RU2020105666A - Преобразователь, оснащенный модулем управления энергией в переменной части - Google Patents

Преобразователь, оснащенный модулем управления энергией в переменной части Download PDF

Info

Publication number
RU2020105666A
RU2020105666A RU2020105666A RU2020105666A RU2020105666A RU 2020105666 A RU2020105666 A RU 2020105666A RU 2020105666 A RU2020105666 A RU 2020105666A RU 2020105666 A RU2020105666 A RU 2020105666A RU 2020105666 A RU2020105666 A RU 2020105666A
Authority
RU
Russia
Prior art keywords
converter
voltage
set value
power
arm
Prior art date
Application number
RU2020105666A
Other languages
English (en)
Inventor
Косэи СИНОДА
Цзин ДАЙ
Абделькрим БЕНШАИБ
Ксавье ГИЙАР
Original Assignee
Сьюпергрид Инститьют
Сантральсюпелек
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сьюпергрид Инститьют, Сантральсюпелек filed Critical Сьюпергрид Инститьют
Publication of RU2020105666A publication Critical patent/RU2020105666A/ru

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/081Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters wherein the phase of the control voltage is adjustable with reference to the AC source
    • H02M1/082Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters wherein the phase of the control voltage is adjustable with reference to the AC source with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/2173Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a biphase or polyphase circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Claims (24)

