RU2051456C1 - Способ изготовления магнитопроводов электрических машин и аппаратов - Google Patents

Способ изготовления магнитопроводов электрических машин и аппаратов

Info

Publication number
RU2051456C1
RU2051456C1 SU4890236A RU2051456C1 RU 2051456 C1 RU2051456 C1 RU 2051456C1 SU 4890236 A SU4890236 A SU 4890236A RU 2051456 C1 RU2051456 C1 RU 2051456C1
Authority
RU
Russia
Prior art keywords
magnetic
magnetic circuit
biscuits
protrusions
powder
Prior art date
Application number
Other languages
English (en)
Inventor
Е.Ф. Беляев
А.П. Вакутин
П.Н. Цылев
Н.В. Шулаков
А.С. Юрин
В.Г. Патласов
Original Assignee
Государственный Пермский технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственный Пермский технический университет filed Critical Государственный Пермский технический университет
Priority to SU4890236 priority Critical patent/RU2051456C1/ru
Application granted granted Critical
Publication of RU2051456C1 publication Critical patent/RU2051456C1/ru

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

Использование: технология изготовления магнитопроводов электрических машин и аппаратов, обеспечивающая улучшение электромагнитных характеристик. Сущность изобретения: в качестве материала для магнитопровода используют порошок чистого железа, засыпку порошка в пресс-форму осуществляют порционно, в процессе прессования получают галеты толщиной 1,5 2,5 мм, из отдельных галет набирают магнитопровод необходимого в осевом направлении размера. Набранный магнитопровод помещают в контейнер с засыпкой, состоящей из 40 60% порошка чистого кремния и 60 40% порошка окиси алюминия, и прикладывают к нему в осевом направлении статическое сжимающее давление 2 4 МПа. После этого контейнер с магнитопроводом помещают в вакуумную печь, а процесс спекания галет магнитопровода в контейнере ведут при температуре 1150 1250°С в течение 1 3 ч, осуществляя одновременно со спеканием процесс их силицирования и процесс диффузионной сварки. 6 ил.

