RU2065905C1 - Сейсмозащитный фундамент сооружения - Google Patents

Сейсмозащитный фундамент сооружения Download PDF

Info

Publication number
RU2065905C1
RU2065905C1 SU4840598A RU2065905C1 RU 2065905 C1 RU2065905 C1 RU 2065905C1 SU 4840598 A SU4840598 A SU 4840598A RU 2065905 C1 RU2065905 C1 RU 2065905C1
Authority
RU
Russia
Prior art keywords
base
foundation
seismic
slab
spherical
Prior art date
Application number
Other languages
English (en)
Inventor
Анаит Николаевна Овсепян
Асатур Николаевич Овсепян
Николай Асатурович Овсепян
Original Assignee
Николай Асатурович Овсепян
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Николай Асатурович Овсепян filed Critical Николай Асатурович Овсепян
Priority to SU4840598 priority Critical patent/RU2065905C1/ru
Application granted granted Critical
Publication of RU2065905C1 publication Critical patent/RU2065905C1/ru

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Foundations (AREA)

Abstract

Использование: строительство зданий в сейсмоопасных зонах на сейсмостойких фундаментах. Сущность изобретения: сейсмостойкий фундамент сооружения содержит неподвижную фундаментную плиту 1 со сферической выемкой 2 в верхней части, установленный в ней концентрично цоколь 3 здания 4, нижняя поверхность которого выполнена шарообразной, заполнитель между фундаментной плитой 1 и цоколем 3. Заполнитель выполнен в виде обоймы с шариками 5. Неподвижная фундаментная плита 1 состоит из двух частей, соединенных между собой подвижно посредством вертикальных гидроцилиндров. Гидроцилиндры сообщены трубопроводом в сборе с параллельно соединенными дросселями и обратными клапанами с газогидроаккумуляторами. Центр сферической выемки 3 фундаментной плиты 1 и шарообразной поверхности цоколя 3 расположен выше центра тяжести сооружения на величину:
Figure 00000001
, где Io - момент инерции сооружения, кг/м2, m - масса сооружения, кг. Период собственных колебаний сооружения относительно центра сферы 2 фундаментной плиты 1 определяют из зависимости:
Figure 00000002
, где g - ускорение свободного падения, м/сек2. Период собственных колебаний не превышает величину минимального периода сейсмических колебаний местности. Сейсмостойкий фундамент снабжен блоком газоаккумуляторов, устройством его управления в виде распределительного трубопровода с клапаном, сейсмоприемником и уплотнительным кольцом, установленным в центральной части сферической выемки фундаментной плиты. Ограниченная кольцом полость сообщена с блоком газоаккумуляторов посредством распределительного трубопровода. Радиусы сферической выемки 2 фундаментной плиты 1 и шаровой поверхности цоколя 3 выполнены равными. Фундамент снабжен дополнительным блоком газоаккумуляторов, устройством его управления в виде трубопроводов с клапанами в сборе с золотниками, входящими в контакт с шаровой поверхностью цоколя. Поверхность плиты 1 выполнена с разветвленной сетью капиллярных канавок. Канавки соединены с трубопроводами, сообщающими пространство между плитой 1 и цоколем 3 с дополнительным блоком газоаккумуляторов. Клапаны установлены в узлах разветвления капилляров. 3 з.п. ф-лы, 3 ил.

Description

Изобретение относится к строительству, а именно к строительству зданий в сейсмоопасных зонах на сейсмостойких фундаментах.
Известно сейсмостойкое здание включающее фундамент и надфундаментную конструкцию, между которыми размещен сейсмоизолирующий элемент [1]
Недостатком данного сооружения является низкая сейсмоустойчивость, надежность, поскольку высока сила трения между элементами конструкции.
Наиболее близким к предлагаемому по технической сущности является сейсмозащитный фундамент сооружения, включающий неподвижную фундаментную плиту со сферической выемкой в верхней части, установленный в ней концентрично цоколь здания, нижняя поверхность которого выполнена шарообразной, заполнитель между фундаментной плитой и цоколем [2]
Недостаток известного устройства заключается в том, что оно не обладает повышенной защищенностью от землетрясений, поскольку велика сила трения между элементами конструкции и низка надежность соединения фундаментной плиты с цоколем, поскольку мала площадь их соприкосновения.
Цель изобретения повышение сейсмоустойчивости сооружения, снижение сил трения, повышение надежности соединения фундаментной плиты с цоколем.
Поставленная цель достигается тем, что сейсмозащитный фундамент сооружения, включающий неподвижную фундаментную плиту со сферической выемкой в верхней части, установленный в ней концентрично цоколь здания, нижняя поверхность которого выполнена шарообразной, заполнитель между фундаментной плитой и цоколем имеет заполнитель выполненный в виде обоймы с шариками, а неподвижная фундаментная плита выполнена из двух частей соединенных между собой подвижно посредством вертикальных гидроцилиндров сообщенных трубопроводом в сборе с параллельно соединенными дросселями и обратными клапанами с газогидроаккумуляторами, при этом центр сферической выемки фундаментной плиты и шарообразной поверхности цоколя расположен выше центра тяжести сооружения на величину:
Figure 00000006