1. Многоуровневый модульный преобразователь (10,10’) для преобразования переменного напряжения в постоянное напряжение и наоборот, содержащий так называемую постоянную часть (10С), предназначенную для соединения с электрической сетью (120) постоянного тока, и так называемую переменную часть (10А), предназначенную для соединения с электрической сетью (110) переменного тока, при этом преобразователь содержит несколько ветвей, каждая ветвь содержит верхнее плечо и нижнее плечо, каждое плечо содержит множество подмодулей, управляемых индивидуально устройством управления, выделенным для каждого подмодуля, и каждый подмодуль содержит конденсатор, подключаемый последовательно в плече, когда устройство управления подмодуля находится в управляемом состоянии, при этом каждое плечо может быть моделировано при помощи моделированного источника напряжения, продолжительность работы которого зависит от числа конденсаторов, соединенных последовательно в плече, причем каждый моделированный источник напряжения соединен параллельно с моделированным конденсатором, соответствующим общей емкости плеча; преобразователь дополнительно содержит модуль (20,20’) управления преобразователем, содержащий вычислительное устройство (22,22') для вычисления заданного значения
Figure 00000001
внутренней команды преобразователя посредством применения функции с регулируемым входным параметром, отличающийся тем, что модуль управления преобразователем дополнительно содержит модуль (24,24’) управления энергией, выполненный с возможностью выдавать заданное значение рабочей мощности
Figure 00000002
в зависимости от напряжения на выводах каждого моделированного конденсатора, при этом заданное значение рабочей мощности используется для определения заданного значения мощности
Figure 00000003
которая передается в электрическую сеть переменного тока, при этом модуль управления выполнен с возможностью регулировать напряжение в точке соединения преобразователя с электрической сетью постоянного тока и напряжение на выводах каждого моделированного конденсатора в зависимости от заданного значения внутренней команды и от заданного значения мощности, передаваемой в электрическую сеть переменного тока.
2. Преобразователь по п. 1, отличающийся тем, что вычислительное устройство (22) выполнено с возможностью вычислять заданное значение внутренней команды
Figure 00000004
посредством применения производной функции и функции фильтрования.
3. Преобразователь по п. 1 или 2, отличающийся тем, что регулируемым входным параметром является регулируемый коэффициент виртуальной инерции kVC.
4. Преобразователь по любому из пп. 1-3, отличающийся тем, что заданным значением внутренней команды является заданное значение внутренней мощности
Figure 00000005
5. Преобразователь по п. 4, отличающийся тем, что вычислительное устройство (22) выполнено с возможностью вычисления заданного значения внутренней энергии
Figure 00000006
преобразователя в соответствии с функцией:
Figure 00000007
где Ceq = 6Ctot, и Ctot - общая емкость моделированного конденсатора в плече, vdc - напряжение в точке соединения преобразователя с электрической сетью постоянного тока, и τ - постоянная времени.
6. Преобразователь по п. 4 или 5, отличающийся тем, что заданное значение внутренней мощности
Figure 00000005
используется для определения заданного значения мощности
Figure 00000008
которая передается в электрическую сеть постоянного тока.
7. Преобразователь по любому из пп. 1-3, отличающийся тем, что заданным значением внутренней команды является заданное значение внутреннего тока
Figure 00000009
.
8. Преобразователь по п. 7, отличающийся тем, что вычислительное устройство (22’) выполнено с возможностью вычислять заданное значение внутреннего тока
Figure 00000009
в соответствии с функцией:
Figure 00000010
где Ceq = 6Ctot, и Ctot - общая емкость моделированного конденсатора в плече, vdc - напряжение в точке соединения преобразователя с электрической сетью постоянного тока и τ - постоянная времени.
9. Преобразователь по п. 7 или 8, отличающийся тем, что заданное значение внутреннего тока
Figure 00000009
используется для определения заданного значения тока
Figure 00000011
которое передается в электрическую сеть (120) постоянного тока.
10. Преобразователь по любому из пп. 1-9, отличающийся тем, что модуль (24,24’) управления энергией получает на входе результат сравнения между квадратом заданного значения напряжения на выводах каждого моделированного конденсатора и средним значением квадрата напряжений на выводах моделированных конденсаторов.
11. Преобразователь по любому из пп. 1-10, отличающийся тем, что модуль (20,20’) управления выполнен с возможностью производить замену переменной, чтобы контролировать промежуточные переменные тока idiff и igd и напряжения νdiff и νgd , где idiff и νdiff относятся к электрической сети постоянного тока, а igd и νgd относятся к электрической сети переменного тока.
12. Преобразователь по п. 11, отличающийся тем, что модуль управления содержит регулятор (28,28’) тока igd, который получает на входе заданное значение
Figure 00000012
соответствующее току igd.
13. Преобразователь по п. 11 или 12, отличающийся тем, что модуль управления содержит регулятор (30,30’) тока idiff, который получает на входе заданное значение
Figure 00000013
соответствующее току idiff.
14. Преобразователь по любому из пп. 1-13, отличающийся тем, что модуль управления содержит регулятор (26,26’) напряжения в точке соединения преобразователя (10,10’) с электрической сетью (120) постоянного тока, выполненный с возможностью определять заданное значение мощности
Figure 00000014
для регулирования постоянного напряжения указанного преобразователя в зависимости от заданного значения напряжения в точке соединения преобразователя с электрической сетью постоянного тока и от значения напряжения в точке соединения преобразователя с электрической сетью постоянного тока, которое измеряется в указанной электрической сети постоянного тока.
15. Способ управления многоуровневым модульным преобразователем (10,10’) напряжения, предназначенным для преобразования переменного напряжения в постоянное напряжение и наоборот и содержащим так называемую постоянную часть (10С), предназначенную для соединения с электрической сетью (120) постоянного тока, и так называемую переменную часть (10А), предназначенную для соединения с электрической сетью (110) переменного тока, при этом преобразователь содержит несколько ветвей, каждая ветвь содержит верхнее плечо и нижнее плечо, каждое плечо содержит множество подмодулей, управляемых индивидуально устройством управления подмодулем, и содержит конденсатор, подключаемый последовательно в плече в управляемом состоянии устройства управления подмодулем, при этом каждое плечо может быть смоделировано при помощи моделированного источника напряжения, продолжительность работы которого зависит от числа конденсаторов, подключенных последовательно в плече, и каждый моделированный источник напряжения соединен параллельно с моделированным конденсатором, соответствующим общей емкости плеча, при этом способ включает в себя вычисление заданного значения внутренней команды преобразователя посредством применения функции с регулируемым входным параметром, отличающийся тем, что содержит этапы, на которых:
определяют заданное значение рабочей мощности в зависимости от напряжения на выводах каждого моделированного конденсатора;
определяют заданное значение мощности, передаваемой в электрическую сеть переменного тока, на основании заданного значения рабочей мощности; и
регулируют напряжение в точке соединения преобразователя с электрической сетью постоянного тока и напряжение на выводах каждого моделированного конденсатора в зависимости от указанного заданного значения внутренней команды и от указанного заданного значения мощности, передаваемой в электрическую сеть переменного тока.
16. Способ управления преобразователем по п. 15, отличающийся тем, что регулируемым входным параметром является регулируемый коэффициент виртуальной инерции kVC.
17. Модуль (20,20’) управления многоуровневым модульным преобразователем (10,10’) по любому из пп. 1-14, содержащий вычислительное устройство (22,22’) для вычисления заданного значения внутренней команды преобразователя посредством применения функции с регулируемым входным параметром, при этом модуль управления дополнительно содержит модуль (24,24’) управления энергией, выполненный с возможностью выдавать заданное значение рабочей мощности в зависимости от напряжения на выводах каждого моделированного конденсатора, при этом заданное значение рабочей мощности используется для определения заданного значения мощности, передаваемой в электрическую сеть переменного тока, при этом модуль управления выполнен с возможностью регулирования напряжения в точке соединения преобразователя с электрической сетью постоянного тока и напряжения на выводах каждого моделированного конденсатора в зависимости от заданного значения внутренней команды и от заданного значения мощности, передаваемой в электрическую сеть переменного тока.
RU2020105666A 2017-07-07 2018-07-04 Преобразователь, оснащенный модулем управления энергией в переменной части RU2020105666A (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1756433 2017-07-07
FR1756433A FR3068842B1 (fr) 2017-07-07 2017-07-07 Convertisseur muni d'un module de gestion de l'energie en partie alternative
PCT/FR2018/051664 WO2019008275A1 (fr) 2017-07-07 2018-07-04 Convertisseur muni d'un module de gestion de l'energie en partie alternative