Description

Изобретение относится к электромашиностроению, в частности к производству магнитопроводов электрических машин и аппаратов, предназначенных для работы в переменных магнитных полях и изготовляемых методом порошковой металлургии.
Известен способ получения железокремниевых магнитопроводов из металлических порошков, заключающийся в том, что из порошка железокремниевого сплава при удельном усилии 8 тс/см2 прессуют магнитопроводы и спекают в вакууме или водороде при температуре 1250-1300оС в течение 6 ч [1]
Недостатками данного способа изготовления магнитопроводов являются неудовлетворительные электрические и магнитные характеристики, что объясняется прессованием магнитопровода, как единого целого, и равномерным распределением кремния по всему объему магнитопровода.
Действительно, прессование магнитопровода в целом приводит к возникновению больших по величине вихревых токов, обуславливающих значительные потери энергии и создание сильного размагничивающего поля, особенно в центральных слоях магнитопровода. Примесь кремния способствует, с одной стороны, увеличению электрического сопротивления магнитопровода, а с другой стороны, приводит к снижению магнитной индукции насыщения. Равномерное распределение кремния по всему объему магнитопровода является малоэффективным из-за явления поверхностного эффекта, при котором плотность вихревых токов и потери энергии максимальны в наружных слоях и практически равны нулю в центральных слоях. При поверхностном эффекте наличие кремния в центральных слоях практически не уменьшает вихревых токов и потерь, но снижает индукцию насыщения. В наружных слоях концентрации примеси кремния недостаточны для существенного уменьшения вихревых токов, обусловленных ими потерь и размагничивающего магнитного поля.
Наиболее близким к предлагаемому является способ изготовления магнитопроводов электрических машин и аппаратов, осуществляемый посредством перемешивания порошка чистого железа с порошком ферросилиция, прессования полученной смеси при удельном усилии 10 тс/см2 и последующего спекания в вакуумной печи при температуре 1250оС в течение 2 ч [2]
Однако магнитопроводы, изготовленные по данному способу, также имеют неудовлетворительные электрические и магнитные характеристики, что объясняется прессованием магнитопровода, как единого целого, и равномерным распределением ферросилиция по всему объему магнитопровода. Прессование магнитопровода в целом обуславливает большие вихревые токи в магнитопроводе, значительные потери энергии и сильное размагничивающее магнитное поле. Равномерное распределение ферросилиция по всему объему магнитопровода не обеспечивает существенного уменьшения вихревых токов и потерь энергии в наружных слоях из-за недостаточной концентрации здесь кремния, но приводит к снижению магнитной индукции насыщения.
Цель изобретения улучшение электрических и магнитных характеристик магнитопроводов.
Цель достигается тем, что в качестве исходного материала используют порошок чистого железа, из которого при давлении 800 МПа прессуют галеты толщиной 1,5-2,5 мм с выступами на одной из торцовых поверхностей и впадинами, расположенными соосно выступам, имеющими одинаковую с выступами форму и глубину, меньшую высоты выступов, на другой торцовой поверхности из упомянутых выше галет набирают магнитопровод необходимого в осевом направлении размера, причем набирают так, чтобы выступы каждой предыдущей галеты входили во впадины каждой последующей галеты, набранный магнитопровод помещают в контейнер с засыпкой, состоящей из 40-60% порошка чистого кремния и 60-40% нейтрального заполнителя, прикладывают к нему в осевом направлении статическое сжимающее давление 2-4 МПа, после чего в вакууме при температуре 1150-1250оС в течение 1-3 ч ведут процесс спекания галет магнитопровода, в ходе которого осуществляют также процесс силицирования галет и процесс их диффузионной сварки по поверхности соприкосновения выступов и впадин.
Предлагаемый способ в отличие от известных позволяет существенно уменьшить вихревые токи, потери электрической энергии, нагрев магнитопровода и величину размагничивающего магнитного поля, а также увеличить магнитную проницаемость, что приводит к улучшению электрических и магнитных характеристик магнитопроводов, а при их использовании в электрических машинах и аппаратах к увеличению электромагнитного усилия и момента, коэффициента полезного действия и коэффициента мощности.
Сущность предлагаемого способа заключается в следующем.
