RU2061297C1 - Эгд-нагнетатель-насос - Google Patents

Эгд-нагнетатель-насос Download PDF

Info

Publication number
RU2061297C1
RU2061297C1 RU94004670A RU94004670A RU2061297C1 RU 2061297 C1 RU2061297 C1 RU 2061297C1 RU 94004670 A RU94004670 A RU 94004670A RU 94004670 A RU94004670 A RU 94004670A RU 2061297 C1 RU2061297 C1 RU 2061297C1
Authority
RU
Russia
Prior art keywords
electrode
auxiliary
channel
collector
auxiliary electrode
Prior art date
Application number
RU94004670A
Other languages
English (en)
Other versions
RU94004670A (ru
Inventor
Аревшад Апетович Вартанян
Вячеслав Иванович Скориков
Original Assignee
Аревшад Апетович Вартанян
Вячеслав Иванович Скориков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Аревшад Апетович Вартанян, Вячеслав Иванович Скориков filed Critical Аревшад Апетович Вартанян
Priority to RU94004670A priority Critical patent/RU2061297C1/ru
Publication of RU94004670A publication Critical patent/RU94004670A/ru
Application granted granted Critical
Publication of RU2061297C1 publication Critical patent/RU2061297C1/ru

Links

Images

Landscapes

  • Supercharger (AREA)

Abstract

Использование: для перекачивания диэлектрических жидкостей, сжатых газов и смесей газов с дисперсными жидкими или твердыми частицами в криогенной технике, в энергетике. Сущность изобретения: эгд-нагнетатель-насос содержит диэлектрический корпус, в канале корпуса установлены эмиттерный, вспомогательный и коллекторный электроды. Игольчатый эмиттерный электрод расположен соосно каналу. Вспомогательный электрод выполнен сетчатым и имеет форму сферического сегмента, основание которого совпадает с внутренним сечением канала. Поверхность коллекторного электрода, обращенная к выпуклой стороне вспомогательного электрода, выполнена в форме эллипсоида вращения, соосного каналу. 3 з. п. ф-лы, 2 ил.

