RU2049118C1 - Способ получения стали в кислородных конверторах - Google Patents

Способ получения стали в кислородных конверторах Download PDF

Info

Publication number
RU2049118C1
RU2049118C1 SU5060393A RU2049118C1 RU 2049118 C1 RU2049118 C1 RU 2049118C1 SU 5060393 A SU5060393 A SU 5060393A RU 2049118 C1 RU2049118 C1 RU 2049118C1
Authority
RU
Russia
Prior art keywords
melt
oxygen
bath
iron
carbon
Prior art date
Application number
Other languages
English (en)
Inventor
Г.А. Дорофеев
А.П. Пухов
А.С. Белкин
Е.Н. Ивашина
А.В. Макуров
Л.А. Констанский
А.Г. Ситнов
Original Assignee
Акционерная компания "Тулачермет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерная компания "Тулачермет" filed Critical Акционерная компания "Тулачермет"
Priority to SU5060393 priority Critical patent/RU2049118C1/ru
Application granted granted Critical
Publication of RU2049118C1 publication Critical patent/RU2049118C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

Использование: черная металлургия, в частности в кислородно-конверторном производстве стали. Способ включает загрузку скрапа, заливку чугуна, продувку ванны кислородом, ввод шлакообразующих материалов, присадку твердых окислителей после снижения содержания углерода в ванне до заданной величины. Твердые окислители предварительно заливают железоуглеродистым расплавом и после прекращения продувки кислородом при снижении содержания углерода в ванне до 0,20% их вводят вглубь расплава в количестве 5-50 кг/т металла; твердые окислители вводят в расплпв в виде капсул, предварительно заполненных окислителем, со скоростью 15-60 м/с; твердые окислители вводят в расплав в виде тел сферической формы размером 10-50 мм со скоростью 15-100 м/с. Использование изобретения повышает выход годного на 1,8-5,4% а также стойкость футеровки на 30% 2 з. п. ф-лы, 2 табл.

