RU2069030C1 - Безопасный для глаз твердотельный лазер - Google Patents

Безопасный для глаз твердотельный лазер Download PDF

Info

Publication number
RU2069030C1
RU2069030C1 RU94013684A RU94013684A RU2069030C1 RU 2069030 C1 RU2069030 C1 RU 2069030C1 RU 94013684 A RU94013684 A RU 94013684A RU 94013684 A RU94013684 A RU 94013684A RU 2069030 C1 RU2069030 C1 RU 2069030C1
Authority
RU
Russia
Prior art keywords
wavelength
laser
active element
crystal
generation
Prior art date
Application number
RU94013684A
Other languages
English (en)
Other versions
RU94013684A (ru
Inventor
Тасолтан Тазретович Басиев
Максим Евгеньевич Дорошенко
Валерий Борисович Сигачев
Original Assignee
Тасолтан Тазретович Басиев
Максим Евгеньевич Дорошенко
Валерий Борисович Сигачев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тасолтан Тазретович Басиев, Максим Евгеньевич Дорошенко, Валерий Борисович Сигачев filed Critical Тасолтан Тазретович Басиев
Priority to RU94013684A priority Critical patent/RU2069030C1/ru
Publication of RU94013684A publication Critical patent/RU94013684A/ru
Application granted granted Critical
Publication of RU2069030C1 publication Critical patent/RU2069030C1/ru

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

Использование: изобретение относится к квантовой электронике и промышленно применено в области производства твердотельных лазеров. Сущность изобретения: безопасный для глаз твердотельный лазер содержит оптически связанные систему накачки, активный элемент из содержащего неодим кристалла, резонатор, образованный выходным полупрозрачным зеркалом и концевым зеркалом с полным отражением на длине волны генерации. Новым в лазере является выполнение активного элемента из содержащего неодим кристалла, в котором отношение сечения вынужденного перехода на безопасной для глаз длине волны к сечению вынужденного перехода на конкурирующей длине волны 1,06 не меньше 0,085 и не больше 1, выполнение активного элемента из кристалла, дополнительно содержащего хром в виде ионов Cr4+ и/или Cr3+; выполнение активного элемента из кристалла гадолиний-галлиевого граната. 2 з.п. ф-лы, 1 табл., 1 ил.

Description

Изобретение относится к квантовой электронике, в частности к твердотельным неодимовым лазерам, и может быть использовано в медицине, связи, научных исследованиях и технологии обработки материалов.
Известен безопасный для глаз твердотельный лазер, генерирующий излучение на длине волны 1,54 мкм и включающий систему накачки, активный элемент, изготовленный из содержащего эрбий стекла, резонатор, образованный глухим зеркалом и выходным зеркалом с частичным пропусканием на длине волны 1,54 мкм [1] Недостатком этого лазера является низкий КПД генерации и низкая частота повторения импульсов, которые обусловлены трехуровневой рабочей схемой генерации ионов эрбия.
Наиболее близким техническим решением, принятым за прототип, является безопасный для глаз твердотельный лазер, генерирующий излучение на длине волны 1,4 мкм и включающий оптически связанные систему накачки, активный элемент из содержащего неодим кристалла иттрий алюминиевого граната (Y3Al5O12: Nd), резонатор, образованный глухим зеркалом и выходным зеркалом с частичным пропусканием на длине волны 1,4 мкм, и дисперсионную призму, помещенную между глухим зеркалом и активным элементом [2]
Недостатками лазера-прототипа является низкий КПД генерации, не превышающий 0,5% невысокая энергия выходного импульса излучения на длине волны 1,4 мкм, связанная с появлением импульса излучения на более сильном конкурирующем переходе с длиной волны 1,06 мкм, а также сложность и низкая надежность конструкции, обусловленная применением дисперсионной призмы, вносящей потери и усложняющей юстировку лазера, а также необходимостью использования зеркал резонатора с предельно высоким пропусканием на конкурирующей длине волны 1,06 мкм.
Недостатки прототипа связаны с фундаментальным свойством использованной активной среды иттрий-алюминиевого граната с неодимом (Y3Al5O12:Nd). Активный элемент лазера прототипа характеризуется максимальным усилением излучения на длине волны 1,06 мкм, так как сечение σ1,06 вынужденного перехода на этой длине волны в 23 раз превышает сечение σ1,4 вынужденного перехода на безопасной для глаз длине волны 1,4 мкм. Малая величина отношения σ1,41,06 ≃ 0,04 обусловливает сложность получения генерации на длине волны 1,4 мкм с высоким КПД и высокой энергией выходного импульса. Для подавления генерации излучения на сильном переходе неодима в лазере прототипе используется дисперсионная призма, устраняющая оптическую связь зеркал резонатора на длине волны 1,06 мкм, а также используются зеркала резонатора с предельно низким отражением на длин волны 1,06 мкм.
Изобретение направлено на решение следующей технической задачи - упрощение конструкции лазера, повышение КПД и энергии излучения на длине волны 1,4 мкм.
Решение поставленной технической задачи достигается тем, что в известном безопасном для глаз твердотельном лазере, генерирующем импульсы излучения на длине волны 1,4 мкм и включающем оптически связанные систему накачки, активный элемент, выполненный из содержащего неодим кристалла со структурой граната, резонатор, образованный выходным зеркалом с частичным пропусканием и концевым зеркалом с полным отражением на длине волны генерации, активный элемент выполнен из кристалла, в котором отношение сечения вынужденного перехода на безопасной для глаз длине волны к сечению вынужденного перехода на конкурирующей длине волны 1,06 не меньше 0,085 и не больше 1. Необходимый технический результат достигается также, если активный элемент дополнительно содержит хром в виде ионов Cr4+ и/или Cr3+ и выполнен из кристалла гадолиний-галлиевого граната.
Возможность осуществления изобретения подтверждается следующими сведениями.
Пороговая энергия накачки лазерного генератора, работающего по четырехуровневой схеме на длине волны λ,, определяется усилением и потерями в активной среде и параметрами резонатора согласно следующему соотношению [3]
Figure 00000002

