RU2020522C1 - Адаптивный телескоп - Google Patents

Адаптивный телескоп Download PDF

Info

Publication number
RU2020522C1
RU2020522C1 SU5013100A RU2020522C1 RU 2020522 C1 RU2020522 C1 RU 2020522C1 SU 5013100 A SU5013100 A SU 5013100A RU 2020522 C1 RU2020522 C1 RU 2020522C1
Authority
RU
Russia
Prior art keywords
image
mask
lens system
photodetector
telescope
Prior art date
Application number
Other languages
English (en)
Inventor
Г.Н. Мальцев
Е.В. Куренков
А.Г. Лобанов
Original Assignee
Военная инженерно-космическая академия им.А.Ф.Можайского
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Военная инженерно-космическая академия им.А.Ф.Можайского filed Critical Военная инженерно-космическая академия им.А.Ф.Можайского
Priority to SU5013100 priority Critical patent/RU2020522C1/ru
Application granted granted Critical
Publication of RU2020522C1 publication Critical patent/RU2020522C1/ru

Links

Images

Landscapes

  • Telescopes (AREA)

Abstract

Изобретение относится к адаптивной оптике и может быть использовано в некогерентных оптических системах наблюдения протяженных объектов, работающих в условиях атмосферных искажений. Изобретение характеризуется тем, что в известный телескоп, содержащий оптически сопряженные зеркальную систему, корректор волнового фронта, первую формирующую линзовую систему, светоделитель и устройство регистрации изображения и оптически сопряженные первую маску и фотодетектор, а также устройство максимизации качества изображения, введены оптически сопряженные усилитель яркости изображения, вторая формирующая линзовая система, вторая маска и третья формирующая линзовая система, причем первая маска выполнена соответствующей области неопределенности положения объекта в угловом поле телескопа, а вторая маска выполнена со степенной зависимостью пропускания от координат объекта. 1 ил.