Из порошка чистого железа при давлении 800 МПа прессуют галеты толщиной 1,5-2,5 мм с выступами на одной из торцовых поверхностей и впадинами, расположенными соосно выступам, имеющими одинаковую с выступами форму и глубину, меньшую высоты выступов, на другой торцовой поверхности. Из полученных галет набирают магнитопровод необходимого в осевом направлении размера, причем набор осуществляют таким образом, чтобы выступы каждой предыдущей галеты входили во впадины каждой последующей галеты. Набранный магнитопровод помещают в контейнер с засыпкой, состоящей из 40-60% порошка чистого кремния и 60-40% нейтрального заполнителя, например окиси алюминия, после чего к нему в осевом направлении прикладывают статическое сжимающее давление 2-4 МПа. Контейнер с магнитопроводами устанавливают в вакуумную печь, где при температуре 1150-1250оС в течение 1-3 ч ведут процесс спекания галет магнитопровода, в ходе которого осуществляют также процесс силицирования галет и процесс их диффузионной сварки по поверхности соприкосновения выступов и впадин.
Использование в качестве исходного материала порошка чистого железа и прессование его при давлении 800 МПа позволяет получить галеты и магнитопровод с хорошими магнитными характеристиками, в частности с большими значениями магнитной проницаемости и индукции насыщения. Прессование галет малой толщины с высотой выступов, превышающей глубину впадин, обеспечивает многократное увеличение электрического сопротивления в осевом направлении магнитопровода за счет создания между галетами воздушного зазора, что способствует резкому уменьшению вихревых токов, потерь электрической энергии, размагничивающего магнитного поля. Одновременно с этим достигается многократное увеличение поверхности охлаждения магнитопровода, что позволяет увеличить допустимые электрические и магнитные нагрузки и ведет при заданных габаритах магнитопровода к увеличению мощности электрических машин. Соосное расположение выступов и впадин и их одинаковый профиль обеспечивают резкое снижение трудоемкости сборки магнитопровода и позволяют избежать механической обработки поверхности магнитопровода после его спекания. Кроме того, по поверхности соприкосновения выступов и впадин осуществляется процесс диффузионной сварки галет, обеспечивающий целостность магнитопровода. Спекание галет в контейнере с засыпкой, содержащей высокий процент порошка чистого кремния, обуславливает процесс силицирования галет, способствующий созданию высокой концентрации кремния в наружных слоях галет и практическое его отсутствие в центральных слоях. Такое неравномерное распределение примеси кремния по объему галет обеспечивает увеличение электрического сопротивления наружных слоев и практически не приводит к уменьшению величины индукции насыщения. При этом достигается существенное ослабление поверхностного эффекта, т.е. дальнейшее уменьшение вихревых токов, потерь энергии и величины размагничивающего магнитного поля. Одновременно происходит выравнивание величины магнитной индукции по толщине галет, что соответствует возрастанию среднего значения магнитной индукции. Приложение к галетам магнитопровода статического сжимающего давления в осевом направлении приводит к улучшению контакта между выступами и впадинами соседних галет, что способствует повышению качества диффузионной сварки и прочности конструкции магнитопровода.
На фиг. 1-3 показаны выступы и впадины различной формы; на фиг.4 экспериментально полученные зависимости магнитной индукции от напряженности магнитного поля; на фиг.5 распределение плотности тока по толщине галеты; на фиг.6 зависимости удельных потерь энергии от напряженности магнитного поля.
П р и м е р. Изготовление магнитопровода статора для серийно изготовляемого коллекторного двигателя типа ДК-65, используемого в электроприводе сепараторов.
В качестве материала при изготовлении галет использовали порошок чистого железа марки ПЖО. Прессование галет осуществляли в стальной пресс-форме двухстороннего прессования при давлении 800 МПа. Прессовали галеты толщиной 2,4 мм с десятью выступами конической формы на одной торцовой поверхности и таким же количеством впадин конической формы, расположенных соосно выступам, на другой торцовой поверхности. Высота выступов составляла 0,9 мм, а глубина впадин 0,4 мм. Магнитопровод набирали из девяти галет. При этом в процессе набора выступы каждой предыдущей галеты заводили во впадины каждой последующей галеты. За счет различия высоты выступов и глубины впадин между отдельными галетами образовывался воздушный зазор величиной 0,5 мм. Кроме конической формы (фиг.1) выступы и впадины могут иметь форму части окружности (фиг. 2) или цилиндрическую форму с конусностью на конце (фиг.3). Набранный из галет магнитопровод помещали в контейнер с засыпкой, состоящей из 50% порошка чистого кремния и 50% порошка окиси алюминия. К магнитопроводу в осевом направлении прикладывали статическое сжимающее давление 3 МПа. Контейнер с засыпкой и магнитопроводом помещали в вакуумную печь с глубиной вакуума, не превышающей 0,133 Па. Процесс спекания, процесс силицирования и процесс диффузионной сварки осуществляли одновременно и вели при температуре 1200+10оС в течение 2 ч.
