RU2070473C1 - Способ охлаждения кристаллизатора - Google Patents

Способ охлаждения кристаллизатора Download PDF

Info

Publication number
RU2070473C1
RU2070473C1 SU5065204A RU2070473C1 RU 2070473 C1 RU2070473 C1 RU 2070473C1 SU 5065204 A SU5065204 A SU 5065204A RU 2070473 C1 RU2070473 C1 RU 2070473C1
Authority
RU
Russia
Prior art keywords
water
air
cooled
mold
sec
Prior art date
Application number
Other languages
English (en)
Inventor
Даги Сагитович Булгаков
Original Assignee
Даги Сагитович Булгаков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Даги Сагитович Булгаков filed Critical Даги Сагитович Булгаков
Priority to SU5065204 priority Critical patent/RU2070473C1/ru
Application granted granted Critical
Publication of RU2070473C1 publication Critical patent/RU2070473C1/ru

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

(57) Изобретение относится к непрерывной разливке металлов и сплавов, конкретнее к способу охлаждения кристаллизаторов, преимущественно гильзовых и составных кристаллизаторов для разливки сортовых заготовок и блюмов. В способе охлаждения кристаллизатора, включающем подачу в охлаждаемую полость кристаллизатора охлаждаемого агента, в качестве агента используют водовоздушную эмульсию, получаемую предварительно в струйном насосе. Подают эмульсию непрерывным потоком вдоль охлаждаемой стенки кристаллизатора с коэффициентом инжекции
Figure 00000001
расходом воды на кристаллизатор 9,4...16,7 кг/с и пределах отношений
Figure 00000002
Figure 00000003
и
Figure 00000004
где Gт и Gp - массовые расходы воды и воздуха на одну охлаждаемую стенку кристаллизатора, кг/с; Рн и Рр - начальные давления воды и воздуха перед струйным аппаратом,
Figure 00000005
; Рc - давление в камере смешения струйного аппарата,
Figure 00000006
; М - число Маха; ωa - изоэнтропная скорость газа, м/с; а - скорость звука в данной среде, м/с. 1 ил., 2 табл.

Description

Изобретение относится к непрерывной разливке металлов и сплавов, конкретнее к способу охлаждения кристаллизаторов, преимущественно гильзовых и составных кристаллизаторов для разливки сортовых заготовок и блюмов.
Известен способ охлаждения рабочей стенки кристаллизатора путем разбрызгивания воды, позволяющий вести высокоскоростную разливку на МНЛЗ при контролировании однородности кристаллизующейся корочки слитка. При этом расход воды при скорости непрерывной разливки Уc 2,0 и 2,7 м/мин составляет соответственно 900 и 1140 л/мин (Разработка кристаллизатора УНРС со струйным охлаждением. Sasaki K. Дзайре то пуросэсу. Сигг. Аоу. Маter and Porecess, 1988, 1, N 4, c. 1257).
Недостатком этого способа является возможность засорения форсунок. Это приводит к неравномерности охлаждения, выбору большего выходного сечения форсунок, к ухудшению качества заготовок и уменьшению стойкости кристаллизатора.
Наиболее близким к предлагаемому решению является способ охлаждения, заключающийся в подаче в охлаждаемую полость кристаллизатора предварительно полученной в смесительной камере водовоздушной смеси, которую подают непрерывным потоком вдоль охлаждаемой стенки кристаллизатора с определенными значениями расходов воды и воздуха, что обеспечивает устранение пленочного эффекта охлаждения, повышение интенсивности теплообмена и коэффициента теплоотдачи и, как следствие, повышение качества слитков за счет стабилизации скорости охлаждения (авт.св. СССР N 1039641, кл. В 22 D 11/0,4, 1983).
Недостатками предложенного прототипа являются:
невозможность получения в смесительной камере и после него требуемой температуры водовоздушной смеси из-за предварительного разогрева воздуха у охлаждаемой стенки кристаллизатора, отсутствия регулируемого адиабатического сжатия и расширения воздуха в рабочем сопле для создания требуемых отрицательных температур воздуха;
снижение скорости потока водовоздушной смеси за счет противодавления воды, а следовательно, это приводит к уменьшению коэффициента теплоотдачи;
возможность попадания воздуха в каналы подачи воды и образование "пробок".
Предлагаемый способ охлаждения позволяет устранить дополнительное охлаждение воды после кристаллизатора и водоподготовку, получить требуемую температуру водовоздушной смеси перед кристаллизатором, за счет более низких температур водовоздушной смеси повысить коэффициент теплоотдачи, исключить противодавление воды и воздуха, эффект пленочного кипения у охлаждаемой стенки, что позволяет устранить неравномерные условия теплоотвода и повысить коэффициент теплоотдачи, что в дальнейшем, как следствие, обеспечивает повышение качества заготовок, стойкости кристаллизатора и повышение производительности МНЛЗ, исключает строительство цеха водоподготовки.
Для этого способа, заключающегося в подаче в охлаждаемую полость кристаллизатора предварительно полученной в смесительной камере водовоздушной смеси, которую подают непрерывным потоком вдоль охлаждаемой стенки кристаллизатора с определенными значениями расходов воды и воздуха, водовоздушную смесь получают в струйном насосе и подают с коэффициентом инжекции:
Figure 00000012