где V и L соответственно объем и длина активного элемента, a - коэффициент поглощения в активной среде на длине волны генерации λ; t время жизни верхнего лазерного уровня, R1 и R2 - коэффициенты отражения зеркал резонатора на длине волны генерации l, η1 - эффективность преобразования электрической энергии, запасенной в разрядном контуре, в излучение накачки; η2 эффективность поглощения излучения накачки активной средой, η3 эффективность преобразования поглощенной энергии в инверсную населенность на верхнем лазерном уровне, τp - длительность импульса, h постоянная планка, с скорость света.
Как следует из (1), отношение пороговых энергий накачки для неодимового лазера, способного усиливать на длинах волн 1,06 мкм и 1,4 мкм, составляет
Figure 00000003

Если пороговая энергия накачки E 1,4 п на длине волны 1,4 мкм меньше пороговой энергии накачки E 1,06 п на длине волны 1,06 мкм, то лазер генерирует только излучение на безопасной для глаз длине волны при изменении энергии импульса накачки в диапазоне от E 1,4 п до E 1,06 п . Для решения поставленной технической задачи необходимо реализовать в лазере такие условия, при которых отношение E 1,06 п /E 1,4 п было как можно больше. В лазерепрототипе это достигается за счет увеличения потерь в резонаторе на длине волны 1,06 мкм вследствие дисперсии в призме и минимизации коэффициентов отражения зеркал резонатора на длине волны 1,06 мкм. В предлагаемом безопасном для глаз лазере техническая задача изобретения решается за счет использования новой активной среды, в которой отношение σ1,41,06 и коэффициент поглощения a1,06 на паразитной длине волны в несколько раз превышают аналогичные параметры активной среды лазера-прототипа.
Нами установлено, что значительно облегчить получение генерации на слабом переходе ионов неодима с длиной волны 1,4 мкм и значительно поднять энергию импульса генерации можно при использовании в качестве активного элемента кристалла со структурой граната, в котором усиление на основном переходе с длиной волны 1,06 мкм не более чем в двенадцать раз превышает усиление на слабом переходе с длиной волны 1,4 мкм, т.е. когда отношение сечений рассматриваемых вынужденных переходов σ1,41,06≥ 0,085. Верхняя граница отношения σ1,41,06 меньше 1, так как для ионов неодима Nd3+ вероятность вынужденного перехода с длиной волны 1,06 мкм всегда больше вероятности вынужденного перехода с длиной волны 1,4 мкм. В случае, когда 0,085≅ σ21<1, достигается более высокий по сравнению с прототипом порог генерации на конкурирующей длине волны 1,06 мкм. Это делает возможным использовать большие энергии накачки активного элемента без насыщения инверсии и без появления паразитной генерации на длине волны 1,06 мкм и, как следствие, поднять энергию импульса генерации на безопасной для глаз длине волны.
Повышение эффективности (КПД) генерации и энергии выходного импульса достигается также за счет использования активного элемента, материал которого дополнительно содержит хром, который в кристаллах со структурой граната может находиться в виде ионов Cr3+ и Cr4+.
Повышение КПД генерации при использовании активного элемента, дополнительно содержащего ионы Cr3+, достигается в результате большего поглощения излучения накачки активной средой и преобразования его в лазерное излучение, то есть за счет увеличения параметра η2 в соотношении (1). Это увеличение эффективности преобразования излучения накачки происходит за счет эффективной безызлучательной передачи энергии возбуждения от ионов Cr3+ на верхний лазерный уровень ионов Nd3+.
