RU2065579C1 - Датчик параметров среды - Google Patents

Датчик параметров среды Download PDF

Info

Publication number
RU2065579C1
RU2065579C1 SU5061691/28A SU5061691A RU2065579C1 RU 2065579 C1 RU2065579 C1 RU 2065579C1 SU 5061691/28 A SU5061691/28 A SU 5061691/28A SU 5061691 A SU5061691 A SU 5061691A RU 2065579 C1 RU2065579 C1 RU 2065579C1
Authority
RU
Russia
Prior art keywords
working part
housing
junctions
rest
heater
Prior art date
Application number
SU5061691/28A
Other languages
English (en)
Inventor
Н.С. Лаврухин
В.К. Прозоров
И.В. Ковалев
А.Ф. Шакшанов
М.М. Новокрещенов
Ю.В. Рыбаков
П.И. Факеев
Original Assignee
Научно-исследовательский и конструкторский институт энерготехники
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-исследовательский и конструкторский институт энерготехники filed Critical Научно-исследовательский и конструкторский институт энерготехники
Priority to SU5061691/28A priority Critical patent/RU2065579C1/ru
Publication of RU5061691A publication Critical patent/RU5061691A/ru
Application granted granted Critical
Publication of RU2065579C1 publication Critical patent/RU2065579C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Использование: в приборостроении, в частности в датчиках для измерения параметров среды по изменению коэффициента теплоотдачи между ними и окружающей средой. Сущность изобретения: рабочую часть корпуса датчика выполняют с диаметром меньше, чем у остальной части корпуса. Внутри корпуса, заполненного электроизолирующим материалом, помещают чувствительный элемент (ЧМ). ЧМ представляет собой дифференциальную термопару из трех последовательно соединенных электродов. Крайние электроды изготавливают из одного материала и их спаи с промежуточным электродом разносят по длине корпуса. По крайней мере, один из них располагают в рабочей части. Нагреватель выполняют с поперечным сечением, которое в рабочей части меньше, чем в остальной части корпуса. По крайней мере, один из них располагают в рабочей части. Нагреватель выполняют с поперечным сечением, которое в рабочей части меньше, чем в остальной части корпуса, кроме того, оба спая располагают в остальной части корпуса. При этом или нагреватель помещают от ближнего к торцу рабочей части корпуса спая на расстоянии не меньше шести диаметров его рабочей части или выполняют рабочую часть корпуса в месте расположения одного из спаев либо с большим, чем у остальной рабочей части корпуса, диаметром, либо снабжают снаружи ребрами. ЧМ может быть выполнена также в виде, по крайней мере, двух дифференциальных термопар с разнесенными по длине корпуса датчика спаями. При этом дифференциальные термопары могут быть выполнены с одним общим крайним электродом и спаем. 4 з.п.ф-лы, 6 ил.