где: Ст и Ср массовые расходы воды и воздуха на одну охлаждаемую стенку кристаллизатора, кг/с, а также с расходом воды на кристаллизатор в пределах 9,4.16,7 кг/с и пределами отношений
Figure 00000013
Figure 00000014
Figure 00000015

где Рн Рp начальные давления воды и воздуха перед струйным насосом, Н/м2;
Рc давление водовоздушной смеси на выходе из камеры смешения струйного насоса, Н/м2; М число Маха;
ωa изоэнтропная скорость воздуха в выходном сечении рабочего сопла струйного насоса, м/с;
a скорость звука в данной среде, равная скорости воздуха в критическом сечении сопла, м/с.
Для достижения требуемого технического эффекта необходимы следующие факторы:
а) предварительное охлаждение воздуха в струйном насосе до минусовых температур и получение требуемой температуры воздуховоздушной смеси перед кристаллизатоpом в камере смешения, что повышает эффект охлаждения и исключает последующее охлаждение воды;
б) получение вдоль охлаждаемой стенки высокоскоростного потока водовоздушной смеси с высокой кинетической энергией для срыва с охлаждаемой поверхности зон пленочного кипения;
в) высокая однородность водовоздушной смеси и дисперсность, что обеспечивает равномерность охлаждения по всей поверхности стенки кристаллизатора.
Все это вместе взятое исключает температурную деформацию стенки кристаллизатора и формирующейся корочки металла, а следовательно, исключается износ стенки, насыщение поверхности заготовки медью, образование трещин, устраняется ромбичность, частично сглаживаются следы качания, повышается скорость разливки за счет высокого эффекта охлаждения, уменьшается расход воды в 2-3 раза.
Все эти факторы выполнимы при соблюдении указанных соотношений параметров воды и воздуха в струйном насосе, где воздух подают в рабочее сопло с начальным давлением Рp, а вода поступает в приемную камеру с начальным давлением Рн и массовыми расходами воды и воздуха на охлаждаемую стенку Сн и Сp, а далее вода и воздух смешиваются в камере смешения насоса и с давлением водовоздушной смеси Рc поступает вдоль охлаждаемой стенки кристаллизатора.
Согласно прототипу все указанные факторы практически невыполнимы, т.к. воздух вместо охлаждения нагревается от охлаждаемой стенки и к тому же плохо охлаждает стенку кристаллизатора на самом горячем участке, отсутствует регулируемое адиабатическое сжатие воздуха и расширение в рабочем сопле для получения требуемой минусовой температуры воздуха и, следовательно, низкой результирующей температуры водовоздушной смеси, скорость водовоздушной смеси падает за счет создания противодавления воды, а поэтому невозможно получение тонкодисперсной высокоскоростной водовоздушной смеси.
Согласно предлагаемому способу водовоздушную смесь предварительно получают в струйном насосе, который позволяет произвести высокоэффективное смещение двух потоков: рабочего воздуха и инжектируемого воды, где кинетическая энергия рабочего потока частично передается инжектируемому потоку. При этом при протекании по струйному насосу происходит выравнивание скоростей смешиваемых потоков и обратное преобразование кинетической энергии смешанного потока в потенциальную.
Согласно прототипу в камере смешения вместо выравнивания скоростей потоков и получения высоких скоростей происходит торможение потоков за счет противодавления поступающей воды и возможно образование "пробок" в водной магистрали, что уже испытано на практике, а снижение скорости потока водовоздушной смеси не способствует срыву зон пленочного кипения.
