RU2039025C1 - Fused cast alumina refractory material - Google Patents

Fused cast alumina refractory material Download PDF

Info

Publication number
RU2039025C1
RU2039025C1 RU9292009379A RU92009379A RU2039025C1 RU 2039025 C1 RU2039025 C1 RU 2039025C1 RU 9292009379 A RU9292009379 A RU 9292009379A RU 92009379 A RU92009379 A RU 92009379A RU 2039025 C1 RU2039025 C1 RU 2039025C1
Authority
RU
Russia
Prior art keywords
group
refractory
refractory material
oxide
corrosion resistance
Prior art date
Application number
RU9292009379A
Other languages
Russian (ru)
Other versions
RU92009379A (en
Inventor
Владимир Алексеевич Соколов
Original Assignee
Владимир Алексеевич Соколов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Алексеевич Соколов filed Critical Владимир Алексеевич Соколов
Priority to RU9292009379A priority Critical patent/RU2039025C1/en
Publication of RU92009379A publication Critical patent/RU92009379A/en
Application granted granted Critical
Publication of RU2039025C1 publication Critical patent/RU2039025C1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/107Refractories by fusion casting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

FIELD: refractory industry. SUBSTANCE: fused cast alumina refractory material contains, mass percent: Al2O3 93,6-98,3; SiO2 0,5-1,5; B2O3 0,1-0,2; at least one alkaline oxide from group Na2O, K2O, Zi2O 0.5 to 2.4; at least one oxide from group MgO, CaO 0.5 to 1.9; at least one halogen from group F, Cl 0.1 to 0.4. EFFECT: enhanced corrosion resistance of refractory material to the effect of optical glass melts, enhanced degree of material penetration, specific capacity of melting unit, prolonged life-cycle of glassmaking furnaces. 2 tbl

Description

Изобретение относится к огнеупорной промышленности и может быть использовано для изготовления плавленолитых глиноземистых огнеупорных материалов для футеровки стекловаренных печей. The invention relates to the refractory industry and can be used for the manufacture of molten alumina refractory refractory materials for lining glass melting furnaces.

Известен плавленолитой глиноземистый огнеупорный материал, содержащий, мас. MgO 5 10, SiO2 0,2 0,4; Na2O 0,2 0,4; Al2O3 остальное.Known fused alumina refractory material containing, by weight. MgO 5 10, SiO 2 0.2 0.4; Na 2 O 0.2 0.4; Al 2 O 3 the rest.

Недостатком этого огнеупора является повышенная пористость и низкая степень проплавляемости материала. The disadvantage of this refractory is the increased porosity and low degree of meltability of the material.

Наиболее близким техническим решением к предлагаемому является плавленолитой огнеупорный материал, содержащий, мас. MgO 0,4 2,8; В2О3 0,2 2,5; SiO2 0,2 0,4; Na2O 0,2 0,4; Al2O3 остальное.The closest technical solution to the proposed is a molten cast refractory material containing, by weight. MgO 0.4 2.8; B 2 O 3 0.2 2.5; SiO 2 0.2 0.4; Na 2 O 0.2 0.4; Al 2 O 3 the rest.

Указанный огнеупор характеризуется высокой кристалличностью (низким содержанием стеклофазы, равным ≈2% объемн.) и пористостью, что ограничивает его коррозионную стойкость. Кроме того, низкая степень проплавляемости шихты такого огнеупорного материала ведет к низкой удельной производительности плавильного агрегата по расплаву. The specified refractory is characterized by high crystallinity (low glass phase content, equal to ≈2% vol.) And porosity, which limits its corrosion resistance. In addition, the low degree of meltability of the charge of such a refractory material leads to a low specific melt performance of the melting unit.

Целью изобретения является улучшение качества огнеупорного материала за счет снижения его пористости при достаточной высокой коррозионной стойкости в расплаве оптического стекла, а также улучшение технологических показателей: увеличение степени проплавляемости материала и удельной производительности плавильного агрегата по расплаву. The aim of the invention is to improve the quality of the refractory material by reducing its porosity with a sufficiently high corrosion resistance in the melt of optical glass, as well as improving technological parameters: increasing the degree of meltability of the material and the specific productivity of the melting unit for the melt.