Description

Изобретение относится к черной металлургии, в частности к кислородно-конвертерному производству.
Известен способ выплавки стали в кислородных конверторах, включающий загрузку скрапа, заливку чугуна, продувку ванны кислородом в течение всего окислительного рафинирования. К его недостаткам относится повышенный угар железа во втором периоде плавки, когда концентрация углерода в металле становится ниже 0,2%
Наиболее близким к предлагаемому является способ получения стали в конверторах [2] включающий загрузку скрапа, заливку чугуна, продувку ванны кислородом, ввод шлакообразующих материалов, присадку после снижения содержания углерода в ванне до 0,14% металлизованных окатышей в качестве охладителей-окислителей по ходу всего второго периода продувки в количестве 4-10% от веса чугуна. Ввод металлизованных окатышей улучшает качество металла, ускоряет процесс и увеличивает выход годного. Однако относительно малое содержание кислорода в металлизованных окатышах, обусловленное расходованием его на окисление углерода, входящего в состав окатышей, уменьшает количество вводимого кислорода, что не позволяет существенно сократить количество вдуваемого газообразного кислорода. Большая часть этого кислорода расходуется на повышение концентрации оксидов железа в шлаке, что усиливает угар железа и снижает стойкость футеровки. Кроме того металлизованные окатыши имеют плотность, в два раза меньшую плотности жидкого расплава. Это не позволяет окатышам проникнуть вглубь металлической ванны, и они располагаются на границе шлак-металл, снижая эффективность охлаждающего действия.
Вследствие этого металлизованные окатыши не в состоянии обеспечить задачу ввода кислорода в ванну в требуемых количествах и ее охлаждения.
Цель изобретения повышение выхода годного и стойкости футеровки.
Цель достигается тем, что в известном способе получения стали в кислородных конверторах, включающем загрузку скрапа, заливку чугуна, продувку ванны кислородом, ввод шлакообразующих материалов, присадку твердых окислителей после снижения содержания углерода в ванне до заданной величины, твердые окислители предварительно заливают железоуглеродистым расплавом и после прекращения продувки кислородом при снижении содержания углерода в ванне до 0,20% их вводят вглубь расплава в количестве 5-50 кг на 1 т металла. С целью снижения расхода железоуглеродистого расплава твердые окислители вводят в расплав в виде капсул, предварительно заполненных окислителем, в количестве 5-50 кг на 1 т металла со ско- ростью 15-60 м/с. Оболочка капсул при этом может быть изготовлена из стальной жести, картона, пластмасс, температура плавления которых ниже температуры расплава.
Для снижения расхода материала на заливку окислителя либо на изготовление оболочки твердые окислители вводят в расплав в виде тел сферической формы размером 10-50 мм в количестве 5-50 кг на 1 т металла со скоростью 15-100 м/с.
Предварительная заливка твердых окислителей жидким расплавом позволяет получать чушки, обладающие высокой плотностью (5,1-6,3 г/см3) и состоящие из окислителя и железоуглеродистого расплава, которые при вводе в конвертор за счет энергии падения попадают вглубь ванны, достигая днища конвертора. Это позволяет обеспечить окисление углерода кислородом, поступающим из твердого окислителя, во всем объеме ванны при минимальном количестве этого окислителя, исключив либо сократив до минимума расход вдуваемого газообразного кислорода. За счет этого резко снижается угар железа и исключается поступление в шлак оксидов, образующихся в результате взаимодействия кислородной струи и железа. Снижение оксидов железа в шлаке уменьшает износ футеровки.
Кислородный потенциал перешедшего в расплавленное состояние твердого окислителя (например, железной руды) значительно выше, чем газообразного кислорода (упругость диссоциации оксида железа Fe2O3 при температуре 1600оС составляет 25˙105 ПЛ или 25 атм). Присадка твердого окислителя, залитого железоуглеродистым расплавом, позволяет ввести окислитель с высокой концентрацией кислорода непосредственно в объем ванны. Тем самым ускоряется поступление кислорода в металл, а следовательно, увеличивается скорость реакции окисления углерода, ход которой лимитируется переносом кислорода.
Использование в качестве источника кислорода твердого окислителя, предварительно залитого расплавом и вводимого в объем ванны, повышает также эффективность его охлаждающего действия. При этом снижается перегрев металла и уменьшается степень окисления железа. Это оказывает благоприятное действие на сокращение угара железа и стойкость футеровки.