Согласно предлагаемому способу воздух выходит из сопла со скоростью ωa,, обеспечивающей соотношение
Figure 00000016
(теоретически можно достичь М 2,4) при одновременно адиабатическом сжатии и с расширением в рабочем сопле, т.к. скорость воздуха на выход из рабочего сопла в 1,9.2,1 раза превышает скорость звука в критическом сечении этого сопла, что позволяет предварительно снизить температуру воздуха перед камерой смешения до требуемых минусовых значений.
При этом, если соотношение
Figure 00000017
меньше 1,9, то температура воды на выходе из кристаллизатора получается выше температуры воды на входе в кристаллизатор, а при
Figure 00000018
более 2,1 температура воды на выходе равна температуре воды на входе и дальнейшего понижения не происходит, т.е. 2,1 является точкой этого соотношения в рабочих пределах коэффициента инжекции.
В результате исследований, проведенных в лабораторных и цеховых условиях, установлено, что при соотношении
Figure 00000019
или значении коэффициента инжекции равного менее 3,0 коэффициент теплоотдачи начинает резко снижаться и составляет менее 23570 Вт/м2oС, что приводит к ухудшению охлаждения и уменьшению производительности МНЛЗ.
При коэффициенте инжекции И более 18,0 коэффициент теплоотдачи выравнивается и мало отличается от значения α 28000 Вт/м2oС, а дальнейшее увеличение коэффициента инжекции приводит к увеличению расхода воды, что экономически не выгодно.
В отличие от кристаллизатора с охлаждением только водой, где расход воды составляет 16,7. 33,3 кг/с и коэффициент a 23570.26700 Вт/м2oC, водовоздушное охлаждение при значениях a 23570.28000 Вт/м2oС позволяет снизить расход воды до 9,4.16,7 кг/с.
При значениях расхода воды менее 9,4 кг/с коэффициент инжекции снизится менее 3,0, что приведет к резкому падению коэффициента теплоотдачи, а при значении расхода воды более 14,1 кг/с коэффициент инжекции возрастет более 18,0, что экономически не выгодно, т.к. это требует повышения дополнительного давления воды в сети при относительно постоянном расходе воздуха 500 м3/ч и давлении 490,5•103.686,7•103 H/м2. Однако дальнейшее повышение коэффициента инжекции до 21,0 позволяет увеличить коэффициент теплоотдачи до 23578 Вт/м2oC при расходе воды 19,4 кг/с, если исходить из соображения эффективности охлаждения, а не экономии.
Согласно закону сохранения количества движения приведенные соотношения Рp/Pн 1,4.2,1; Рc/Pн 1,03.1,1 и M=ωa/a=1,9 ... 2,1 позволяет получить требуемую результирующую скорость потока водовоздушной смеси вдоль охлаждаемой стенки с указанными коэффициентами теплоотдачи.
В струйных насосах степень сжатия Рc/Pн, как правило берется менее 1,2. Для получения требуемой результирующей скорости потока вдоль охлаждаемой стенки кристаллизатора оптимальным является соотношение Рc/Pн 1,03.1,1, что позволяет достаточно эффективно снимать с охлаждаемой поверхности зоны пленочного кипения.
При увеличении Рc/Pн более 1,1 коэффициент теплоотдачи будет менее 23570 Вт/м2oС и коэффициент инжекции составит менее 3,0.
При уменьшении Рc/Pн менее 1,03 коэффициент инжекции достигнет оптимального значения И 18,0 и α 28000 Вт/м2oC и дальнейшее уменьшение этого соотношения экономически не выгодно, т.к. коэффициент теплоотдачи входит в полосу, где прирост не значителен.
Отношение Рp/Pн 1,4.2,1 характеризует степень запаса кинетической энергии потока и влияет на коэффициент инжекции, с которым связан соотношением
Figure 00000020

