RU2019564C1 - Способ культивирования фотосинтезирующих микроорганизмов и установка для его осуществления - Google Patents

Способ культивирования фотосинтезирующих микроорганизмов и установка для его осуществления Download PDF

Info

Publication number
RU2019564C1
RU2019564C1 SU4884836A RU2019564C1 RU 2019564 C1 RU2019564 C1 RU 2019564C1 SU 4884836 A SU4884836 A SU 4884836A RU 2019564 C1 RU2019564 C1 RU 2019564C1
Authority
RU
Russia
Prior art keywords
suspension
heat exchanger
temperature
photoreactor
photosynthesis
Prior art date
Application number
Other languages
English (en)
Inventor
Вадим Леонидович Корбут
Original Assignee
Вадим Леонидович Корбут
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Вадим Леонидович Корбут filed Critical Вадим Леонидович Корбут
Priority to SU4884836 priority Critical patent/RU2019564C1/ru
Application granted granted Critical
Publication of RU2019564C1 publication Critical patent/RU2019564C1/ru

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Использование: в биотехнологии для культивирования фотосинтезирующих микроорганизмов. Сущность: в установке, содержащей фотореактор, теплообменник, газообменник и побудитель расхода суспензии, поддерживают максимальное значение интенсивности фотосинтеза микроорганизмов путем изменения температуры суспензии и совмещения фотосинтеза с управляемым теплообменом за счет изменения поверхности теплообмена суспензии с теплоносителем и температуры теплоносителя. 2 с.п. ф-лы, 1 ил.