где: Io момент инерции сооружения, кг/м2,
m масса сооружения, кг,
а период собственных колебаний сооружения относительно центра сферы фундаментной плиты определяют из зависимости:
Figure 00000007

где: g ускорение свободного падения, м/сек2,
при этом период собственных колебаний не превышает величину минимального периода сейсмических колебаний местности. Фундамент снабжен блоком газоаккумуляторов, устройством его управления в виде распределительного трубопровода с клапаном, сейсмоприемником и уплотнительным кольцом, установленным в центральной части сферической выемки фундаментной плиты, а ограниченная кольцом, полость сообщена с блоком газоаккумуляторов посредством распределительного трубопровода. Радиусы сферической выемки фундаментной плиты и шаровой поверхности цоколя выполнены равными, при этом фундамент снабжен дополнительным блоком газоаккумуляторов, устройством его управления в виде трубопроводов с клапанами в сборе с золотниками, входящими в контакт с шаровой поверхностью цоколя, поверхность плиты выполнена с разветвленной сетью капиллярных канавок, соединенных с трубопроводами, сообщающими пространство между плитой и цоколем с дополнительным блоком газоаккумуляторов, клапаны установлены в узлах разветвления капилляров.
На фиг.1 показан общий вид здания с сейсмозащитным фундаментом, на фиг.2 фрагмент сеймсмозащитного фундамента; на фиг. 3 сейсмозащитный фундамент с элементами его управления.
Сейсмостойкий фундамент сооружения содержит неподвижную фундаментную плиту 1 со сферической выемкой 2 и верхней части, в которой установлен концентрично цоколь 3 здания 4. Нижняя поверхность цоколя 3 выполнена шарообразной. Между фундаментной плитой 1 и цоколем 3 смонтирован антифрикционный заполнитель в виде обоймы с шариками 5. Неподвижная фундаментная плита 1 состоит из двух частей, соединенных между собой подвижно посредством вертикальных гидроцилиндров 6. Гидроцилиндры 6 сообщены трубопроводом 7 в сборе с параллельно соединенными дросселями 8 и обратными клапанами 9 с газогидроаккумуляторами 10. Центр сферической выемки 2 фундаментной плиты 1 (фиг.1) и шарообразной поверхности цоколя 3 расположен выше центра тяжести сооружения на величину:
Figure 00000008

где: Io момент инерции сооружения, кг/м2,
m масса сооружения, кгс.
Период собственных колебаний сооружения относительно центра сферы фундаментной плиты определяют по зависимости:
Figure 00000009