где К1, К3 коэффициенты, Кp показатель адиабаты, Рp, Pн начальные давления воздуха и воды, H/м2, ΔPc=Pc-Pн Рc-Pн разность между результирующим давлением в камере смещения и начальным давлением воды, Н/м2.
При значении Рp/Pн менее 1,4 коэффициент инжекции будет более И 18,0, что экономически не выгодно, т.к. коэффициент теплоотдачи выравнивается и мало отличается от значения α 28000 Вт/м2oС, при значении Рp/Pн более 2,1 коэффициент инжекции становится менее 3,0 и коэффициент теплоотдачи резко падает.
На фиг.1 приведена зависимость коэффициента теплоотдачи от коэффициента инжекции И и расхода воды на кристаллизатор 0, кг/с, где линия 1 зависимость f(Q) при водяном охлаждении кристаллизатора; линия 2 зависимость f(U,Q) при водовоздушном охлаждении кристаллизатора.
Оптимальная скорость водовоздушной смеси вдоль охлаждаемой стенки кристаллизатора является предметом НОУ-ХАУ.
Примеры осуществления предлагаемого способа.
Опыты проводили на сортовом кристаллизаторе сечением 125х125 мм при скорости разливки 1,8 м/мин на 6-ручьевом МНЛЗ.
Пример 1 (по прототипу). Проводили разливку стали с расходом воды на кристаллизатор 22,2; 16,7; 11,2 кг/с. Расход воды определяли по приборам, замеряли температуру воды на входе и выходе из кристаллизатора, рассчитывали коэффициент теплоотдачи a от охлаждаемой стенки кристаллизатора. Были получены следующие значения коэффициента теплоотдачи a, приведенные в таблице 1.
При испытуемых значениях расхода воды на всех 6 ручьях имелась ромбичность заготовок 4,0-12,0 мм, имелись случаи прорывов металла под кристаллизатором из-за ромбичности и по трещинам заготовок. Стойкость гильзы кристаллизатора без покрытия составляет 20.30 плавок.
Пример 2 (предлагаемый способ). Разливку на МНЛЗ провели с использованием того же кристаллизатора, но с применением системы водовоздушного охлаждения. При расходе воздуха 500 м3/ч и давлении 490,5•103.686,7•103
Figure 00000021
расход воды составил 16,7; 11,1; 9,4 кг/с. При этом замерялись расходы воды, температура воды и воздуха перед входом в струйный насос, расход воздуха и давление, давление воды перед струйным насосом, контролировали температуру ручья, вводили после окончания разливки серу в жидкий металл в кристаллизаторе.
По предлагаемому способу было отлито 45 плавок с одной установки. Были получены следующие данные по коэффициенту теплоотдачи в зависимости от расхода воды, приведенные в таблице 2.
Таким образом, при одних и тех же расходах воды коэффициент теплоотдачи α при водовоздушном охлаждении значительно выше.
По качеству заготовок были получены следующие результаты:
ромбичность отсутствует на всех плавках;
трещины отсутствуют на всех плавках;
следы качания кристаллизатора сглажены;
трещины (внутренние и поверхностные) отсутствуют;
стойкость кристаллизатора 45 плавок и более;
фронт кристаллизации с серным отпечатком более ровный, чем при обычном охлаждении водой.
Таким образом, освоение предлагаемого способа охлаждения кристаллизатора позволит исключить охлаждение воды после кристаллизатора и специальную водоподготовку, устранить эффект пленочного кипения у охлаждаемой стенки, что позволит устранить неравномерные условия теплоотвода, улучшить качество непрерывнолитых заготовок, повысить стойкость кристаллизаторов и производительность МНЛЗ.