Поставленная цель достигается тем, что плавленолитой глиноземистый огнеупорный материал, включающий Al2O3, SiO2, B2O3, R2O и RO в качестве R2O содержит по меньшей мере один щелочной оксид из группы Na2O, K2O, Li2O, в качестве RO по меньшей мере один оксид из группы MgO, CaO и дополнительно по меньшей мере один галоген из группы F, Cl при следующем соотношении компонентов, мас. Al2O3 93,6-98,3 SiO2 0,5-1,5 B2O3 0,1-0,2
По меньшей мере один
щелочной оксид
из группы Na2O, K2O, Li2O 0,5-2,4 По меньшей мере
один оксид из группы MgO, CaО 0,5-1,9
По меньшей мере
один галоген из группы F, Cl 0,1-0,4
Высокая коррозионная стойкость данного огнеупорного материала достигается соотношением и свойствами кристаллической и стекловидной фаз, определенных опытным путем.
This goal is achieved in that the fused-alumina refractory material, including Al 2 O 3 , SiO 2 , B 2 O 3 , R 2 O and RO as R 2 O contains at least one alkaline oxide from the group Na 2 O, K 2 O, Li 2 O, as RO, at least one oxide from the group MgO, CaO and additionally at least one halogen from the group F, Cl in the following ratio of components, wt. Al 2 O 3 93.6-98.3 SiO 2 0.5-1.5 B 2 O 3 0.1-0.2
At least one
alkaline oxide
from the group Na 2 O, K 2 O, Li 2 O 0.5-2.4 At least
one oxide from the group MgO, CaО 0.5-1.9
At least
one halogen from the group F, Cl 0.1-0.4
The high corrosion resistance of this refractory material is achieved by the ratio and properties of the crystalline and glassy phases determined experimentally.

Кристаллическая фаза огнеупора формируется корундом l α Al2O3 l щелочными алюминатами типа R2O . nAl2O3 (где R Na, K, Li, n 5-11), магнезиальной шпинелью MgAl2O4, а также алюминатами кальция.The crystalline phase is formed refractory corundum l α A l2 O 3 l alkali aluminates type R 2 O. nAl 2 O 3 (where R Na, K, Li, n 5-11), magnesia spinel MgAl 2 O 4 , and also calcium aluminates.

Снижение содержания щелочного оксида R2O менее 0,5% в огнеупоре сопровождается увеличением рассеянной газовой пористости и, следовательно, уменьшением коррозионной стойкости. Напротив, увеличение содержания щелочного оксида сверх 2,4% с образованием щелочных алюминатов ограничивает коррозионную стойкость огнеупора в расплаве оптического стекла.The decrease in the content of alkaline oxide R 2 O less than 0.5% in the refractory is accompanied by an increase in dispersed gas porosity and, consequently, a decrease in corrosion resistance. In contrast, an increase in alkaline oxide content in excess of 2.4% to form alkaline aluminates limits the corrosion resistance of the refractory in the molten optical glass.

Содержание оксида RO (MgO, CaO) в количестве 0,5-1,9% обеспечивает огнеупору помимо плотности требуемую термостойкость. Повышение количества RO сверх 1,9% при заданном содержании кремнезема ведет к снижению коррозионной стойкости материала. The content of oxide RO (MgO, CaO) in an amount of 0.5-1.9% provides the refractory in addition to the density the required heat resistance. An increase in the amount of RO in excess of 1.9% at a given silica content leads to a decrease in the corrosion resistance of the material.

Содержание SiO2 в пределах 0,5-1,5% в совокупности с оксидом бора и галогеном (F, Cl) позволяет, во-первых, сформировать в огнеупоре стекловидную фазу в количестве, позволяющем обеспечить высокие эксплуатационные характеристики огнеупору (коррозионную стойкость, низкую пористость). Во-вторых, стеклообразующие компоненты в расплавленном состоянии с вязкостными характеристиками, обеспеченными содержанием 0,1-0,2% и 0,1-0,4% галогена (F, Cl) в комплексе с расплавленными щелочными оксидами определяют высокую степень проплавляемости материала, высокую жидкотекучесть расплава и, следовательно, высокую производительность плавильного агрегата по расплаву.The content of SiO 2 in the range of 0.5-1.5% in combination with boron oxide and halogen (F, Cl) allows, firstly, to form a vitreous phase in the refractory in an amount that allows for high performance of the refractory (corrosion resistance, low porosity). Secondly, glass-forming components in the molten state with viscous characteristics provided with a content of 0.1-0.2% and 0.1-0.4% of halogen (F, Cl) in combination with molten alkaline oxides determine a high degree of meltability of the material, high fluidity of the melt and, therefore, high performance of the melting unit for the melt.