Description

Изобретение относится к приборостроению и может быть использовано в датчиках, служащих для измерения параметров среды по изменению коэффициента теплоотдачи между ними и средой, в которую они помещаются.
В качестве таких датчиков применяются:
индикаторы фазы среды (обезвоживания, заполнения и т.п.), выходной сигнал которых зависит от того, в жидкой или газообразной среде находится чувствительный элемент (в жидкой среде коэффициент теплоотдачи выше, чем в газообразной),
дискретные уровнемеры, являющиеся по сути многоточечными индикаторами среды,
термоанемометры, использующие зависимость коэффициента теплоотдачи от скорости движения среды, в которую помещен чувствительный элемент,
измерители других параметров среды: влажности, состава, теплопроводности, паросодержания для двухфазных сред и т.п.
Известен датчик измерения параметров сред, содержащий чувствительные элементы, разнесенные по длине двух линеек и выполненные в виде двух расположенных на одном уровне и включенных навстречу друг другу термопар, и нагреватель, которым снабжена одна из линеек (см. авторское свидетельство СССР N 492750, кл. G 01 F 23/22, 1974 г.)
Этот датчик, применяющийся в качестве уровнемера жидкости, обладает недостатками, основными из которых являются:
сложность изготовления и низкая надежность датчика, особенно в условиях высокотемпературных и агрессивных сред, вибрации и т.п. т.к. электроды и спаи термопар находятся в окружающей среде,
повышенный расход электроэнергии, необходимой для нагрева не только термопар, но и линейки,
недостаточное быстродействие из-за значительной теплоемкости материала линейки,
общие габариты датчика, состоящего из двух линеек и нескольких термопар.
Наиболее близким по своей технической сущности и достигаемому результату к предлагаемому датчику является датчик параметров среды, содержащий корпус, в котором размещены чувствительный элемент из последовательно соединенных электродов, спаи которых разнесены по длине корпуса и при этом один из них помещен в рабочей части корпуса, и электронагреватель (Н.А. Ярышев. Теоретические основы измерения нестационарных температур. Л. Энергия, 1967, с. 125, рис.5-5).
У прототипа имеются следующие недостатки:
нельзя измерять фазовое состояние, уровень и скорость движения среды, т. к. в этом устройстве не вырабатывается сигнал, соответствующий этим параметрам,
повышенный расход электроэнергии в нагревателе, т.к. датчик нагревается по всей длине,
большие габаритные размеры и инерционность датчика, т.к. витки нагревателя невозможно разместить в корпусе малого диаметра,
ограниченное число точек контроля по длине корпуса датчика, т.к. измерения проводятся только в одной точке,
сложность выполнения второго спая, т.к. термоэлектроды должны быть электрически изолированы от нагревателя и корпуса.
Технический результат, на достижение которого направлено изобретение, заключается в повышении надежности и снижении расхода электроэнергии, необходимой для работы датчика, увеличении его чувствительности, быстродействия и точности, а также в расширении контролируемой датчиком зоны и области его применения.
Указанный технический результат достигается за счет того, что в датчике параметров среды, содержащем корпус с чувствительным элементом и электрическим нагревателем, рабочая часть корпуса имеет диаметр меньше, чем у остальной части корпуса, и чувствительный элемент расположен внутри корпуса, заполненного электроизолирующим материалом, и выполнен в виде дифференциальной термопары из трех последовательно соединенных электродов, при этом крайние электроды изготовлены из одного материала и их спаи с промежуточным электродом разнесены по длине корпуса и по крайней мере один из них расположен в рабочей части, а нагреватель выполнен с поперечным сечением, которое в рабочей части меньше, чем в остальной части корпуса, кроме того, обеспечивается за счет того, что оба спая расположены в рабочей части корпуса и при этом или нагреватель расположен от ближнего к торцу рабочей части корпуса спая на расстоянии не менее шести диаметров его рабочей части или рабочая часть корпуса в месте расположения одного из спаев выполнена либо с большим, чем у остальной рабочей части корпуса, диаметром, либо снабжена снаружи ребрами, и также достигается за счет того, что чувствительный элемент выполнен в виде по крайней мере двух дифференциальных термопар с разнесенными по длине корпуса датчика спаями, при этом дифференциальные термопары могут быть выполнены с одним общим крайним электродом и спаем.