Claims (1)

  1. Способ охлаждения кристаллизатора, включающий подачу непрерывным потоком вдоль охлаждаемой стенки кристаллизатора предварительно полученной в смесительной камере водовоздушной смеси, отличающийся тем, что водовоздушную смесь получают в струйном насосе, а подают с коэффициентом инжекции И Gт/Gp (3-18), расходом воды на кристаллизатор 9,4-16,7 кг/с и соотношениями Рнр 1,4-2,1, Рсн 1,03-1,1,
    M = ωa/a = 1,9 - 2,1,
    где Gт и Gp массовые расходы воды и воздуха на одну охлаждаемую стенку кристаллизатора, кг/с;
    Рн и Рр начальные давления воды и воздуха перед струйным насосом, Н/м2;
    Рс давление водовоздушной смеси на выходе из камеры смешения, н/м2;
    М число Маха;
    ωa изоэнтропная скорость воздуха в выходном сечении рабочего сопла струйного насоса, м/с;
    a скорость звука в данной среде, равная скорости воздуха в критическом сечении сопла, м/с.
SU5065204 1992-10-12 1992-10-12 Способ охлаждения кристаллизатора RU2070473C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5065204 RU2070473C1 (ru) 1992-10-12 1992-10-12 Способ охлаждения кристаллизатора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5065204 RU2070473C1 (ru) 1992-10-12 1992-10-12 Способ охлаждения кристаллизатора

Publications (1)

Publication Number Publication Date
RU2070473C1 true RU2070473C1 (ru) 1996-12-20

Family

ID=21614681

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5065204 RU2070473C1 (ru) 1992-10-12 1992-10-12 Способ охлаждения кристаллизатора

Country Status (1)

Country Link
RU (1) RU2070473C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 1039641, кл. B 22 D 11/04, 1983. *

Similar Documents

Publication Publication Date Title
US4424855A (en) Method for cooling continuous casting
KR20050059111A (ko) 마그네슘 및 마그네슘 합금의 트윈 롤 캐스팅
US6543519B2 (en) Method and device for thermal control of a continuous casting mold
KR20100016381A (ko) 비혼합성 금속의 스트립 주조
CN113231611B (zh) 一种低过热度等温共熔法确定连铸喂钢带工艺参数的方法
RU2070473C1 (ru) Способ охлаждения кристаллизатора
JPS6137024B2 (ru)
JP2005349468A (ja) 砂型の冷却バラシ装置
CN1062793C (zh) 半固态金属射出成形的方法和装置
RU2436654C1 (ru) Способ вторичного охлаждения заготовок круглого сечения
RU2082541C1 (ru) Многоручьевой кристаллизатор для горизонтального непрерывного литья прутковых заготовок
US20130112363A1 (en) Temperature control device for a die casting device and corresponding die casting device
CA1045781A (en) Casting method and a casting mold, particularly for use in the continuous casting of elongated metallic articles
SU971562A1 (ru) Способ непрерывной разливки металлов
RU2100132C1 (ru) Способ непрерывной разливки металлов
CN109175284A (zh) 一种高效、节能的连铸二次冷却方法
JPH05220550A (ja) 連続鋳造用2次冷却装置
CN114555260B (zh) 连铸模具
RU2043843C1 (ru) Способ охлаждения непрерывнолитого слитка
RU2422242C2 (ru) Способ охлаждения заготовок на машинах непрерывного литья
RU2000167C1 (ru) Способ вторичного охлаждени непрерывнолитого слитка
SU1044414A1 (ru) Способ охлаждени непрерывно-литого слитка
SU703228A1 (ru) Способ непрерывной разливки металлов
JPH04309438A (ja) 非鉄金属用鋳造装置
Alexa et al. Nozzle arrangement effects and cooling water pressure study for the improvement of the thermal transfer coefficient, in the secondary cooling of continuous steel casting