Для получения огнеупорного материала подготавливали шихты, состоящие из глинозема, окиси магния, кварцевого песка, карналлита, криолита, карбонатов натрия и лития. Шихты плавили в электродуговой печи с диаметром корпуса 1200 мм при напряжении 140-150 В и токе 0,7-1,5 кА. Расплав заливали в графитовые литейные формы, после чего отливки размером 180х250х300 мм отжигали в естественных условиях в термоящиках с диатомитовой засыпкой в течение 3-4 сут. To obtain refractory material, mixtures of alumina, magnesium oxide, silica sand, carnallite, cryolite, sodium carbonate and lithium were prepared. The mixture was melted in an electric arc furnace with a shell diameter of 1200 mm at a voltage of 140-150 V and a current of 0.7-1.5 kA. The melt was poured into graphite casting molds, after which castings measuring 180x250x300 mm were annealed under natural conditions in thermal boxes with diatomite backfill for 3-4 days.

Конкретные составы предлагаемого огнеупорного материала представлены в табл.1. Specific compositions of the proposed refractory material are presented in table 1.

Степень проплавляемости (Кпр,) материала определяли по формуле
Кпр Sp/Sn x 100 где Sn площадь внутреннего сечения корпуса печи (Sn π R2, R 600 мм);
Sр площадь поверхности расплава огнеупорного материала внутри печи после плавления материала (шихты) в течение 60 мин.
The degree of penetration (K ol ) of the material was determined by the formula
To pr S p / S n x 100 where S n the internal cross-sectional area of the furnace body (S n π R 2 , R 600 mm);
S p the surface area of the melt of the refractory material inside the furnace after melting the material (charge) for 60 minutes

За 100% принята удельная производительность плавильного агрегата при получении огнеупорного материала состава 2 (табл.1-2). The specific productivity of the smelting unit upon receipt of refractory material of composition 2 was taken as 100% (Table 1-2).

Определение коррозионной стойкости огнеупорных материалов проводили в расплаве фосфатного оптического стекла состава, мас. Al2O3 3,0; BaO 39,0; P2O5 54,0; B2O3 2,5; Ce 1,0; в статических условиях при 1200оС в течение 24 ч.The determination of the corrosion resistance of refractory materials was carried out in a melt of phosphate optical glass of the composition, wt. Al 2 O 3 3.0; BaO 39.0; P 2 O 5 54.0; B 2 O 3 2.5; Ce 1.0; in static conditions at 1200 about C for 24 hours

Коррозионную стойкость (скорость коррозии) образцов огнеупора определяли по изменению линейных размеров (сечение образцов 10х10 мм) на уровне стекла после коррозионных испытаний. Corrosion resistance (corrosion rate) of refractory samples was determined by the change in linear dimensions (sample cross-section 10x10 mm) at the glass level after corrosion tests.

Технологические показатели и результаты эксплуатационных испытаний огнеупоров приведены в табл.2. Technological indicators and results of operational tests of refractories are given in table.2.

Из табл. 2 следует, что огнеупорный материал предлагаемого состава (составы 1-4) имеет в 1,6-2 раза меньшую скорость коррозии в расплаве оптического стекла, характеризуется меньшей пористостью, обладает более высокой технологичностью изготовления изделий по сравнению с известным огнеупором (составы 5-6). From the table. 2 it follows that the refractory material of the proposed composition (compositions 1-4) has a 1.6-2 times lower corrosion rate in the optical glass melt, is characterized by lower porosity, has a higher manufacturability of products in comparison with the known refractory (compositions 5-6 )

Использование предлагаемого изобретения позволяет:
организовать производство плавленолитых глиноземистых огнеупоров для нужд оптической промышленности;
повысить продолжительность кампании стекловаренных печей за счет большей коррозионной стойкости огнеупоров.
Using the invention allows:
organize the production of fused-cast alumina refractories for the needs of the optical industry;
increase the duration of the campaign of glass melting furnaces due to the greater corrosion resistance of refractories.