Повышение энергии импульсов излучения на длине волны 1,4 мкм при использовании активного элемента, дополнительно содержащего ионы Cr4+, достигается за счет увеличения коэффициента поглощения a1,06 активной среды на длин волны 1,06 мкм. Вследствие этого значительно повышается порог генерации лазера на паразитной длине волны и появляется возможность получения генерации на безопасной для глаз длине волны в более широком диапазоне энергий накачек.
Нами установлено, что указанным выше требованиям к веществу активного элемента, в частности, удовлетворяют кристаллы гадолиний-галлиевого граната, активированные неодимом и хромом (Gd3Ga5O12:Nd, Gd3Ga5O12:Nd, Cr). Найденные нами экспериментально по методике [4] значения сечений генерационных переходов на длине волны 1,4 мкм составляют σ1,4=2,4•10-20 см2 для Gd3Ga5O12:Nd,Cr и σ1,4=3,8•10-20 см2 для Y3Al5O12:Nd. Для длины волны 1,06 мкм значения сечений генерационных переходов составляют σ1,06=28•10-20 см2 и σ1,06=88•10-20 см2,, то есть значение отношения σ1,41,06 для кристалла Gd3Ga5O12:Nd,Cr составляет 0,085.
По сравнению с активным материалом лазера прототипа использование кристаллов гадолиний-галлиевого граната с неодимом и хромом позволяет поднять КПД генерации на длине волны 1,4 мкм в 1,5-2 раза, более чем в 1,5 раза увеличить энергию импульса генерации, и существенно упростить конструкцию лазера, отказавшись от использования дисперсионной призмы.
В результате сопоставительного анализа заявляемого решения с прототипом видно, что предлагаемый твердотельный лазер отличается выполнением активного элемента из нового вещества, в котором отношение σ1,41,06≥ 0,085, и которое дополнительно содержит хром, как в виде трехвалентных ионов Cr3+, так и в виде четырехвалентных ионов Cr4+. Таким образом заявляемый лазер соответствует критерию "новизна".
Сопоставительный анализ заявляемого решения и известных в рассматриваемой области показывает, что в известных технических решениях отсутствуют признаки, сходные с существенными отличительными признакам заявляемого безопасного для глаз твердотельного лазера. Это позволяет признать заявляемое решение соответствующим критерию "изобретательский уровень".
На чертеже представлена схема твердотельного лазера.
Примеры конкретного выполнения.
Твердотельный лазер содержит систему накачки 1; активный элемент 2 из содержащего неодим кристалла с отношением сечений генерационного перехода σ1,41,06≥ 0,085; выходное зеркало 3, частично отражающее излучение с длиной волны 1,4 мкм и слабо отражающее излучение с длиной волны 1,06 мкм; зеркало 4, имеющее близкое к 100% отражение для излучения с длиной волны 1,4 мкм и минимум отражения на длине волны 1,06 мкм.
Лазер работает следующим образом. Излучение, создаваемое системой накачки 1, поглощается ионами хрома и/или неодима активного элемента 2 и переводит последние в возбужденное метастабильное состояние. В активном элементе осуществляется усиление излучения как на длине волны 1,4 мкм, так и на длине волны 1,06 мкм. В резонаторе, образованном зеркалами 3 и 4 с минимумами отражения на длине волны 1,06 мкм, начинается генерация излучения на длине волны 1,4 мкм при достижении энергии импульсов накачки порогового значения для этой длины волны. Для активного элемента, в котором отношение сечений генерационных переходов σ1,41,06 не меньше 0,085 и содержащего хром, снижается порог генерации на длине волны 1,4 мкм. Дальнейшее увеличение энергии накачки приводит к росту энергии импульсов генерации на длине волны 1,4 мкм согласно соотношению
E 1,4 и 1,4 д (Eн-E 1,4 п )=η 1,4 a Eн, (3)