Характеристики, соответствующие позициям 1,3,5 (фиг.4-6), относятся к магнитопроводу, изготовленному по предлагаемому способу, а характеристики, представленные позициями 2,4,6 (фиг.4-6), получены для магнитопровода, изготовленного по способу-прототипу. Магнитопроводы изготовлены в Республиканском исследовательском центре порошковой металлургии (г. Пермь), причем магнитопровод с характеристиками 2,4,6 получен посредством прессования смеси порошка чистого железа марки ПЖО (97%) и порошка кремния (3%) при давлении 1000 МПа и спекания в вакууме при температуре 1200+10оС в течение 2 ч.
Сопоставление характеристик на фиг.4-6 показывает, что магнитопровод, изготовленный по предлагаемому способу, имеет существенно лучшие электрические и магнитные характеристики. Например, при напряженности магнитного поля 2000 А/м величина индукции в магнитопроводе, изготовленном по предлагаемому способу, составляет 1,21 Тл, а в магнитопроводе, изготовленном по способу-прототипу, 0,93 Тл. При этой же напряженности магнитного поля удельные электрические потери в магнитопроводе, изготовленном по предлагаемому способу, в 2 раза меньше, чем в магнитопроводе, изготовленном по способу-прототипу. Снижение потерь электрической энергии объясняется, с одной стороны, наличием воздушного зазора между галетами, а с другой, силицированием галет, что обеспечивает резкое уменьшение плотности вихревых токов (фиг.5).
Всесторонними экспериментальными исследованиями установлено следующее.
Прессование галет при давлении, меньшем 800 МПа, приводит к снижению плотности галет, возникновению пористости и резкому уменьшению магнитной проницаемости, т.е. к ухудшению магнитных характеристик. Увеличение давления выше 800 МПа невозможно из-за ограниченной прочности оснастки.
Прессование галет толщиной менее 1,5 мм обуславливает уменьшение магнитной проницаемости и ухудшение магнитных характеристик из-за снижения плотности материала галет, вызванного ростом влияния трения по торцовым поверхностям. Увеличение толщины галет, по сравнению с 2,5 мм, приводит к увеличению вихревых токов и ухудшению электрических и магнитных характеристик.
Уменьшение статического сжимающего давления ниже 2 МПа не обеспечивает получение хорошего контакта между выступами и впадинами, что приводит к снижению качества диффузионной сварки галет и уменьшению прочности магнитопровода. Увеличение статического сжимающего давления выше 4 МПа обуславливает пластическую деформацию выступов и приводит к уменьшению воздушного зазора между галетами, ухудшению отвода тепла и уменьшению допустимых электрических и магнитных нагрузок.
Увеличение порошка кремния в составе засыпки свыше 60% приводит к перенасыщению поверхностного слоя галет кремнием, что обуславливает снижение механической прочности поверхностного слоя и возможное его разрушение. Уменьшение в составе засыпки порошка кремния ниже 40% приводит к затягиванию процесса силицирования галет и снижению производительности.
Увеличение температуры спекания выше 1250оС приводит к появлению локальных участков оплавления в результате высокой концентрации кремния в точечных объемах. При этом теряется форма галет, появляются крупные поры диффузионного характера, что снижает магнитную проницаемость и увеличивает вихревые токи. Уменьшение температуры спекания ниже 1150оС не обеспечивает условий равномерного растворения кремния в железе, что приводит к уменьшению магнитной проницаемости и магнитной индукции.
Время спекания выбирается из условия полного растворения кремния в железе: с повышением температуры спекания время спекания уменьшается с 3-х до 1-го ч.
Изобретение целесообразно использовать в электромашиностроении при крупносерийном производстве магнитопроводов электрических машин и аппаратов, предназначенных преимущественно для работы в переменных магнитных полях. Внедрение данной технологии изготовления магнитопроводов позволяет существенно снизить потери электрической энергии, обусловленные вихревыми токами, увеличить магнитную проницаемость и индукцию, улучшить отвод тепла, что приводит к улучшению рабочих характеристик электрических машин и аппаратов, в частности коэффициента полезного действия и коэффициента мощности. Способ обеспечивает безотходную технологию изготовления магнитопроводов, существенное снижение трудоемкости и стоимости производства электрических машин и аппаратов, автоматизацию и повышение культуры производства.