Description

Изобретение относится к адаптивной оптике и может быть использовано в некогерентных оптических системах наблюдения протяженных объектов, работающих в условиях атмосферных искажений.
Атмосферные искажения оптических сигналов приводят к ухудшению разрешающей способности наземных телескопов. Известен ряд методов преддетекторной и последетекторной обработки сигналов, обеспечивающих повышение разрешающей способности в условиях атмосферных фазовых искажений: короткая экспозиция, спекл-интерферометрия, восстановление изображений. Методы адаптивной оптики наиболее перспективны, так как обеспечивают коррекцию искажений в реальном масштабе времени и возможность получения прямого изображения с разрешением, близким к дифракционному. Основные трудности при реализации адаптивных методов возникают при наблюдении протяженных объектов и отсутствии опорного точечного источника. В этих случаях используется косвенное измерение фазовых искажений по различным характеристикам качества формируемых изображений. При этом, как правило, накладываются ограничения на класс наблюдаемых объектов.
Наиболее близким по технической сущности к данному устройству является адаптивный телескоп, содержащий зеркальную систему, корректор волнового фронта, линзовую систему, светоделитель, устройство регистрации изображения, маску, фотодетектор и устройство максимизации качества изобретения.
Зеркальная система, корректор волнового фронта, линзовая система, светоделитель и устройство регистрации изображения последовательно расположены на оптической оси телескопа и оптически связаны между собой. С помощью светоделителя выход линзовой системы оптически связан с входом фотодетектора, который установлен в плоскости, оптически сопряженной с плоскостью изображения. Перед фотодетектором установлена маска (амплитудный пространственный фильтр), соответствующая контуру наблюдаемого объекта. Пропускание маски M1(
Figure 00000001
) =
Figure 00000002
Figure 00000003
Figure 00000004
, где So - область, занимаемая объектом в угловом поле телескопа. Выход фотодетектора связан с входом устройства максимизации качества изображения, число выходов которого равно числу управляющих входов корректора волнового фронта. Каждый выход устройства максимизации качества изображения подключен к соответствующему управляющему входу корректора волнового фронта.
Известный адаптивный телескоп работает следующим образом.
Принимаемый оптический сигнал с фазовыми атмосферными искажениями проходит через зеркальную систему, корректор волнового фронта, линзовую систему и светоделитель. С помощью линзовой системы в плоскости изображения формируется изображение наблюдаемого объекта, которое регистрируется устройством регистрации изображения. Кроме того, с помощью фотодетектора регистрируется доля энергии принимаемого сигнала, приходящаяся в изображении на априорно известный контур наблюдаемого объекта, которому соответствует маска. Поскольку в результате фазовых искажений изображение размывается, выходной сигнал фотодетектора тем больше, чем выше качество изображения. Таким образом, маска и фотодетектор представляют собой датчик качества изображения. Выходной сигнал фотодетектора поступает на вход устройства максимизации качества изображения. Схема устройства максимизации качества изображения реализует управление корректором волнового фронта с частотным разделением каналов и представляет собой многоканальный блок обработки с генераторами модулирующих напряжений, операционными усилителями, синхронными детекторами и фильтрами низких частот в каждом канале. Число каналов равно числу управляющих входов корректора волнового фронта. Благодаря работе устройства максимизации качества изображения в принимаемый оптический сигнал вводятся "пробные" фазовые искажения на модулирующих частотах, анализируется их влияние на качество изображения и формируются управляющие напряжения, максимизирующие качество изображения. Компенсации фазовых искажений и максимальному качеству изображения соответствует максимальный выходной сигнал фотодетектора. Быстродействие устройства максимизации качества изображения, корректора волнового фронта и фотодетектора выбирается таким образом, чтобы косвенное измерение и коррекция искажения осуществлялись за время "замороженности" искажений. В результате устройство регистрации изображения в реальном масштабе времени регистрирует изображение наблюдаемого объекта с улучшенной разрешающей способностью.
Недостатком известного адаптивного телескопа является узкая область применения - ограниченный класс объектов, который может наблюдаться с улучшенной разрешающей способностью. Это связано с тем, что для осуществления процесса адаптации требуется априорная информация о контуре наблюдаемого объекта и его угловом положении в поле зрения адаптивного телескопа. Это значительное ограничение, так как в большинстве случаев наблюдения за реальными объектами имеет место зона неопределенности их положения в угловом поле оптической системы, существенно превышающая угловой размер объекта. А если функция пропускания маски отличается от контура наблюдаемого объекта или имеют место ошибки ее установки в плоскости изображения относительно объекта, то косвенное измерение фазовых искажений и максимизация качества изображения становятся невозможными.
Целью изобретения является расширение класса объектов, наблюдаемых в условиях атмосферных искажений с улучшенной разрешающей способностью, в частности, снятие требований о наличии априорной информации об угловом положении наблюдаемого объекта в угловом поле адаптивного телескопа.
Цель достигается тем, что в известный адаптивный телескоп, содержащий последовательно установленные и оптически сопряженные зеркальную систему, корректор волнового фронта, первую формирующую линзовую систему, светоделитель и устройство регистрации изображения, последовательно соединенные и оптически сопряженные первую маску и фотодетектор, а также устройство максимизации качества изображения, выход фотодетектора соединен с входом устройства максимизации качества изображения, N выходов которого соединены с N управляющими входами корректора волнового фронта, введены последовательно установленные и оптически сопряженные усилитель яркости изображения, вторая формирующая линзовая система, вторая маска и третья формирующая линзовая система, при этом оптический вход усилителя яркости изображения оптически сопряжен с вторым оптическим выходом светоделителя, оптический выход третьей формирующей линзовой системы сопряжен с первой маской, выполненной соответствующей области неопределенности положения объекта в угловом поле телескопа, а вторая маска выполнена со степенной зависимостью пропускания от координат объекта.
Благодаря введенным элементам и связям в адаптивном телескопе косвенное измерение искажений и максимизация качества изображения производятся по величине R =
Figure 00000005
d
Figure 00000006
, где J(
Figure 00000007
) - распределение интенсивности сигнала в плоскости изображения, n ≥1. Физический смысл максимизации качества изображения по величине R заключается в том, что величина R характеризует частоту перепадов яркости в распределении интенсивности изображения.
Наилучшему качеству изображения соответствует максимальное значение R. При этом не требуется точной априорной информации об угловом положении наблюдаемого объекта в поле зрения оптической системы, а пространственное дифференцирование выполняется оптическими методами в области пространственных частот.
На чертеже приведена схема адаптивного телескопа.