где: g ускорение свободного падения, м/сек2.
Период собственных колебаний не превышает величину минимального периода сейсмических колебаний местности. Сейсмостойкий фундамент снабжен блоком газоаккумуляторов 11 устройством его управления в виде распределительного трубопровода 12 с клапаном 13. Он снабжен сейсмоприемником 14 и уплотнительным кольцом 15, установленным в центральной части сферической выемки 2 фундаментной плиты 1. Ограниченная кольцом 15 полость сообщена с блоком газоаккумуляторов 11 посредством распределительного трубопровода 16. Радиусы сферической выемки 2 фундаментной плиты 1 и шаровой поверхности цоколя 3 выполнены равными. Фундамент снабжен дополнительным блоком газоаккумуляторов (на рис. не показано), устройством его управления в виде трубопроводов с клапанами в сборе с золотниками, входящими в контакт с шаровой поверхностью цоколя 3. Поверхность плиты 1 выполнена с разветвленной сетью капиллярных канавок, которые соединены с трубопроводами, сообщающими пространаство между плитой 1 и цоколем 3 с дополнительным блоком газоаккумуляторов. Клапаны установлены в узлах разветвления капилляров.
Сейсмозащитный фундамент сооружения работает следующим образом.
Сейсмическая волна, распространяясь, волнообразно деформирует почву с периодом колебания Тс, который имеет определенное значение для данной местности, при этом система "здание-цоколь", как физический маятник имеет свой резонансный период колебания Тmin. Здание проектируют и строят с соблюдением условия: Tc ≥ Tmin.
Фундаментная плита 1 совершает угловые колебания в такт землетрясения, а система "здание-цоколь", поднимаясь и опускаясь сохраняет свое вертикальное положение благодаря наличию обоймы с шариками 5 в зазоре между сферической выемкой 2 плиты 1 и шаровой поверхностью цоколя 3. Вертикальное положение сохраняется также и при прохождении под зданием 4 разнонаправленных падающих и отраженных сейсмических волн, таким образом конструктивные элементы здания 4 не подвергаются действию изгибающих моментов и разрушающих боковых ударов концентрированных масс. Вертикальные колебания здания смягчаются гидроцилиндрами 6.
Во время землетрясения здание ускоренно поднимается, поршни гидроцилиндров 6 выдавливают жидкость, по трубопроводу 7 через дроссели 8, которая проникает в камеры газогидроаккумуляторов 10, обратные клапаны 9 при этом заперты. Благодаря пружинящему свойству гидросистемы амплитуда поднятия уменьшается. При опускании здания (в предельном случае, когда Тс минимально и здание совершает свободное падение) уменьшается давление поршней на жидкость, которая под действием сжатого газа из гидроаккумуляторов 10 через открывшиеся обратные клапаны 9 проникает в гидроцилиндры 6, шаровая опора не разъединяется. При прекращении колебаний почвы поршни вытесняют жидкость через дроссели 8 (клапаны 9 заперты) обратно в газогидроаккумуляторы 10.
При колебаниях почвы срабатывает сейсмоприемник 14, который открывает клапан 13 на распределительном трубопроводе 12 и сжатый воздух из блока газоаккумуляторов 11 по трубопроводу 16 заполняет ограниченную кольцом 15 полость между плитой 1 и цоколем 3, частично компенсируя вес здания 4 и уменьшая силу трения качения шариков 5. Эффект усиливается благодаря разветвленной сети капиллярных канавок на поверхность плиты 1. При относительном смещении шаровых поверхностей плиты 1 и цоколя 3 срабатывают золотники клапанов устройства управления дополнительным блоком газоаккумуляторов. Клапаны установлены в узлах разветвления капилляров и при срабатывании их золотников предотвращается выброс воздух в атмосферу через эти ветви. По окончании землетрясения ручкой золотники клапанов устанавливают в исходное положение и баллоны газоаккумуляторов дозаправляют сжатым воздухом.
Предложенное устройство обладает повышенной сейсмоустойчивостью, надежностью, что позволяет широкомасштабно его использовать в районах повышенной сейсмичности. ЫЫЫ2

Claims (4)

1. Сейсмозащитный фундамент сооружения, включающий неподвижную фундаментную плиту со сферической выемкой в верхней части, установленный в нем концентрично цоколь здания, нижняя поверхность которого выполнена шарообразной, заполнитель между фундаментной плитой и цоколем, отличающийся тем, что, с целью повышения сейсмоустойчивости сооружения путем его защиты от землетрясения, заполнитель выполнен антифрикционным, а неподвижная фундаментная плита из двух частей, соединенных между собой подвижно посредством вертикальных гидроцилиндров, сообщенных трубопроводом в сборе с параллельно соединенными дросселями и обратными клапанами с газогидроаккумуляторами, при этом центр сферической выемки фундаментной плиты и шарообразной поверхности цоколя расположен выше центра тяжести сооружения на величину
Figure 00000010

где Jo момент инерции сооружения, кг/м2,
m масса сооружения, кг,
а период собственных колебаний сооружения относительно центра сферы фундаментной плиты определяют из зависимости
Figure 00000011