При попадании твердого холодного материала вглубь жидкой ванны в ней на границе раздела твердой и жидкой фаз образуется зона, где имеются весьма благоприятные условия для зарождения пузырей и протекания реакции между углеродом и кислородом, Образующийся оксид углерода барботирует и перемешивает металлическую ванну и шлак, интенсифицируя окисление углерода за счет кислорода, поступающего из шлака. Снижение содержания оксидов железа в шлаке уменьшает потребность во вводимом кислороде и благоприятно влияет на условия службы футеровки и повышение выхода годного.
Ввод окислителей при снижении содержания углерода в ванне до 0,20% продиктован тем, что начиная с этой концентрации вдуваемый газообразный кислород перестает полностью расходоваться на окисление углерода и начинает окислять железо. Это увеличивает окисленность шлака, усиливает износ огнеупоров и снижает выход железа.
При вводе в расплав твердых окислителей в количестве 5-50 кг на 1 т металла достигаются наилучшие результаты. При количестве материала менее 5 кг на 1 т металла не достигается требуемого содержания кислорода в ванне из-за недостатка введенного кислорода. Если количество материала превышает 50 кг на 12 т металла, то количество введенного кислорода превышает количество, необходимое для окисления всего углерода, имеющегося в ванне.
В случае, когда конверторная ванна не имеет излишнего запаса тепла, окислитель предпочтительнее вводить в виде капсул, заполненных им, массе оболочки капсулы не превышает 5-7% от общей массы снаряженной капсулы, что исключает дополнительное охлаждение ванны материалом оболочки. При этом за счет придания капсулам скорости 15-60 м/c достигается ввод окислителя вглубь ванны и равномерное распределение окислителя по объему ванны. Благодаря этому условия для окисления углерода ванны вводимым окислителем улучшаются. Скорость капсулы менее 15 м/с, как показали моделирование и расчеты, не обеспечивает проникновения ее вглубь ванны. При скорости свыше 60 м/с возникает опасность повреждения футеровки днища конвертора из-за удара капсулы о футеровку.
В целях снижения расхода материала, идущего на изготовление оболочки капсулы, снижения затрат на производство и снаряжение капсулы твердые окислители вводят в расплав в виде сферических тел со скоростью 15-100 м/с. Сферическая форма вводимого материала объясняется тем, что шар имеет минимальный коэффициент сопротивления по сравнению с телами иной формы, что облегчает его проникновение в толщу металла. Кроме того транспортировка и загрузка сферических тел не требует специального сложного оборудования, а производство окислителя в форме шара широко освоено промышленностью (железорудные окатыши). Выбор размера частиц окислителя связан с тем, что при диаметре их менее 10 мм глубина проникновения в металл даже в условиях придания им максимальной скорости получается недостаточной по отношению к толщине расплавленного металла. Это снижает эффективность способа. Диаметр частиц окислителя более 50 мм нежелателен ввиду того, что при этом не успевает завершиться процесс расплавления и часть окислителя не усваивается металлом. Кроме того, получение гранул большого размера сопряжено с рядом затруднений. Диапазон выбранных скоростей по данным аналитических расчетов и моделирования позволяет гарантировать ввод окислителя вглубь ванны при размере частиц 10-50 мм. Пpи значении скорости менее 15 м/с не обеспечивается погружение частиц вглубь расплава. При скорости более 100 м/с повышается вероятность разрушения частиц твердого окислителя при ударе их о поверхность ванны, что усложняет технологию их получения и увеличивает расход окислителя.
П р и м е р. Твердые окислители, залитые железоуглеродистым расплавом, получали на разливочной машине чугуна путем заливки жидким чугуном мульд, предварительно заполненных железорудными окатышами и агломератом.
После загрузки скрапа и чугуна и их расплавления вводили шлакообразующие материалы и начинали продувку кислородом в 10-тонном конверторе. После снижения содержания углерода в ванне до заданной величины продувку ванны прекращали и начинали ввод твердых окислителей, в количестве 5-50 кг/т металла. На части плавок твердые окислители, залитые железуглеродистым расплавом, вводили в виде капсул, изготовленных из стальной ленты толщиной 0,35 мм, со скоростью 15-60 м/с. Капсулы получали на трубосварочных станах, используемых для получения тонкостенных трубных заготовок при производстве сильфонов. Ввод капсул осуществляли с помощью баллистического ствола, работающего на сжатом воздухе. Твердые окислители в виде сферических тел вводили в ванну с помощью дробеметного устройства. По окончании продувки металл разливали в изложницу, извлекали слитки и взвешивали. На основе полученных данных определяли выход жидкого железа. Результаты плавок по известному и предлагаемому способам приведены в табл.1.
Выход годного увеличился на 1,8-5,4%
Стойкость футеровки была проверена на кампании в 20 плавок как по прототипу, так и по предлагаемому способу.
Стойкость футеровки повышена на 30%