Description

Изобретение относится к электрогидродинамическим преобразователям энергии и может быть использовано для перекачивания диэлектрических жидкостей, сжатых газов или смесей газов с дисперсными жидкими или твердыми частицами в криогенной технике, энергетической, химической и газовой промышленности, а также в других отраслях народного хозяйства.
Известен ЭГД насос-нагнеталь [1] содержащий диэлектрический корпус, снабженный впускным и выпускным отверстиями для перекачиваемой среды, два дисковых электрода с отверстиями, расположенные параллельно друг другу по обе стороны диэлектрического диска с отверстиями конической формы, причем первый электрод (ближайший к впускному отверстию) снабжен также заостренными выступами, которые расположены напротив отверстий, выполненных в диэлектрическом диске. Электроды подключены к источнику высокого напряжения, а участки поверхности второго электрода, расположенные напротив отверстий, выполненных в диэлектрическом диске, имеют выпуклую форму.
При подаче на электроды высокого напряжения между ними возникает коронный разряд или разряд, подобный коронному в капельных жидкостях. В результате рабочая среда ионизуется и в межэлектродном пространстве формируется область униполярного пространственного заряда, знак которого соответствует знаку потенциала на первом (эмиттерном) электроде. Под действием приложенного электрического поля и поля пространственного заряда происходит дрейф образовавшегося униполярного пространственного заряда от эмиттерного электрода к коллекторному (второму) электроду. В результате вязкостного взаимодействия заряженных частиц с основной нейтральной массой рабочей среды происходит перемещение ее в направлении к коллектору, при этом потенциальная энергия зарядов переходит в кинетическую энергию потока, которая на выходе из коллектора преобразуется в потенциальную энергию давления.
Недостаток этого устройства заключается в том, что оно характеризуется низкими напорно-расходными характеристиками из-за наличия повышенных местных гидравлических сопротивлений, возникающих при движении жидкости от заостренных выступов к выпускному отверстию через отверстия в диэлектрическом диске и смещенные относительно них отверстия во втором электроде.
Известен также ЭГД-насос-нагнетатель [2] содержащий диэлектрический корпус с выполненным в нем каналом и расположенные в нем последовательно по потоку перекачиваемой среды эмиттерный, вспомогательный и коллекторный электроды, причем эмиттерный электрод выполнен игольчатым и расположен соосно каналу, вспомогательный электрод выполнен в виде кругового кольца, а коллекторный электрод, в виде тела вращения с осевым отверстием. Электроды подключены к источнику высокого напряжения через регулируемый делитель напряжения так, что потенциал вспомогательного электрода можно изменять в широком диапазоне: от потенциала, близкого по величине к потенциалу эмиттера, до потенциала, близкого по величине к потенциалу коллекторного электрода.
В известном устройстве [2] благодаря наличию вспомогательного электрода и резистивного делителя напряжения имеется возможность изменять его напорно расходные характеристики. Действительно, если потенциал вспомогательного электрода незначительно отличается от потенциала эмиттерного электрода, то обеспечивается максимальный напор за счет снижения расхода. С другой стороны, если потенциал вспомогательного электрода незначительно отличается от потенциала коллекторного электрода, то обеспечивается максимальный расход при минимальном напоре.
Недостаток этого устройства заключается в том, что оно характеризуется низкими предельными значениями напорно-расходных параметров. Это обусловлено следующими причинами. Во-первых, используемая в [2] конфигурация электродов приводит к тому, что электрическое поле по поперечному сечению канала сильно неоднородно, а следовательно, устройство характеризуется низким значением пробойного напряжения. Во-вторых, наличие застойных зон, обусловленное формой поверхности коллекторного электрода, обращенной к вспомогательному электроду, приведет (при больших временах релаксации объемного заряда в диэлектрической среде) к существенной экранировке поля коллекторного электрода. Кроме того, коллекторный электрод имеет сложную форму, так как одна его поверхность является формирующим участком для потока рабочей среды, а другая поверхность элементом, формирующим распределение электрического поля между электродами.
Цель изобретения разработка ЭГД-нагнетателя-насоса с такими вспомогательными и коллекторным электродами, конструктивное выполнение которых обеспечило бы равномерное распределение электрического поля по поперечным сечениям канала при одновременном уменьшении гидросопротивления коллекторного электрода потоку рабочей среды, что повысило бы предельные значения напорно-расходных характеристик устройства.
Цель достигается тем, что в ЭГД-нагнетателе, содержащем диэлектрический корпус с выполненным в нем каналом и расположены в канале последовательно по потоку рабочей среды эмиттерный, вспомогательный и коллекторный электроды, подключенные к источнику высокого напряжения, эмиттерный электрод выполнен игольчатым и расположен соосно каналу, а перекрывающий поперечное сечение канала коллекторный электрод выполнен с осевым отверстием, вспомогательный электрод выполнен сетчатым в виде сферического сегмента, диаметр основания которого равен внутреннему диаметру канала, поверхность коллекторного электрода, обращенная к выпуклой стороне вспомогательного электрода, выполнена в форме соосного с каналом эллипсоида вращения, а расстояние от острия эмиттерного электрода до вспомогательного электрода удовлетворяет соотношению:
L (1,25-0,9)R, где L расстояние от острия эмиттерного электрода до вспомогательного электрода в осевом направлении; R радиус кривизны вспомогательного электрода.
Целесообразно, чтобы вспомогательный электрод был выполнен с осевым отверстием.
Выгодно, чтобы вспомогательный электрод был выполнен переменной проницаемости для рабочей среды, при этом величина проницаемости монотонно увеличивалась бы от периферии электрода к его середине.
Кроме того, предпочтительно, чтобы поверхность коллекторного электрода, обращенная к вспомогательному электроду, совместно с участком поверхности канала между коллекторным и вспомогательным электродами была выполнена в форме соосно с каналом эллипсоида вращения.
Такое выполнение вспомогательного и коллекторного электродов ЭГД-нагнетателя-насоса обеспечивает однородное распределение электрического поля по поперечным сечениям канала, а следовательно, повышение предельных значений напорно-расходных характеристик за счет увеличения значения пробойного напряжения, которое определяется в данном случае, в основном, параметрами эмиттерного электрода и диэлектрическими свойствами рабочей среды.
Кроме того, выполнение поверхности коллекторного электрода, обращенной к вспомогательному электроду, в виде эллипсоида вращения позволяет дополнительно уменьшить гидросопротивление обтекаемому электрод потоку рабочей среды.
Дополнительным преимуществом изобретения является возможность изменять напорно-расходные характеристики устройства путем изменения отношения полуосей эллипсоида. Для получения больших предельных значений расхода рабочей среды поверхность коллекторного электрода должна быть вытянута в направлении движения рабочей среды.
На фиг.1 изображено предлагаемое устройство, продольный разрез; на фиг.2 разрез А-А на фиг.1.
ЭГД-нагнетатель-насос содержит диэлектрический корпус 1, канал 2, игольчатый эмиттерный электрод 3, вспомогательный электрод 4 и коллекторный электрод 5. Вспомогательный электрод 4 выполнен сетчатым в виде сферического сегмента, обращенного выпуклой стороной к коллекторному электроду 5, при этом диаметр основания сегмента равен внутреннему диаметру канала. Вспомогательный электрод 4 может быть выполнен с осевым отверстием 6 и переменной проницаемости, величина которой монотонно увеличивается от периферии электрода 4 к его середине. Поверхность 7 коллекторного электрода 5 совместно с участком поверхности 8 канала 2 выполнена в форме соосного с каналом 2 эллипсоида вращения с осевым отверстием 9.
Электроды 3, 4 и 5 подключены к регулируемому источнику 10 высокого напряжения. Выполнение источника 10 высокого напряжения может быть любым из числа известных, например, может быть использована схема источника, описанная в [2]
Расстояние L от острия эмиттерного электрода до вспомогательного электрода должно удовлетворять соотношению L (1,25-0,3)R, где R радиус кривизны вспомогательного электрода 4.
ЭГД-нагнетатель-насос работает следующим образом.
После заполнения канала 2 рабочей средой от источника 10 высокого напряжения на электроды 3, 4 и 5 подаются соответствующие потенциалы (фиг.1). При достижении разности потенциалов на электродах 3, 4 и 5 значений, соответствующих напряжению зажигания коронного разряда, в области между эмиттерным 3 и коллекторным 5 электродами образуется униполярный пространственный заряд со знаком, соответствующим знаку потенциала на эмиттерном электроде 3. Под действием внешнего электрического поля и собственного поля объемный заряд перемещается к внутренней поверхности 7 коллекторного электрода 5, при этом за счет вязкостного взаимодействия заряженных частиц с основной нейтральной массой рабочей среды происходит перемещение ее в направлении к коллекторному электроду 5.
При движении рабочей среды от эмиттерного электрода 3 к коллекторному электроду 5 образуется тороидальный пространственный вихрь. При этом предложенная форма поверхности коллекторного электрода 5 обеспечивает минимальное гидросопротивление за счет увеличения проходного сечения между вихрем и поверхностью коллекторного электрода 5. Ионизованная рабочая среда, контактируя с поверхностью коллекторного электрода 5, рекомбинирует.
Изменение напорно-расходных характеристик ЭГД-нагнетателя-насоса осуществляется изменением величины потенциала вспомогательного электрода 4. Так, если потенциал вспомогательного электрода 4 незначительно отличается от потенциала эмиттерного электрода 3, то устройство обеспечивает максимальное значение напора. В другом крайнем случае, если потенциал вспомогательного электрода 4 незначительно отличается от потенциала коллекторного электрода 5, что тогда обеспечивается максимальное значение расхода за счет уменьшения напора. Таким образом, требуемая напорно-расходная характеристика устройства достигается соответствующим выбором величины потенциала на вспомогательном электроде 4.
Предложенная форма выполнения вспомогательного 4 и коллекторного 5 электродов и их взаимное расположение относительно эмиттерного электрода 4 обеспечивает однородное распределение электрического поля по поперечным сечениям канала 2, т.е. повышает значение пробойного напряжения, а вместе с тем и предельные значения напорно-расходных характеристик.
Наличие осевого отверстия 6 во вспомогательном электроде 4 позволяет существенно снизить величину гидросопротив- ления при обтекании его потоком рабочей среды.
Существенное уменьшение гидросопротивления обеспечивается также за счет выполнения вспомогательного электрода 4 переменной проницаемости, величина которой монотонно увеличивается от периферии электрода к его середине.