где Eн энергия импульса накачки; η 1,4 д дифференциальный КПД лазера; η 1,4 a абсолютный КПД лазера. При увеличении энергии импульса накачки до значения, равного пороговой энергии генерации на длине волны 1,06 мкм, кроме излучения с безопасной для глаз длиной волны 1,4 мкм начинается генерация на длине волны 1,06 мкм. Для активного элемента с отношением сечений генерационных переходов σ1,41,06 не меньше 0,085 и содержащего ионы четырехвалентного хрома Cr4+ порог паразитной генерации на длине волны 1,06 мкм повышается в несколько раз по сравнению с лазером прототипом. Кроме того, для активного элемента, содержащего ионы трехвалентного хрома Cr3+, увеличивается дифференциальный КПД генерации безопасного для лаз лазера. В результате работы лазера с активным элементом, характеризуемым существенными отличительными признаками, получаются импульсы излучения на длине волны 1,4 мкм с большей энергией и большим абсолютным КПД чем в лазере-прототипе. При этом лазер имеет более простую конструкцию легче и надежнее в юстировке.
Предлагаемый лазер позволяет использовать разные системы накачки, а именно импульсную ламповую и селективную, в том числе накачку лазерными диодами.
Предлагаемый лазер был, в частности, реализован с использованием следующих конкретных элементов. В качестве активного элемента использовались кристаллы гадолиний-галлиевого граната, активированные неодимом (Cd3Ga5O12: Nd), а также соактивированные неодимом и хромом (Gd3Ga5O12: Nd, Cr3+; Gd3Ga5O12: Nd, Cr3+, Cr4+), выполненные в виде стержней диаметром 6,3 мм и длиной 95 мм. Торцы активных элементов имели просветляющие покрытия на длину волны 1,06 мкм. В качестве системы накачки использовалась импульсная ксеноновая лампа типа ИНП 5/90 в посеребренном эллиптическом отражателе типа К-301, питаемая от модулятора импульсных ламп типа МТ-42, обеспечивающего энергию накачки до 300 Дж и длительность импульса накачки 600 мкс. Использовался плоско-параллельный резонатор, образованный выходным зеркалом с коэффициентом отражения 86% на длине волны 1,4 мкм и глухим зеркалом с коэффициентом отражения 99,3% на длине волны 1,4 мкм. Для конкурирующей длины волны 1,06 мкм произведение коэффициентов отражения зеркал резонатора R 1,06 1 •R 1,06 2 составляло 0,009.
Достигнутые параметры генерации лазера в сравнении параметрам генерации лазера-прототипа представлены в таблице, где σ1,41,06 отношения сечений усиления на длине волны 1,4 мкм и 1,06 мкм; E 1,06 п пороговая энергия импульса накачки, при которой начинается генерация на длине волны 1,06 мкм; (R1xR2)1,06 произведение коэффициентов отражения зеркал на длине волны 1,06 мкм, E 1,4 и энергия импульса генерации на длине волны 1,4 мкм при энергии импульса накачки 180 Дж, η 1,4 a абсолютный КПД генерации лазера на длине волны 1,4 мкм. Результаты, приведенные в таблице, показывают, что предлагаемый твердотельный лазер по сравнению с прототипом позволяет в 1,5-2 раза увеличить энергию импульса излучения на длине волны 1,4 мкм и в 1,8-2,4 раза увеличить абсолютный КПД лазера. Более высокие параметры генерации лазера получены при существенном упрощении его конструкции, то есть без дисперсионной призмы. Кроме того, использовались более простые в изготовлении зеркала, имеющие большие коэффициенты отражения на паразитной длине волны 1,06 мкм.
Следует отметить, что в условиях, использованных нами для конкретной реализации предлагаемого лазера, лазер с активным элементом из ИАГ:Nd (пример 5 в таблице) генерировал излучение только на длине волны 1,6 мкм, а излучение на 1,4 мкм отсутствовало.
Примеры конкретного выполнения предлагаемого двухчастотного твердотельного лазера подтверждают достижение положительного эффекта по сравнению с прототипом. Таким образом, использование изобретения позволяет упростить конструкцию лазера, повысить КПД лазера и энергию излучения по длине волны 1,4 мкм. ТТТ1