Publications (1)

Publication Number Publication Date
RU2020105666A true RU2020105666A (ru) 2021-08-10

Family

ID=61027793

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020105666A RU2020105666A (ru) 2017-07-07 2018-07-04 Преобразователь, оснащенный модулем управления энергией в переменной части

Country Status (10)

Country Link
US (1) US11070144B2 (ru)
EP (1) EP3649728A1 (ru)
JP (1) JP7168645B2 (ru)
KR (1) KR20200027991A (ru)
CN (1) CN110999052A (ru)
BR (1) BR112020000235A2 (ru)
CA (1) CA3068415A1 (ru)
FR (1) FR3068842B1 (ru)
RU (1) RU2020105666A (ru)
WO (1) WO2019008275A1 (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107994599B (zh) * 2017-12-07 2020-10-16 南京南瑞继保电气有限公司 一种串联式电压源换流阀组的协调控制方法及装置
EP3614552B1 (en) * 2018-08-24 2021-05-19 General Electric Technology GmbH Voltage source converter
WO2020043258A1 (en) * 2018-08-31 2020-03-05 Aalborg Universitet Flexible and efficient switched string converter
FR3138019A1 (fr) * 2022-07-12 2024-01-19 Supergrid Institute Convertisseur DC/DC comprenant deux modules de conversion électrique