Claims (1)

ПЛАВЛЕНОЛИТОЙ ГЛИНОЗЕМИСТЫЙ ОГНЕУПОРНЫЙ МАТЕРИАЛ, включающий Al2O3, SiO2, B2O3, R2O и PO, отличающийся тем, что в качестве R2O он содержит по меньшей мере один щелочной оксид из группы Na2O, K2O, Li2O, в качестве RO по меньшей мере один оксид из группы MgO, CaO и дополнительно по меньшей мере один галоген из группы F, Cl при следующем соотношении компонентов, мас.MELTED ALUMINUM FIRE RESISTANT MATERIAL, including Al 2 O 3 , SiO 2 , B 2 O 3 , R 2 O and PO, characterized in that it contains at least one alkaline oxide from the group Na 2 O, K 2 as R 2 O O, Li 2 O, as RO, at least one oxide from the group MgO, CaO and additionally at least one halogen from the group F, Cl in the following ratio of components, wt. Al2O3 93,6 98,3
SiO2 0,5 1,5
B2O3 0,1 0,2
По меньшей мере один щелочной оксид из группы Na2O, K2O, Li2O 0,5 2,4
По меньшей мере один оксид из группы MgO, CaO 0,5 1,9
По меньшей мере один галоген из группы F, Cl 0,1 0,4
Al 2 O 3 93.6 98.3
SiO 2 0.5 1.5
B 2 O 3 0.1 0.2
At least one alkaline oxide from the group Na 2 O, K 2 O, Li 2 O 0.5 2.4
At least one oxide from the group MgO, CaO 0.5 1.9
At least one halogen from group F, Cl 0.1 0.4
RU9292009379A 1992-12-02 1992-12-02 Fused cast alumina refractory material RU2039025C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU9292009379A RU2039025C1 (en) 1992-12-02 1992-12-02 Fused cast alumina refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU9292009379A RU2039025C1 (en) 1992-12-02 1992-12-02 Fused cast alumina refractory material

Publications (2)

Publication Number Publication Date
RU92009379A RU92009379A (en) 1995-03-10
RU2039025C1 true RU2039025C1 (en) 1995-07-09

Family

ID=20132962

Family Applications (1)

Application Number Title Priority Date Filing Date
RU9292009379A RU2039025C1 (en) 1992-12-02 1992-12-02 Fused cast alumina refractory material

Country Status (1)