Сущность предлагаемого изобретения поясняется чертежами, где на фиг.1 изображен датчик параметров среды с произвольным расположением спаев электродов дифференциальной термопары относительно нагревателя; на фиг.2 показан датчик, в котором нагреватель расположен от ближнего к торцу спая на расстоянии не менее шести диаметров рабочей части корпуса; на фиг.3 представлен датчик, у которого один из спаев расположен в части корпуса, диаметр которой превышает диаметр рабочей части корпуса; на фиг.4 датчик, рабочая часть корпуса которого в районе одного из спаев имеет диаметр больше, чем диаметр остальной рабочей части корпуса; на фиг.5 изображен датчик с несколькими термопарами, на фиг.6 показан датчик с общим для нескольких термопар крайним электродом.
Датчик параметров среды состоит из корпуса 1 переменного диаметра, заполненного электроизоляцией 2, нагревателя, изготовленного из двух, например, нихромовых электродов 3 и дифференциальной термопары (ДТ), состоящей из двух, например, хромелевых электродов 4 и расположенного между ними, выполненного из другого материала, например, алюмеля, электрода 5, холодный 6 и горячий 7 спаи которых разнесены по длине корпуса 1 датчика. Электроды нагревателя соединены с блоком питания 8, обеспечивающим постоянную электрическую мощность, а электроды ДТ с блоком измерения 9 электродвижущей силы (ЭДС) ДТ.
Предлагаемое устройство работает следующим образом.
Датчик помещают в объем с контролируемой средой и подают на электроды 3 нагревателя напряжение от блока питания 8. Электроды 3 начинают разогреваться и, т.к. они имеют в рабочей части меньшее сечение, именно в этой части выделяется основная доля тепла, а поскольку корпус 1 в рабочей части к тому же заужен, нагрев электродов 4 и 5 ДТ будет происходить оперативно и к тому же с минимальными затратами электроэнергии. В связи с тем, что нагреватель расположен от ближнего к торцу рабочей части корпуса спая на расстоянии не менее шести диаметров рабочей части корпуса, электроды 4 и 5 ДТ будут нагреваться неодинаково и в ДТ образуется термо-ЭДС, величина которой пропорциональна разности температур разнесенных по длине корпуса 1 спаев. ЭДС измеряют с помощью блока 9 и по ее величине судят о параметрах окружающей датчик среды.
В том случае, когда нагреватель расположен по всей длине датчика, электроды 4 и 5 ДТ нагреваются одинаково. Однако, поскольку диаметр участка рабочей части корпуса 1 датчика в месте расположения одного из спаев превышает диаметр всей остальной рабочей части корпуса 1 или имеет снаружи ребра для отвода тепла, коэффициент теплоотдачи между этим участком и окружающей средой будет больше, чем коэффициент теплоотдачи между остальной частью корпуса 1 и окружающей средой. В результате спаи электродов 4 и 5 будут иметь равную температуру и в ДТ возникнет термо- ЭДС, величина которой определяется с помощью блока 9.
Аналогичная ситуация наблюдается и в том случае, когда один из спаев ДТ расположен вне рабочей части корпуса, диаметр которой больше, чем диаметр ее рабочей части, т.к. в этом случае утолщенная часть корпуса 1 будет более активно отдавать тепло окружающей среде за счет более развитой теплообменной поверхности.
При колебаниях уровня среды контроль за его изменением осуществляется датчиком, в котором наиболее нагретые спаи двух или более ДТ, расположенных в корпусе 1 с одним общим нагревателем, разнесены по длине корпуса 1 датчика на всю высоту контролируемого объема. Помимо уменьшения числа датчиков, которые часто необходимо располагать в весьма затесненном пространстве, такое решение позволяет сократить расход электроэнергии, необходимой для работы нагревателей целой группы датчиков. Для уменьшения как габаритов датчиков, так и количества металла, идущего на изготовление электродов, дифференциальные термопары выполняют к тому же с одним общим крайним электродом, наименее нагретый спай которого с промежуточными электродами разных термопар является общим для всех расположенных в корпусе 1 датчика ДТ.
Таким образом, датчик предложенной конструкции может быть использован как:
индикатор фазы среды, т.к. при включенном нагревателе, находясь в газовой среде с низким значением коэффициента теплоотдачи, сигнал дифференциальной термопары имеет величину (например, на воздухе 10 мВ) в несколько раз большую, чем в жидкой среде (например, в стоячей воде 1 мВ), с большим коэффициентом теплоотдачи и по величине сигнала легко определить фазу среды, в которой находится рабочий участок датчика,
уровнемер, т.к. при размещении нескольких датчиков (или одного датчика, который снабжен несколькими ДТ) по высоте контролируемого объема можно определить в каких точках есть жидкая фаза и оценить положение уровня,
термоанемометр, поскольку с увеличением скорости движения среды (газа или жидкости) увеличивается коэффициент теплоотдачи и, следовательно, снижается сигнал дифференциальной термопары. Например, при токе нагревателя 2 А, при скорости течения воды 6 м/с сигнал составлял 0,15 мВ, при 8 м/с 0,12 мВ, при 12 м/с 0,08 мВ. ЫЫЫ2 ЫЫЫ4