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1220084A (en) 1967-03-30 1971-01-20 Metalastik Ltd Conductor spacers for multi-conductor electrical overhead transmission lines
PL2100364T3 (pl) 2006-12-08 2019-05-31 Siemens Ag Sterowanie modułowym przetwornikiem prądu z rozdzielonym magazynowaniem energii
AU2010291222B2 (en) * 2009-09-04 2015-07-09 Hitachi Energy Ltd A method and apparatus for calculating insertion indeces for a modular multilevel converter
JP5470009B2 (ja) 2009-11-26 2014-04-16 株式会社日立製作所 電力変換装置
CN102215004B (zh) * 2011-03-16 2014-07-30 中国电力科学研究院 一种基于模块化多电平换流器的阀电流控制方法
US20140146586A1 (en) * 2011-04-15 2014-05-29 Siemens Aktiengesellschaft Multilevel converter and method of starting up a multilevel converter
GB201120640D0 (en) * 2011-11-30 2012-01-11 Univ Birmingham Power converter
JP5894777B2 (ja) * 2011-12-07 2016-03-30 株式会社日立製作所 電力変換装置
EP2882089B1 (en) * 2013-12-05 2020-09-09 General Electric Technology GmbH Observer based monitoring and control of submodules in modular multilevel converter
WO2015178376A1 (ja) 2014-05-21 2015-11-26 三菱電機株式会社 直流送電電力変換装置および直流送電電力変換方法
US10114076B2 (en) * 2015-04-08 2018-10-30 Nec Corporation Semiconductor device for hybrid energy storage systems
EP3324531B1 (en) 2015-07-14 2022-11-23 Mitsubishi Electric Corporation Power conversion device
EP3142236A1 (en) * 2015-09-11 2017-03-15 ABB Technology AG Optimized pulse patterns for mmc control
CN106602885B (zh) * 2017-03-03 2019-01-04 哈尔滨工业大学 模块化多电平换流器四象限变频器

Also Published As

Publication number Publication date
CN110999052A (zh) 2020-04-10
JP7168645B2 (ja) 2022-11-09
JP2020527010A (ja) 2020-08-31
BR112020000235A2 (pt) 2020-07-07
WO2019008275A8 (fr) 2020-01-09
US20200195165A1 (en) 2020-06-18
FR3068842A1 (fr) 2019-01-11
WO2019008275A1 (fr) 2019-01-10
FR3068842B1 (fr) 2022-03-04
CA3068415A1 (en) 2019-01-10
US11070144B2 (en) 2021-07-20
EP3649728A1 (fr) 2020-05-13
KR20200027991A (ko) 2020-03-13

Similar Documents

Publication Publication Date Title
RU2020105666A (ru) Преобразователь, оснащенный модулем управления энергией в переменной части
Wu et al. AC impedance modeling of modular multilevel converters and two-level voltage-source converters: Similarities and differences
Husev et al. Novel family of single-stage buck–boost inverters based on unfolding circuit
RU2018107570A (ru) Виртуальная емкость
KR20190061204A (ko) 모듈러 멀티레벨 컨버터의 서브 모듈 검사 시스템
Debnath et al. Simulation-based gradient-descent optimization of modular multilevel converter controller parameters
EP2887517B1 (en) Method for controlling a multi-phase multi-level inverter
Clemow et al. Lab-scale experimental multilevel modular HVDC converter with temperature controlled cells
RU2730279C2 (ru) Модуль управления внутренней энергией преобразователя
Niewiara et al. 9 kW SiC MOSFET based DC/DC converter
RU2634348C1 (ru) Управляемый выпрямитель
Chang et al. Split-capacitor self-balancing of single-phase half-bridge inverters
Thielemans et al. Self-precharge for single-leg odd-level multilevel converter
Hoff et al. Comprehensive modeling and practical verification of grid connected VSI with LCL filter
CN104868492B (zh) 并网电源逆变装置的功率控制方法
Pawlak et al. Experimental verification of DC/DC Boost converter calculation model considering conduction losses
AU2021439254B2 (en) Regenerative multicell drive system with overlap angle in fundamental frequency modulation
Barchowsky Design and testing of high frequency converters for photovoltaic system integration
Matiushin et al. Small signal model of the buck-boost bidirectional DC-AC converter based on unfolding circuit
Renukadevi et al. A DC Inrush Current Minimisation Method using Modified Z-Source Inverter in Adjustable Speed Drives
Rocha et al. Transient analysis modeling of modular Marx multilevel converters
Ertasgin Low-cost current-source 1-ph photovoltaic grid-connected inverter.
Chang et al. Improved transient response control strategy and design considerations for switched-capacitor (SC) energy buffer architectures
RU2536704C1 (ru) Устройство заряда накопительного конденсатора
Kul et al. Parametric modeling the effect of PWM frequency change on power transformer secondary voltage