концентрации щелочи удерживает от выделения накипи на трубках. Кипение в трубках осуществляет циркуляцию пульпы в трубках и корпусе автоклава, при этом отбор части пара по трубе 11 с помощью регулятора 12 увеличивает скорость парожидкостной пульпы в трубках, а следовательно и перемешивание пульпы в автоклаве, а также увеличивает концентрацию щелочи в греющих трубках и автоклаве, что интенсифицирует процесс и защищает поверхность нагрева от зарастания.
Из первого греющего автоклава по сифонообразному перетоку 16 пульпа перекачивается через струйный подогреватель 3 во второй автоклав и так далее до струйного подогревателя 3 последнего греющего автоклава 5.
Уровни пульпы на всасе насосов поддерживаются автоматически для исключения вскипания пульпы в насосе. Число греющих автоклавов и насосов в установке целесообразно увеличивать с ростом температуры и давления в реакционных автоклавах 6. Переток пульпы между последним греющим автоклавом 5 и реакционными автоклавами 6 осуществляется самотеком и далее из последнего автоклава через сифонообразный переток 16, с помощью которого поддерживаются уровни в автоклавах, в ряд последовательно соединенных сепараторов 7, где она самоиспаряется и из последнего поступает на дальнейшую переработку в других переделах.
Пар от внешнего источника, например ТЭЦ, поступает в один или несколько теплообменников 2 реакционных автоклавов 6, а вторичный пар, из автоклавов 6 собирается и поступает в подогреватель 3 и теплообменник 2 предпоследнего греющего автоклава. В этом автоклаве, также как и в первом греющем автоклаве 1, производится упарка и нагрев пульпы. Часть вторичного пара по трубе 10 вместе с паром сепаратора 7 поступает в кипятильник 2 предыдущего автоклава и так до первого греющего автоклава.
Из одного или двух греющих автоклавов в зависимости от потребностей пара на нужды производства, например, на выпарные батареи маточного раствора и приготовление горячей воды, пар отбирается регуляторами 16 по трубам 11. Конструкция предложенной установки позволяет сократить число выпарных батарей с обеспечением минимального объема выпарки, достаточного для удаления солей и органики из процесса, а концентрация раствора в сфере выщелачивания повышается и автоматически поддерживается на необходимом уровне.
Отбор конденсата из кипятильников и последовательное использование пара испарения под соответствующие теплообменники противотоком движению пульпы осуществляется также, как и в обычных автоклавных установках с мешалками и змеевиками (на схеме не показаны).
Как показал поиск по источникам научно-технической информации отличительные признаки заявляемого решения, т.е. использование теплообменников в греющих автоклавах в качестве устройства для перемешивания пульпы и соединение трубой 9 верхней части реакционных автоклавов, снабженных теплообменниками с подогревателем 3 и теплообменником предпоследнего греющего автоклава, а также соединение попарно трубами 10 верхней части каждого последующего автоклава с теплообменником предыдущего и снабжение одного или несколько греющих автоклавов трубами 11 с регулятором 12 отбора вторичного пара не известно.
Неизвестно также использование струйных подогревателей с отбойником в автоклаве в качестве подогревателя. Следовательно, заявленное решение соответствует критерию "существенные отличия", т.к. представляет собой новую совокупность признаков, обеспечивающую достижение положительного эффекта - снижение капитальных и энергетических затрат и интенсификацию автоклавного процесса при поступлении раствора с пониженной концентрацией, обеспечивающей снижение капитальных и энергетических затрат на выпарке, а также снижение зарастания аппаратов, повышением концентрации раствора, создание и усиление паролифтного перемешивания в автоклавах и греющих трубках.
Пример конкретного осуществления: на глиноземных заводах с использованием автоклавных установок (патент Франции N 1169818) максимальной производительности до 290 м3/час при температуре в реакционных автоклавах 235oC для выщелачивания боксита необходима концентрация Na2Oкауст в сфере выщелачивания 190 г/л. Такая концентрация щелочи обеспечивается упариванием маточного раствора после декомпозиции раствора с концентрацией Na2Oк 140 г/л до концентрации Na2Oк 200 г/л (с учетом влаги в боксите).
При осуществлении выщелачивания в предлагаемой установке, установка более простых центробежных насосов с напором до 10 Ом вод.ст. между автоклавами позволяет в несколько раз снижать давление в греющих автоклавах и за счет этого увеличить единичную мощность установки до 600 м3/час с применением девяти автоклавов больших диаметров 3,6 м (из которых 3 - реакционные). Совмещение процессов многократного упаривания и выщелачивания боксита, позволяет исключить число выпарных батарей до минимального числа с обеспечением удаления из процесса соды и органики. В этом случае на автоклавы будет поступать пульпа 600 м3/час с концентрацией Na2Oк 172 г/л при этом для обеспечения необходимой концентрации щелочи в сфере выщелачивания (автоклавы 5,6) Na2Oк 190 г/л клапаном 12 на патрубке 11 отбирается 10 т/час пара давлением 4 атм, например, на выпарные батареи. Для сохранения режима температур и давлений в автоклавах одновременно необходимо увеличить количество поступающего пара от ТЭЦ в теплообменнике 2 реакционного автоклава 6 на 10 т/час. Соединение реакционных и греющих автоклавов 1 трубами 9 и 10 позволяют передать эти 10 т/ч от реакционных автоклавов 6 до регулятора 12, попутно осуществив перемешивание и упарку пульпы в шести автоклавах, при этом шесть автоклавов выпарят 6•10 60 т/ч воды.
Снижение расхода тепла на выпарных батареях при этом составит:
(60•0,37-10)•0,7•8760•0,67= 50000 Гкал в год.
где: 0,37 удельный расход пара на 1 тонну упаренной воды при пятикратном использовании пара;
0,7 коэффициент перевода тонн пара в Гкал;
8760 число часов в году;
0,67 коэффициент использования батареи.
Снижение затрат на пар от одной установки составит:
50000•5,73= 287 тыс. руб.
Снижение расхода электроэнергии на перемешивание составит ориентировочно:
30•6•8760= 1580 тыс. кВт
где: 30 мощность электродвигателя мешалки, способного создать интенсивность перемешивания эквивалентную подаче 10 т/ч пара в кипятильник.
Снижение капитальных затрат на строительство выпарной батареи производительностью 60 т/ч упаренной воды составит ориентировочно 400 тыс. руб.