Claims (1)

  1. СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИТОПРОВОДОВ ЭЛЕКТРИЧЕСКИХ МАШИН И АППАРАТОВ, согласно которому засыпают исходный материал в пресс-форму, прессуют его и спекают в вакуумной печи, отличающийся тем, что, с целью повышения качества магнитопроводов путем улучшения электрических и магнитных характеристик, в качестве исходного материала используют порошок чистого железа, из которого при давлении 800 МПа прессуют галеты толщиной 1,5 2,5 мм с выступами на одной торцевой поверхности и соответствующими впадинами на другой, имеющими глубину, меньшую высоты выступов, галеты набирают в пакет необходимого в осевом направлении размера, располагая выступы каждой предыдущей галеты во впадины каждой последующей, набранный пакет помещают в контейнер с засыпкой, состоящей из 40 60% порошка чистого кремния и 40 60% нейтрального заполнителя, прикладывают к нему в осевом направлении статическое сжимающее давление 2 4 МПа, а спекание осуществляют при температуре 1150 - 1250oС в течение 1 3 ч с осуществлением процесса силицирования и процесса диффузионной сварки по поверхности соприкосновения выступов и впадин.
SU4890236 1990-12-13 1990-12-13 Способ изготовления магнитопроводов электрических машин и аппаратов RU2051456C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4890236 RU2051456C1 (ru) 1990-12-13 1990-12-13 Способ изготовления магнитопроводов электрических машин и аппаратов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4890236 RU2051456C1 (ru) 1990-12-13 1990-12-13 Способ изготовления магнитопроводов электрических машин и аппаратов

Publications (1)

Publication Number Publication Date
RU2051456C1 true RU2051456C1 (ru) 1995-12-27

Family

ID=21549633

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4890236 RU2051456C1 (ru) 1990-12-13 1990-12-13 Способ изготовления магнитопроводов электрических машин и аппаратов

Country Status (1)

Country Link
RU (1) RU2051456C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2585016C1 (ru) * 2015-03-23 2016-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Способ изготовления магнитопровода ротора самотормозящегося асинхронного электродвигателя

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Порошковая металлургия, 1973, N 2, с.93-96. *
2. Труды ВНИИТэлектромаша. Сборник. М.: Энергия, 1971, вып.9, с.70. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2585016C1 (ru) * 2015-03-23 2016-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") Способ изготовления магнитопровода ротора самотормозящегося асинхронного электродвигателя

Similar Documents

Publication Publication Date Title
CA2613862C (en) Method for manufacturing of insulated soft magnetic metal powder formed body
US3848331A (en) Method of producing molded stators from steel particles
US6651309B2 (en) Method for fabricating a highly-dense powder iron pressed stator core for use in alternating current generators and electric motors
WO2014038607A1 (ja) 永久磁石の製造方法、永久磁石の製造装置、永久磁石、回転電機、および回転電機用の永久磁石
JP2006225766A (ja) 磁性鉄粉末の熱処理
CN104332263B (zh) 一种可降低涡流损耗的烧结型稀土永磁体及其制备方法
KR101188135B1 (ko) Ac 애플리케이션용 고성능 자기 복합재 및 그 제조 공정
US4076561A (en) Method of making a laminated rare earth metal-cobalt permanent magnet body
CN110783051A (zh) 辐射取向的烧结钕铁硼磁瓦片及制备方法、成型装置
RU2051456C1 (ru) Способ изготовления магнитопроводов электрических машин и аппаратов
CN214920480U (zh) 一种高效放电等离子体烧结模具
US11315711B2 (en) Sintered magnet, electrical machine, use of the sintered magnet for an electrical machine and manufacturing method of a sintered magnet
CN102294479A (zh) 一种烧结钕铁硼器件的制备方法
WO1996030144A1 (en) Soft magnetic anisotropic composite materials
US5047205A (en) Method and assembly for producing extruded permanent magnet articles
CN107527705A (zh) 低涡流损耗的稀土永磁体
US20230307159A1 (en) High-resistivity permanent magnets, their preparation and their application in electrical machines
SU865526A1 (ru) Способ изготовлени спеченных магнитопроводов
CA1301602C (en) Method and assembly for producing extruded permanent magnet articles
KR101269687B1 (ko) 연자성 분말 제조방법
CN113414389B (zh) 一种多物理场耦合作用下铁钴软磁体合金制备方法
JPH07211566A (ja) 異方性磁石の製造方法
JPS61261448A (ja) 高エネルギ−積永久磁石の製造方法
TW200423158A (en) Heat treatment of iron-based components
JPH03265102A (ja) 径方向異方性円筒状永久磁石及びその製造方法