Country Link
RU (1) RU2039025C1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1288177A1 (en) * 2000-05-31 2003-03-05 Asahi Glass Company Ltd. Porous high alumina cast refractory and method for its production
FR2853897A1 (en) * 2003-04-17 2004-10-22 Saint Gobain Ct Recherches Smelted and cast refractory product with improved alkaline corrosion resistance and good shock resistance for construction of stacks in regenerators of glass furnaces
US9073773B2 (en) 2011-03-11 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9216928B2 (en) 2011-04-13 2015-12-22 Saint-Gobain Ceramics & Plastics, Inc. Refractory object including beta alumina and processes of making and using the same
US9249043B2 (en) 2012-01-11 2016-02-02 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US11198647B2 (en) * 2015-02-09 2021-12-14 Refractory Intellectual Property Gmbh & Co. Kg Batch for production of a refractory product, a process for the production of a refractory product, a refractory product as well as the use of a refractory product
EP3932889A4 (en) * 2019-02-28 2022-11-30 Saint-Gobain TM K.K. High-alumina melt-casted refractory and method for manufacturing same
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Авторское свидетельство СССР N 1719374, кл. C 04B 35/62, 1992. *
2. Авторское свидетельство СССР N 1796601, кл. C 04B 35/10, 1993. *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1288177A4 (en) * 2000-05-31 2005-04-27 Asahi Glass Co Ltd Porous high alumina cast refractory and method for its production
EP1288177A1 (en) * 2000-05-31 2003-03-05 Asahi Glass Company Ltd. Porous high alumina cast refractory and method for its production
FR2853897A1 (en) * 2003-04-17 2004-10-22 Saint Gobain Ct Recherches Smelted and cast refractory product with improved alkaline corrosion resistance and good shock resistance for construction of stacks in regenerators of glass furnaces
WO2004094332A3 (en) * 2003-04-17 2004-12-29 Saint Gobain Ct Recherches Refractory product for a checker work element of a glass furnace regenerator
US7335617B2 (en) 2003-04-17 2008-02-26 Saint-Gobain Centre De Recherches Et D'etudes Europeen Refractory product for a checker work element of a glass furnace regenerator
EP3434661B1 (en) * 2011-03-11 2021-04-28 Saint-Gobain Ceramics&Plastics, Inc. Refractory object
US9073773B2 (en) 2011-03-11 2015-07-07 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9714185B2 (en) 2011-03-11 2017-07-25 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process for glass object manufacture
US9174874B2 (en) 2011-03-30 2015-11-03 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9796630B2 (en) 2011-03-30 2017-10-24 Saint-Gobain Ceramics & Plastics, Inc. Refractory object, glass overflow forming block, and process of forming and using the refractory object
US9216928B2 (en) 2011-04-13 2015-12-22 Saint-Gobain Ceramics & Plastics, Inc. Refractory object including beta alumina and processes of making and using the same
US9249043B2 (en) 2012-01-11 2016-02-02 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US10590041B2 (en) 2012-01-11 2020-03-17 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US9902653B2 (en) 2012-01-11 2018-02-27 Saint-Gobain Ceramics & Plastics, Inc. Refractory object and process of forming a glass sheet using the refractory object
US11198647B2 (en) * 2015-02-09 2021-12-14 Refractory Intellectual Property Gmbh & Co. Kg Batch for production of a refractory product, a process for the production of a refractory product, a refractory product as well as the use of a refractory product
US11814317B2 (en) 2015-02-24 2023-11-14 Saint-Gobain Ceramics & Plastics, Inc. Refractory article and method of making
EP3932889A4 (en) * 2019-02-28 2022-11-30 Saint-Gobain TM K.K. High-alumina melt-casted refractory and method for manufacturing same
US11691920B2 (en) 2019-02-28 2023-07-04 Saint-Gobain Tm K.K. High alumina fused cast refractory and method of producing same

Similar Documents

Publication Publication Date Title
US4336339A (en) High zirconia fused refractory product
US4705763A (en) High zirconia fused refractory product
US3519448A (en) Zirconia-alumina fused refractory materials and structures
US3632359A (en) ZrO{11 {13 Al{11 O{11 {13 SiO{11 {0 FUSION-CAST REFRACTORY
JP4917235B2 (en) Porous high alumina fusion cast refractory and method for producing the same
US3837870A (en) Fused cast refractory products containing chromic oxide
RU2039025C1 (en) Fused cast alumina refractory material
US2997402A (en) Refractory brick and preparation thereof
KR20140043140A (en) Refractory block and glass-melting furnace
US4053321A (en) Heat fused refractory product containing zirconia having high corrosion resistance
JP3489588B2 (en) High alumina cast refractories
US5344801A (en) High zirconia fused cast refractory
US4226629A (en) Electrofusion method of producing boron aluminum oxide refractory
RU2039026C1 (en) Fused cast high-zirconium refractory material
SU567709A1 (en) Electrically smelted refractory material
RU1796601C (en) Melted and cast fire-proof material having high aluminum content
US11691920B2 (en) High alumina fused cast refractory and method of producing same
SU1470731A1 (en) Initial composition for making porous moulds
US3293053A (en) Refractory and furnace lining
KR100804961B1 (en) Composition of Al2O3-SiC-C brick for charging ladle
JPH0672766A (en) Fused and cast high zirconia refractory
EP0131388A1 (en) Fused cast high chrome refractory and production thereof
RU2495000C2 (en) Melt-moulded chromium-containing refractory material
Kraner Some Considerations in the Production of Fused Mullite for Refractories
SU1470729A1 (en) Castable refractory