Claims (4)

1. ЭГД-нагнетатель-насос, содержащий диэлектрический корпус с выполненным в нем каналом и расположенные в нем последовательно по потоку рабочей среды эмиттерный, вспомогательный и коллекторный электроды, подключенные к источнику высокого напряжения, причем эмиттерный электрод выполнен игольчатым и расположен соосно с каналом, а перекрывающий поперечное сечение канала коллекторный электрод выполнен с осевым отверстием, отличающийся тем, что вспомогательный электрод выполнен сетчатым в виде сферического сегмента, диаметр основания которого равен внутреннему диаметру канала, при этом поверхность коллекторного электрода, обращенная к выпуклой стороне вспомогательного электрода, выполнена в форме соосного с каналом эллипсоида вращения, а расстояние от острия эмиттерного электрода до вспомогательного электрода в осевом направлении удовлетворяет соотношению L (1,25 oC 0,9)R, где R радиус кривизны вспомогательного электрода.
2. ЭГД-нагнетатель-насос по п.1, отличающийся тем, что вспомогательный электрод выполнен с осевым отверстием.
3. ЭГД-нагнетатель-насос по п.1, отличающийся тем, что вспомогательный электрод выполнен переменной проницаемости, величина которой монотонно увеличивается от периферии электрода к его середине.
4. ЭГД-нагнетатель-насос по п.1, отличающийся тем, что поверхность коллекторного электрода, обращенная к вспомогательному электроду, совместно с участком поверхности канала между коллекторным и вспомогательным электродами выполнена в форме соосного с каналом эллипсоида вращения.
RU94004670A 1994-02-12 1994-02-12 Эгд-нагнетатель-насос RU2061297C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU94004670A RU2061297C1 (ru) 1994-02-12 1994-02-12 Эгд-нагнетатель-насос

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU94004670A RU2061297C1 (ru) 1994-02-12 1994-02-12 Эгд-нагнетатель-насос

Publications (2)

Publication Number Publication Date
RU94004670A RU94004670A (ru) 1995-10-20
RU2061297C1 true RU2061297C1 (ru) 1996-05-27

Family

ID=20152359

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94004670A RU2061297C1 (ru) 1994-02-12 1994-02-12 Эгд-нагнетатель-насос

Country Status (1)

Country Link
RU (1) RU2061297C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113016133A (zh) * 2018-09-11 2021-06-22 艾诺奇有限公司 能量储存和转换

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Патент США N 3267859, кл. H 02N 3/00, опубл.1966. 2. Патент США N 3398685, кл. H 02N 3/00, опубл.1968. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113016133A (zh) * 2018-09-11 2021-06-22 艾诺奇有限公司 能量储存和转换

Similar Documents

Publication Publication Date Title
SU1279547A3 (ru) Электростатический насос
US4216096A (en) Ozone generation device and electrode
RU2061297C1 (ru) Эгд-нагнетатель-насос
EP0396249A2 (en) Movement ozone generator
US3184967A (en) Electric charge flow meter
US3398685A (en) Ion drag pumps
CN110048307A (zh) 气体开关
WO2004077016A3 (en) Ion mobility separation devices
RU2037261C1 (ru) Эгд-нагнетатель-насос
US4254800A (en) Fluid flow rate control apparatus
US3223038A (en) Electrical thrust producing device
RU2093699C1 (ru) Устройство для обработки жидких и/или газообразных сред
SU743145A1 (ru) Мембранный насос дл диэлектрических сред
RU94004670A (ru) Эгд-нагнетатель-насос
SU1326793A1 (ru) Электрогидравлический преобразователь
SU585582A1 (ru) Электродинамический газожидкостный насос
Cooke et al. Discharge inception by particles near insulator surfaces: the proximity effect
Grange et al. Discharge suppression system for a double focusing, atmospheric pressure ionization mass spectrometer
Asano et al. Fundamental study of EHD pump with needle-cylinder electrodes
SU663432A1 (ru) Электростатический сепаратор дл разделени двухфазной среды
RU2132974C1 (ru) Локальный вентилятор-ионизатор
SU744154A2 (ru) Электрогидравлический вихревой преобразователь
Hugrass et al. A high-power RF line generator of novel design
JPS6189291A (ja) 燃料油の改質方法および装置
SU729705A1 (ru) Вращающийс токосъемник