Claims (2)

1. Автоклавная установка для гидрохимической переработки пульп глиноземного производства, содержащая ряд последовательно установленных греющих автоклавов с подогревателями в их верхней части и реакционных автоклавов, соединенных паропроводом с подогревателем последнего греющего автоклава, сепараторов, соединенных паропроводами с перемешивающими устройствами, и насосов для перекачки пульпы из нижней части предыдущего автоклава в подогреватель последующего, при этом перемешивающие устройства соединены патрубками в верхней и нижней части с греющими и реакционными автоклавами, а перемешивающее устройство по крайней мере одного реакционного автоклава соединено с патрубком для подвода пара от внешнего источника, отличающаяся тем, что, с целью снижения капитальных, энергетических затрат за счет совмещения процессов выщелачивания с многократной выпаркой, перемешивающие устройства выполнены в виде трубчатых теплообменников, при этом паропровод, соединяющий реакционные автоклавы, соединен с трубчатым теплообменником предпоследнего греющего автоклава, а верхние части последующих греющих автоклавов соединены паропроводами с трубчатыми теплообменниками предыдущих, кроме того, по крайней мере один автоклав снабжен регулятором отбора вторичного пара.
2. Установка по п.1, отличающаяся тем, что в греющих автоклавах под каждым подогревателем установлен конический отбойник.
SU904820228A 1990-04-26 1990-04-26 Автоклавная установка для гидрохимической обработки пульп RU2072323C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU904820228A RU2072323C1 (ru) 1990-04-26 1990-04-26 Автоклавная установка для гидрохимической обработки пульп

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU904820228A RU2072323C1 (ru) 1990-04-26 1990-04-26 Автоклавная установка для гидрохимической обработки пульп

Publications (1)

Publication Number Publication Date
RU2072323C1 true RU2072323C1 (ru) 1997-01-27

Family

ID=21511495

Family Applications (1)

Application Number Title Priority Date Filing Date
SU904820228A RU2072323C1 (ru) 1990-04-26 1990-04-26 Автоклавная установка для гидрохимической обработки пульп

Country Status (1)

Country Link
RU (1) RU2072323C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1549006, кл. C 01F, 1988, н/п. *

Similar Documents

Publication Publication Date Title
EP0335707B1 (en) Method for transferring heat between process liquor streams
CN1302828C (zh) 回热型多级闪蒸海水淡化装置
CN101445256A (zh) 一种一水硬铝石型铝土矿的大型管道加停留罐溶出工艺
CN105217702A (zh) 一种脱硫废水处理系统
SE1050514A1 (sv) Anordning för indunstning av vätskor
RU2072323C1 (ru) Автоклавная установка для гидрохимической обработки пульп
US3418214A (en) Integral make-up deaerator for flash evaporator
US2398396A (en) Fluid evaporator
CN211176753U (zh) 发电厂疏水余热再利用装置
RU2115737C1 (ru) Многокорпусная выпарная установка
US3579294A (en) Process for extraction of alumina from ores by solution of caustic soda and sodium aluminate
CN216584611U (zh) 一种醇溶黒生产废水苯胺回收处理系统
CN220078666U (zh) 余热回收及废水处理系统
CN209024347U (zh) 高盐废水的处理系统
RU2092215C1 (ru) Способ упаривания алюминатных растворов и установка для его осуществления
US11596873B2 (en) System for simultaneous recovery of purified water and dissolved solids from impure high TDS water
RU2022928C1 (ru) Автоклавная установка для обескремнивания алюминатных растворов
CN215505517U (zh) 蒸汽机械再压缩蒸发系统和废盐再利用系统
CN215364977U (zh) 蒸汽循环供热结晶蒸发设备
Zaostrovskv et al. Distillation desalination plant in the city of Shevchenko. Layout, equipment and operating experience
CN213623349U (zh) 一种利用低压蒸汽的脱硫石膏废水蒸发浓缩设备
JPS6142390A (ja) ボイラ給水製造法
RU2171782C2 (ru) Автоклавная установка для выщелачивания бокситов
CN213983526U (zh) 一种锅炉排污水余热回收装置
CN213481040U (zh) 一种工业设备余热循环回收系统