где q ускорение свободного падения, м/сек2, при этом период собственных колебаний не превышает величину минимального периода сейсмических колебаний местности.
2. Фундамент по п.1, отличающийся тем, что заполнитель выполнен в виде обоймы с шариками.
3. Фундамент по п.1, отличающийся тем, что, с целью снижения сил трения путем частичной компенсации веса сооружения, он снабжен блоком газоаккумуляторов, устройством его управления в виде распределительного трубопровода с клапаном, сейсмоприемником и уплотнительным кольцом, установленным в центральной части сферической выемки фундаментной плиты, а ограниченная кольцом полость сообщена с блоком газоаккумуляторов посредством распределительного трубопровода.
4. Фундамент по пп.1 3, отличающийся тем, что, с целью повышения надежности соединения фундаментной плиты с цоколем путем увеличения площади их соприкосновения, радиусы сферической выемки фундаментной плиты и шаровой поверхности цоколя выполнены равными, при этом фундамент снабжен блоком газоаккумуляторов, устройством его управления в виде трубопроводов с каналами в сборе с золотниками, входящими в контакт с шаровой поверхностью цоколя, поверхность плиты выполнена с разветвленной сетью капиллярных канавок, соединенных с трубопроводами, сообщающими пространство между плитой и цоколем с дополнительным блоком газоаккумуляторов, клапаны установлены в узлах разветвления капилляров.
SU4840598 1990-06-19 1990-06-19 Сейсмозащитный фундамент сооружения RU2065905C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4840598 RU2065905C1 (ru) 1990-06-19 1990-06-19 Сейсмозащитный фундамент сооружения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4840598 RU2065905C1 (ru) 1990-06-19 1990-06-19 Сейсмозащитный фундамент сооружения

Publications (1)

Publication Number Publication Date
RU2065905C1 true RU2065905C1 (ru) 1996-08-27

Family

ID=21521677

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4840598 RU2065905C1 (ru) 1990-06-19 1990-06-19 Сейсмозащитный фундамент сооружения

Country Status (1)

Country Link
RU (1) RU2065905C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2508429C2 (ru) * 2011-12-08 2014-02-27 Закрытое Акционерное Общество "Внешторгсервис" Предварительно напряженная сейсмоизолирующая опора
RU2545569C2 (ru) * 2013-05-31 2015-04-10 Раис Каюмович Бикмаев Плоскостной подшипник качения и способ его применения в сейсмических фундаментах для защиты зданий и сооружений от горизонтальных колебаний земной коры при землетрясениях
WO2018055634A1 (en) * 2016-09-22 2018-03-29 Panduranga Revankar Krishna Prasad A system to protect tall building from earthquake giving a garbage treatment plant as bonus.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Авторское свидетельство СССР N 675138, кл. E 02D 27/34, 1978. 2. Авторское свидетельство СССР N 647440, кл. E 02H 9/02, 1976. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2508429C2 (ru) * 2011-12-08 2014-02-27 Закрытое Акционерное Общество "Внешторгсервис" Предварительно напряженная сейсмоизолирующая опора
RU2545569C2 (ru) * 2013-05-31 2015-04-10 Раис Каюмович Бикмаев Плоскостной подшипник качения и способ его применения в сейсмических фундаментах для защиты зданий и сооружений от горизонтальных колебаний земной коры при землетрясениях
WO2018055634A1 (en) * 2016-09-22 2018-03-29 Panduranga Revankar Krishna Prasad A system to protect tall building from earthquake giving a garbage treatment plant as bonus.

Similar Documents

Publication Publication Date Title
AP1247A (en) Earthquake protection consisting of vibration isolated mounting of buildings and objects using using virtual pedulums with long circles.
US4881350A (en) Anti-earthquake structure insulating the kinetic energy of earthquake from buildings
US8402702B1 (en) Aseismic sliding isolation system using hydromagnetic bearings
EP1002174A1 (en) Energy absorber
US4587773A (en) Seismic protection systems
US6826873B2 (en) Aseismic system
Kawamura et al. Study of a sliding-type base isolation system–system composition and element properties
RU2065905C1 (ru) Сейсмозащитный фундамент сооружения
Haroun et al. Effects of soil-structure interaction on seismic response of elevated tanks
KR102281791B1 (ko) 태양전지 모듈 설치 구조물용 내진 장치
JP2001336571A (ja) 免震構造物
JP3772499B2 (ja) 免震支承用のロック機構及びこれを用いた免震支持装置
CN111926937B (zh) 一种滚摆减振装置
JP4439694B2 (ja) 高層建物の高減衰架構
SU896190A1 (ru) Фундамент сейсмостойкого здани , сооружени
JPH033726Y2 (ru)
JP2013002206A (ja) 転がり免震支持装置及び該免震支持装置を有する免震構造系
JP2927357B2 (ja) 免震支持装置
Wang et al. Development of design spectra for actively controlled wall-frame buildings
JPH09256672A (ja) 構造物の免振装置
Ou et al. Resilient isolation-structure systems with super-large displacement friction pendulum bearings
CA2157942A1 (en) Sealed pressure seismic isolator
JPH0139336Y2 (ru)
RU2110656C1 (ru) Противоударное гидравлическое устройство
RU2036274C1 (ru) Фундамент сейсмостойкого здания