На чертеже обозначены: 1 - зеркальная система, 2 - корректор волнового фронта, 3 - первая линзовая система, 4 - светоделитель, 5 - устройство регистрации изобретения, 6 - маска, 7 - фотодетектор,8 - устройство максимизации качества изображения, 9 - усилитель яркости изображения, 10 - вторая линзовая система, 11 - маска со степенной зависимостью пропускания от координат, 12 - третья линзовая система. Зеркальная система 1, корректор 2 волнового фронта, пороговая линзовая система 3, светоделитель 4 и устройство 5 регистрации изображения последовательно расположены на оптической оси телескопа и оптически связаны между собой. С помощью светоделителя 4 выход первой линзовой системы 3 оптически связан с усилителем 9 яркости изображения. Последовательно с усилителем 9 яркости изображения на одной оптической оси расположены и оптически связаны между собой вторая линзовая система 10, маска 11 со степенной зависимостью пропускания от координат, третья линзовая система 12 и фотодетектор 7. Перед фотодетектором 7 установлена маска 6. Расстояния между первой линзовой системой 3, усилителем 9 яркости изображения, второй линзовой системой 10, маской 11, третьей линзовой системой 12 и фотодетектором 7 выбраны таким образом, что на входе усилителя яркости изображения формируется изображение наблюдаемого объекта (т. е. он расположен в плоскости, оптически сопряженный с плоскостью изображения), в плоскости расположения маски 11 формируется Фурье-образ изображения наблюдаемого объекта, а в плоскости фотодетектора 7 вновь формируется прямое изображение (с учетом пространственной модуляции маской 11). Маска 6 расположена непосредственно перед входом фотодетектора 7. Маска 6 выполнена соответствующей области неопределенности положения объекта в угловом поле телескопа и предназначена для пространственной фильтрации источников помех.
Выход фотодетектора 7 связан с входом устройства 8 максимизации качества изображения, число выходов которого равно числу управляющих входов корректора 2 волнового фронта. Каждый выход устройства 8 максимизации качества изображения подключен к соответствующему управляющему входу корректора 2 волнового фронта.
Адаптивный телескоп работает следующим образом.
Принимаемый оптический сигнал с фазовыми атмосферными искажениями проходит через зеркальную систему 1, корректор 2 волнового фронта, первую линзовую систему 3 и светоделитель 4. С помощью линзовой системы 3 в плоскости изображения формируется изображение наблюдаемого объекта, которое регистрируется устройством 5 регистрации изображения. Кроме того, изображение формируется на входе (катоде) усилителя 9 яркости изображения. В качестве усилителя 9 яркости изображения используется микроканальный усилитель яркости, используемый в высокочувствительных системах регистрации изображения. На выходе (экране) усилителя 9 яркости изображения формируется распределение интенсивности изображения наблюдаемого объекта J(
Figure 00000008
), которое может быть обработано с помощью преобразований в области пространственных частот. Фурье-образ изображения формируется с помощью второй линзовой системы 10 в плоскости расположения маски 11 со степенной зависимостью пропускания от координат. С помощью маски 11 осуществляется пpостранственная модуляция в области пространственных частот. Она соответствует дифференцированию
Figure 00000009
в области действительных изображений, n - степень координаты в плоскости расположения маски 11, которой пропорционально ее пропускание. С помощью третьей линзовой системы 12 на входе фотодетектора 7 вновь формируется распределение интенсивности изображения, однако с учетом пространственной модуляции маской 11 оно представляет собой результат пространственного дифференцирования функции J(
Figure 00000010
). С помощью фотодетектора 7 регистрируется величина R =
Figure 00000011
d
Figure 00000012
, которая характеризует частоту перепадов яркости в распределении интенсивности изображения. Наилучшему качеству изображения соответствует максимальное значение R. Поскольку в результате фазовых искажений детали изображения размываются, частота перепадов яркости уменьшается, а выходной сигнал фотодетектора 7 тем больше, чем выше качество изображения. Таким образом датчик качества изображения представляет собой элементы (9, 10, 11, 12 и 7). При этом не требуется апpиорной информации о контуре наблюдаемого объекта и его положения в угловом поле оптической системы, а маска 6 осуществляет только пространственную фильтрацию фонового шума. Для этого ее функция пропускания выбирается соответствующей области неопределенности положения объекта в угловом поле телескопа:
M2(
Figure 00000013
) =
Figure 00000014
Figure 00000015
Figure 00000016
, где S - область неопределенности положения объекта. Выходной сигнал фотодетектора 7 поступает на вход устройства 8 максимизации качества изображения. Она реализует управление корректором 2 волнового фронта с частотным разделением каналов и представляет собой многоканальный блок обработки с генераторами модулирующих напряжений, операционными усилителями, синхронными детекторами и фильтрами низких частот в каждом канале. Число каналов равно числу управляющих входов корректора 2 волнового фронта. Благодаря работе устройства 8 максимизации качества изображения в принимаемый оптический сигнал вводятся "пробные" фазовые искажения на модулирующих частотах, анализируется их влияние на качество изображения и формируются напряжения, максимизирующие качество изображения. Компенсации фазовых искажений и максимальному качеству изображения соответствует максимальный выходной сигнал фотодетектора 7. Быстродействие устройства 8 максимизации качества изображения, корректора 2 волнового фронта и фотодетектора 7 выбирается таким образом, чтобы косвенное измерение и коррекция искажения осуществлялись за время "замороженности" искажений, а элементы (9-12), входящие в датчик качества изображения, безинерционны. В результате устройство 5 регистрации в реальном масштабе времени регистрирует изображение наблюдаемого объекта с улучшенной способностью.
Преимуществом данного адаптивного телескопа является расширение класса объектов, которые могут наблюдаться с улучшенной разрешающей способностью в условиях атмосферных искажений. Это становится возможным благодаря тому, что существенно уменьшается необходимость в априорной информации о наблюдаемом объекте. Для обеспечения работоспособности устройства-прототипа требуется знание контура наблюдаемого объекта и его положения в угловом поле телескопа. Это существенно ограничивает возможности его применения для наблюдения за движущимися объектами, а также во всех других случаях, когда имеет место область неопределенности положения наблюдаемого объекта. Увеличение же размеров маски до области неопределенности приводит к невозможности косвенного измерения фазовых искажений только с помощью маски и фотодетектора. В данном адаптивном телескопе требуется априорная информация только о положении в его угловом поле области неопределенности, а частота перепадов яркости в изображении наблюдаемого объекта и связанная с ней величина R не зависят от положения объекта в угловом поле телескопа. Поэтому косвенное измерение искажений по величине R и их коррекция возможны без использования априорной информации о контуре объекта и его точном угловом положении в поле зрения телескопа. При этом введенные элементы реализуют формирование величины R оптическими методами и безинерционны так, что быстродействие адаптивного контура у известного и предлагаемого кинескопов одинаковое.