Claims (3)

1. СПОСОБ ПОЛУЧЕНИЯ СТАЛИ В КИСЛОРОДНЫХ КОНВЕРТОРАХ, включающий загрузку скрапа, заливку чугуна, продувку ванны кислородом, ввод шлакообразующих материалов, присадку твердых окислителей после снижения содержания углерода в ванне до заданной величины, отличающийся тем, что твердые окислители предварительно заливают железоуглеродистым расплавом и после прекращения продувки кислородом при снижении содержания углерода в ванне до 0,20% их вводят в глубь расплава в количестве 5-50 кг на 1 т металла.
2. Способ по п. 1, отличающийся тем, что твердые окислители вводят в расплав в виде капсул, предварительно заполненных окислителем, со скоростью 15-60 м/с.
3. Способ по пп.1 и 2, отличающийся тем, что твердые окислители вводят в расплав в виде тел сферической формы размером 10-50 мм со скоростью 15-100 м/с.
SU5060393 1992-03-28 1992-03-28 Способ получения стали в кислородных конверторах RU2049118C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5060393 RU2049118C1 (ru) 1992-03-28 1992-03-28 Способ получения стали в кислородных конверторах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5060393 RU2049118C1 (ru) 1992-03-28 1992-03-28 Способ получения стали в кислородных конверторах

Publications (1)

Publication Number Publication Date
RU2049118C1 true RU2049118C1 (ru) 1995-11-27

Family

ID=21612402

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5060393 RU2049118C1 (ru) 1992-03-28 1992-03-28 Способ получения стали в кислородных конверторах

Country Status (1)

Country Link
RU (1) RU2049118C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666207C1 (ru) * 2017-06-20 2018-09-06 Общество с ограниченной ответственностью "ЧерметИнформСистемы" Полупродукт для сталеплавильного производства
RU2716554C1 (ru) * 2019-09-24 2020-03-12 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ выплавки стали в конвертере

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Авторское свидетельство СССР N 384872, кл. C 21C 5/28, 1973. *
2. Авторское свидетельство СССР N 437807, кл. C 21C 5/04, 1975. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2666207C1 (ru) * 2017-06-20 2018-09-06 Общество с ограниченной ответственностью "ЧерметИнформСистемы" Полупродукт для сталеплавильного производства
RU2716554C1 (ru) * 2019-09-24 2020-03-12 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ выплавки стали в конвертере

Similar Documents

Publication Publication Date Title
KR101018535B1 (ko) 철합금의 정련 방법
US4298192A (en) Method of introducing powdered reagents into molten metals and apparatus for effecting same
RU2049118C1 (ru) Способ получения стали в кислородных конверторах
RU2518837C2 (ru) Способ получения вспененного шлака на расплаве нержавеющего металла в конвертере
US4245691A (en) In situ furnace metal desulfurization/nodularization by high purity magnesium
US3837842A (en) A method for projecting pieces of a deoxidizing agent into molten steel
US3917240A (en) Apparatus for projecting pieces of a deoxidizing agent into molten steel
US20130167688A1 (en) Method of making low carbon steel using ferrous oxide and mineral carbonates
US5817164A (en) Method and apparatus for making feedstock for steel making
IL22434A (en) Materials for treating molten ferrous metals to produce nodular iron
US4252559A (en) Process for processing cast iron suitable for foundry moulding
US4444590A (en) Calcium-slag additive for steel desulfurization and method for making same
US4232854A (en) Method of introducing powdered reagents into molten metals and apparatus for effecting same
RU2075513C1 (ru) Способ выплавки стали в кислородных конвертерах
RU2086664C1 (ru) Способ выплавки стали в подовых сталеплавильных агрегатах
RU2608008C1 (ru) Способ выплавки стали в кислородном конвертере
RU2280699C2 (ru) Способ выплавки стали в кислородном конвертере с оставлением шлака
US3030203A (en) Process of producing steel
RU2088672C1 (ru) Способ выплавки стали в кислородных конвертерах
RU2051979C1 (ru) Способ выплавки стали в мартеновской печи
RU2051973C1 (ru) Способ выплавки стали в мартеновской печи
SU926023A1 (ru) Способ обработки металла инертным газом
RU2233890C1 (ru) Способ выплавки низкоуглеродистой стали в кислородном конвертере
SU753904A1 (ru) Способ получени отливок из чугуна
RU2049115C1 (ru) Способ десульфурации чугуна перед конвертерной плавкой