Claims (5)

1. Датчик параметров среды, содержащий корпус, в котором размещены чувствительный элемент из последовательно соединенных электродов, спаи которых разнесены по длине корпуса и при этом один из них помещен в рабочей части корпуса, и электронагреватель, отличающийся тем, что корпус заполнен электроизолирующим материалом и его рабочая часть имеет диаметр меньше, чем остальная часть корпуса, а чувствительный элемент состоит из трех электродов и выполнен в виде дифференциальной термопары, при этом крайние электроды изготовлены из одинакового материала, а рабочая часть нагревателя выполнена с меньшим поперечным сечением, чем остальная его часть.
2. Датчик по п.1, отличающийся тем, что другой спай также расположен в рабочей части корпуса и при этом нагреватель расположен от ближнего к торцу рабочей части корпуса спая на расстоянии не менее шести диаметров рабочей части.
3. Датчик по п.1, отличающийся тем, что другой спай также расположен в рабочей части корпуса, причем рабочая часть корпуса в месте расположения одного из спаев выполнена либо с большим, чем остальная рабочая часть корпуса, диаметром, либо снабжена снаружи ребрами.
4. Датчик по пп. 1, 2 или 3, отличающийся тем что чувствительный элемент снабжен дополнительной дифференциальной термопарой с разнесенными по длине корпуса спаями.
5. Датчик по п.4, отличающийся тем, что дифференциальные термопары имеют общий крайний электрод и общий спай.
SU5061691/28A 1992-09-04 1992-09-04 Датчик параметров среды RU2065579C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5061691/28A RU2065579C1 (ru) 1992-09-04 1992-09-04 Датчик параметров среды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5061691/28A RU2065579C1 (ru) 1992-09-04 1992-09-04 Датчик параметров среды

Publications (2)

Publication Number Publication Date
RU5061691A RU5061691A (ru) 1995-02-10
RU2065579C1 true RU2065579C1 (ru) 1996-08-20

Family

ID=21613032

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5061691/28A RU2065579C1 (ru) 1992-09-04 1992-09-04 Датчик параметров среды

Country Status (1)

Country Link
RU (1) RU2065579C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575472C2 (ru) * 2014-06-04 2016-02-20 Александр Александрович Калашников Способ измерения уровня жидких сред
RU2697408C1 (ru) * 2019-02-01 2019-08-14 Александр Александрович Калашников Способ измерения параметров жидкости
RU198109U1 (ru) * 2020-02-26 2020-06-18 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Устройство для контроля уровня жидкой среды
RU2755841C1 (ru) * 2020-11-17 2021-09-22 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Устройство для измерения параметров среды

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 432750, кл. G 01 F 23/22, опублик. 1974. Ярышев Н.А. Теоретические основы измерения нестационарных температур.- Л.: Энергия, 1967, с.125, рис. 5-5. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575472C2 (ru) * 2014-06-04 2016-02-20 Александр Александрович Калашников Способ измерения уровня жидких сред
RU2697408C1 (ru) * 2019-02-01 2019-08-14 Александр Александрович Калашников Способ измерения параметров жидкости
RU198109U1 (ru) * 2020-02-26 2020-06-18 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Устройство для контроля уровня жидкой среды
RU2755841C1 (ru) * 2020-11-17 2021-09-22 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Устройство для измерения параметров среды

Similar Documents

Publication Publication Date Title
Neda et al. A polysilicon flow sensor for gas flow meters
US4579462A (en) Dew point measuring apparatus
US5463899A (en) Simultaneous measurement of gas thermal conductivity and mass flow
US4848147A (en) Thermal transient anemometer
US3802264A (en) Fluid temperature differential flow meter
US4036051A (en) Heat meters
US4785665A (en) Measuring instrument that senses heat transfer along a probe
US3513432A (en) Shielded thermoelectric transducer/conductor construction
RU2065579C1 (ru) Датчик параметров среды
JP2962695B2 (ja) 流体検知装置
US5477734A (en) Pyroelectric swirl measurement
GB2212277A (en) Gas flow meter
JPS5850295Y2 (ja) 熱流測定用ゲ−ジ
JPS5471679A (en) Thermal resistance measuring device
EP1223411A1 (en) Universal sensor for measuring shear stress, mass flow or velocity of a fluid or gas, for determining a number of drops, or detecting drip or leakage
SU830149A2 (ru) Датчик дл дискретного измерени и иНдиКАции КРиОгЕННыХ ТЕМпЕРАТуР
CN221007623U (zh) 一种一体式测风速风向装置
Rehn et al. Dual-element, solid-state fluid flow sensor
SU690300A1 (ru) Поплавковый преобразователь расхода
JP7127613B2 (ja) 熱伝達率センサ
RU72072U1 (ru) Устройство для измерения толщины осадка на поверхности трубопроводов
KR100244902B1 (ko) 공기유속 센서소자 및 그 측정회로
SU327411A1 (ru) Термоанемометрический датчик
SU1420408A1 (ru) Теплоэлектрический вакуумметр
CN201285296Y (zh) 流量检测单元

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050905