Claims (3)

1. Безопасный для глаз твердотельный лазер, генерирующий импульсы излучения на длине волны 1,4 мкм и включающий оптически связанные систему накачки, активный элемент, выполненный из содержащего неодим кристалла со структурой граната, резонатор, образованный выходным полупрозрачным зеркалом и концевым зеркалом с полным отражением на длине волны генерации, отличающийся тем, что активный элемент выполнен из кристалла, в котором отношение сечения вынужденного перехода на безопасной для глаз длине волны к сечению вынужденного перехода на конкурирующей длине волны 1,06 не меньше 0,085 и не больше 1.
2. Лазер по п.1, отличающийся тем, что кристалл дополнительно содержит хром в виде ионов Cr4+ и/или Cr3+.
3. Лазер по пп.1 и 2, отличающийся тем, что активный элемент выполнен из кристалла гадолиний-галлиевого граната.
RU94013684A 1994-04-18 1994-04-18 Безопасный для глаз твердотельный лазер RU2069030C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94013684A RU2069030C1 (ru) 1994-04-18 1994-04-18 Безопасный для глаз твердотельный лазер

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94013684A RU2069030C1 (ru) 1994-04-18 1994-04-18 Безопасный для глаз твердотельный лазер

Publications (2)

Publication Number Publication Date
RU94013684A RU94013684A (ru) 1996-08-10
RU2069030C1 true RU2069030C1 (ru) 1996-11-10

Family

ID=20154875

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94013684A RU2069030C1 (ru) 1994-04-18 1994-04-18 Безопасный для глаз твердотельный лазер

Country Status (1)

Country Link
RU (1) RU2069030C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Лунтер С.Г. и др. Энергетические параметры лазеров на эрбиевых стеклах, сенсибилизированных иттербием и хромом. Квантовая электроника, 1984, т.11, N 1, с.103-108. 2. S.K. Wong, P.Mathieu, P.Pace. Eye-Safe Nd:YAG laser. Appl. Phys.Lett., 1990, v.57, p.650-652. 3. W.Koechner. Solid State Laser Engineering. N.Y.: Springer-Verlag, 1976, p.86. 4. A.A.Kaminskii, V.V. Osiko, S.E.Sarkisov, M.I.Timoshechkin, E.V.Zharikov, J.Bohm, P.Reich,D.Sehultre.Growth,spectroscopic investigations and som new stimulated emission data of Gd 3 Ga 5 O 12 :Nd 3+ Singls Crystals. Phys. Stat.Sol.(a), 1978, v.49, N1, p.305-311. *

Also Published As

Publication number Publication date
RU94013684A (ru) 1996-08-10

Similar Documents

Publication Publication Date Title
EP0744089B1 (en) Passively q-switched picosecond microlaser
US4967416A (en) Thulium-doped fluorozirconate fiber laser pumped by a diode laser source
US6269108B1 (en) Multi-wavelengths infrared laser
US4227159A (en) Common-resonator pre-locked laser
Jackson et al. Efficient gain-switched operation of a Tm-doped silica fiber laser
WO2006073793A2 (en) Holmium doped 2.1 micron crystal laser
US5369523A (en) Optical amplifier and laser
US6931047B2 (en) Laser light source
US4321559A (en) Multiwavelength self-pumped solid state laser
US5802083A (en) Saturable absorber Q-switches for 2-μm lasers
Funk et al. Tuning, temporal, and spectral characteristics of the green (/spl lambda//spl sim/549 nm), holmium-doped fluorozirconate glass fiber laser
US4167712A (en) Praseodymium blue-green laser system
Zhao et al. 22 mW blue output power from a Pr3+ fluoride fibre upconversion laser
US5084890A (en) Pumped cw laser with low dopant level laser medium
US5832008A (en) Eyesafe laser system using transition metal-doped group II-VI semiconductor as a passive saturable absorber Q-switch
JPS62232985A (ja) Crをド−プした硼酸スカンジウムレ−ザ−
RU2069030C1 (ru) Безопасный для глаз твердотельный лазер
Shestakov et al. Tunable Cr4+: YAG lasers
US3492599A (en) Mode-locked laser pulse generator
US4050034A (en) In cavity pumping for infrared laser
JPH05275792A (ja) ファイバレーザおよびファイバ増幅器
EP0457523A2 (en) Apparatus and method for pumping of a weakly absorbing lasant material
JPH06283798A (ja) ファイバレーザ及び光ファイバ増幅器
Galagan et al. Efficient bleachable filter based on Co2+: MgAl2O4 crystals for Q-switching of λ= 1.54 μm erbium glass lasers
JP2786012B2 (ja) レーザおよび増幅器