Claims (1)

  1. АДАПТИВНЫЙ ТЕЛЕСКОП, содержащий последовательно установленные и оптически сопряженные зеркальную систему, корректор волнового фронта, первую формирующую линзовую систему, светоделитель и устройство регистрации изображения, последовательно установленные и оптически сопряженные первую маску и фотодетектор, а также устройство максимизации качества изображения, при этом выход фотодетектора соединен с входом устройства максимизации качества изображения, N выходов которого соединен с N управляющими входами корректора волнового фронта, отличающийся тем, что введены последовательно установленные и оптически сопряженные усилитель яркости изображения, вторая формирующая линзовая система, вторая маска и третья формирующая линзовая система, при этом оптический вход усилителя яркости изображения оптически сопряжен с вторым оптическим выходом светоделителя, оптический выход третьей формирующей линзовой системы сопряжен с первой маской, выполненной соответствующей области неопределенности положения объекта в угловом поле телескопа, а вторая маска выполнена со степенной зависимостью пропускания от координат объекта.
SU5013100 1991-10-15 1991-10-15 Адаптивный телескоп RU2020522C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU5013100 RU2020522C1 (ru) 1991-10-15 1991-10-15 Адаптивный телескоп

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU5013100 RU2020522C1 (ru) 1991-10-15 1991-10-15 Адаптивный телескоп

Publications (1)

Publication Number Publication Date
RU2020522C1 true RU2020522C1 (ru) 1994-09-30

Family

ID=21589805

Family Applications (1)

Application Number Title Priority Date Filing Date
SU5013100 RU2020522C1 (ru) 1991-10-15 1991-10-15 Адаптивный телескоп

Country Status (1)

Country Link
RU (1) RU2020522C1 (ru)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Т.О. Мира. Сб.статей Адаптивная оптика, М.: Мир, 1980, с.140-145. *
2. Патент США N 4016415, кл. G 01J 1/20, кл. 250-201, опубл. 24.06.1974. *

Similar Documents

Publication Publication Date Title
SU648142A3 (ru) Способ микроскопического наблюдени объектов и устройство дл его осуществлени
US4047022A (en) Auto focus with spatial filtering and pairwise interrogation of photoelectric diodes
US4798437A (en) Method and apparatus for processing analog optical wave signals
US4163148A (en) Automatic focusing device probe comprising a focusing device and method of focusing a probe
US3921080A (en) Analog data processor
US4037958A (en) Apparatus for determining photoelectrically the position of at least one focusing plane of an image
RU2020522C1 (ru) Адаптивный телескоп
RU2055371C1 (ru) Адаптивный телескоп
RU2149516C1 (ru) Адаптивная система формирования изображения
RU2101875C1 (ru) Адаптивная система формирования изображения
JPS5838910A (ja) 自動焦点合せ装置及びその方法
DE69332492D1 (de) Verfahren und Vorrichtungen zur spektralen Abbildung mittels Fabry-Perot-Interferometern
US4048492A (en) Method and apparatus for automatic focusing an optical system with a scanning grating
RU2155981C1 (ru) Адаптивная система формирования изображения
US3890598A (en) Optical signal processor
GB2128846A (en) Photographic recording from a video monitor
US3003026A (en) Scanning detector and electric processing system
SU902035A1 (ru) Оптический коррел тор
SU1087911A1 (ru) Дифракционный некогерентный оптико-электронный спектроанализатор пространственных сигналов
EP0318288B1 (en) Electro-optic imaging system
SU434621A1 (ru) Цветоанализирующее устройство
SU1379760A1 (ru) Адаптивное устройство коррекции изображени
SU1154549A1 (ru) Растровый спектрометр
SU380952A1 (ru) Прибор для автоматического опознавания идентичных точек на цветных снимках стереопары
SU1124345A1 (ru) Устройство дл преобразовани изображени