Description

Изобретение относится к способам и установкам управляемого культивирования фотосинтезирующих микроорганизмов, которые могут быть использованы в сельском хозяйстве и микробиологической промышленности.
Известен способ и устройство культивирования фотосинтезирующих микроорганизмов, которые реализованы в фотореакторе, где обеспечивают повышение производительности биосинтеза фотосинтезирующих микроорганизмов путем периодического чередования световых и темновых интервалов облучения суспензии. Упомянутый аналог (прототип), помимо специального фотореактора, содержит побудитель расхода суспензии, газообменник, теплообменник и внешний источник света.
Недостатком известного способа и устройства является то, что оно не обеспечивает получение дополнительной продукции за счет более качественного управления температурой суспензии фотосинтезирующих микроорганизмов в соответствии с изменяющейся во времени максимальной точкой температурой кривой фотосинтеза. Кроме того, недостатком известного устройства является и то, что теплообменник конструктивно отделен от собственно фотореактора, что создает в устройстве температурный градиент в разных точках культиватора микроводорослей по мере движения суспензии в контуре, в результате чего клетки попадают в разные температурные условия: в фотореакторе суспензия нагревается потоком облучения, а в теплообменнике охлаждается до заданной температуры. В результате градиент колебания температуры суспензии тем больше, чем больше облученность фотореактора, его длина до темплообменника и плотность суспензии фотосинтезирующих микроорганизмов. Попадая в разные температурные условия (отличающиеся от максимальной точки температурной кривой фотосинтеза), клетки микроорганизмов реагируют на это снижением биосинтеза. Задаваемые значения температуры не должны быть фиксированы, а должны динамически изменяться во времени в зависимости от физиологического состояния микроорганизмов.
Цель изобретения состоит в том, чтобы увеличить производительность культивирования фотосинтезирующих микроорганимов за счет уменьшения температурного градиента суспензии в контуре культиватора микроорганизмов и управления температурой суспензии таким образом, чтобы интенсивность фотосинтеза микроорганизмов была максимальной.
Цель достигается тем, что для уменьшения температурного градиента, возникающего по ходу движения суспензии в культиваторе, фотореактор погружают в теплоноситель теплообменника, что резко уменьшает температурный градиент суспензии микроорганизмов.
Для достижения другой цели - регулирования температуры таким образом, чтобы интенсивность фотосинтеза была максимальной, осуществляют следующие действия:
- устанавливают температуру суспензии равной ТоС1;
- измеряют интенсивность фотосинтеза по скорости выделения кислорода микроорганизмами при ТоС1;
- устанавливают температуру суспензии равной ТоС2;
- измеряют интенсивность фотосинтеза по скорости выделения кислорода микроорганизмами при ТоС2;
- определяют частную производную интенсивности фотосинтеза по температуре между двумя значениями температуры
∂Ф/ ∂ТоС= (ФTo
Figure 00000001
-ФТоС1)/(ТоС2оС1), где ТоС2 - последующее измерение температуры;
ТоС1 - предыдущее измерение температуры;
ФTo
Figure 00000002
- интенсивность фотосинтеза при температуре ТоС2;
ФТоС1 - интенсивность фотосинтеза при температуре ТоС1;
- увеличивают температуру суспензии, если:
∂Ф/ ∂ТоС=(ФТоС2-ФТоС1)/(ТоС2оС1)>0
- уменьшают температуру суспензии, если
∂Ф/∂ ТоС=
= (ФТоС2-ФТоС1)/(ТоС2оС1) ≅0
Следует иметь в виду, что температура суспензии ТоС1 по отношению к температуре суспензии ТоС2 является предыдущей по времени, и после следующего шага изменения температуры суспензии ТоС2 становится ТоС1.
Установка, реализующая способ культивирования фотосинтезирующих микроорганизмов, состоит из фотореактора 1, который представляет собой стеклотрубный змеевик в виде непрерывной трубы или собранный из U-образных стеклянных двойных отводов. Фотореактор может состоять из множества таких змеевиков, объединенных через общий коллектор. Фотореактор погружен в теплоноситель (вода) теплообменника 2 (см. фиг.). После фотореактора 1 в контуре культиватора расположена измерительная камера 3 устройства измерения интенсивности фотосинтеза, в которое входят газоанализаторы концентраций кислорода 4 и 5, датчики концентрации растворенного кислорода 6 на входе фотореактора и датчик растворенного кислорода 7 на выходе измерительной камеры 3. Выходы датчиков 4, 5, 6, 7 соединены со входами управляющего вычислительного устройства 8. После измерительной камеры 3 расположен газообменник 9 для насыщения углекислотой суспензии микроорганизмов. После газообменника через всасывающий трубопровод 10 суспензия поступает в побудитель расхода суспензии 11, который по напорному трубопроводу 12 подает суспензию в фотореактор 1. Фотореактор облучается внешним источником света 13, который может быть искусственным или естественным (солнце). В устройство регулирования температуры суспензии входят датчик температуры суспензии 14 на входе фотореактора и датчик температуры 15 на выходе фотореактора, при этом выходы датчиков температуры соединены со входами управляющего вычислительного устройства 8, выходы которого соединены со входами регулирующих заслонок подачи холодного теплоносителя 16 и подачи горячего теплоносителя 17 в теплообменник 2. Для ограничения уровня теплоносителя в теплообменнике служит датчик уровня 18, выход которого соединен со входом управляющего вычислительного устройства 8, которое управляет регулирующим вентилем 19 для слива избытка теплоносителя из теплообменника 2.
Установка работает следующим образом.
Суспензия, обогащенная углекислотой в газообменнике 9, побудителем расхода суспензии 11 подается в фотореактор 1, на входе которого датчиками 6 и 14 измеряют концентрацию растворенного в суспензии кислорода и температуру суспензии. В фотореакторе 1 суспензия нагревается в той части трубы фотореактора, которая облучается источником света и охлаждается частью трубы фотореактора, которая погружена в теплоноситель теплообменника 2. На выходе фотореактора датчиком температуры 15 измеряют температуру суспензии. После фотореактора 1 суспензия попадает в измерительную камеру 3, в которой выделившийся в результате фотосинтеза газообразный кислород разбавляется воздухом, продуваемым через измерительную камеру с постоянным расходом. На входе и выходе измерительной камеры газоанализаторами 4 и 5 определяют концентрации кислорода в воздухе. Сигналы газоанализаторов подаются в управляющее вычислительное устройство 8. В вычислительное устройство 8 также подаются сигналы датчиков растворенного в суспензии кислорода 6 и 7. После измерительной камеры суспензия попадает в газообменник 9 для насыщения ее углекислым газом. В управляющем вычислительном устройстве определяют интенсивность фотосинтеза по формуле
Ф=(Fc . (pO2вых-pO2вх)+
+ Fввыхвх)/Gс, где Ф - интенсивность фотосинтеза (лО2с х мин);
Fc - расход суспензии через фотореактор (лс/мин);
Fв - расход воздуха через газоприемную часть измерительной камеры (лв/мин);
pO2вых - концентрация растворенного кислорода в суспензии на выходе измерительной камеры (лО2с);
pO2вх - концентрация растворенного кислорода в суспензии на входе фотореактора (лО2с);
Свых - концентрация кислорода в воздушно-кислородной среде на выходе газоприемной части измерительной камеры (лО2в);
Свх - концентрация кислорода в воздухе на входе газоприемной части измерительной камеры (лО2в);
Gc - объем суспензии в технологической линии культивирования микроводорослей (лс).
Управление температурой осуществляют в соответствии с действиями способа, описанного выше. Если требуется уменьшить температуру суспензии, по сигналу управляющего вычислительного устройства 8 открывается заслонка 16 и добавляется холодный теплоноситель до достижения необходимой температуры суспензии. Это происходит до тех пор, пока датчик уровня 18 не зафиксирует максимального уровня теплоносителя в теплообменнике 2. При достижении максимального уровня часть теплоносителя по команде управляющего вычислительного устройства 8 сливается через вентиль 19, что дает возможность продолжать долив холодного теплоносителя. В случае необходимости увеличения температуры это осуществляют сливом теплоносителя, по команде управляющего вычислительного устройства, через вентиль 19 до достижения заданной температуры. Это происходит до тех пор, пока датчик уровня 18 не зафиксирует минимально допустимый уровень теплоносителя в теплообменнике 2. При достижении минимального уровня теплоносителя увеличение температуры производят подачей горячего теплоносителя до достижения заданной температуры. Такое регулирование температуры суспензии микроорганизмов позволяет достигнуть желаемого быстродействия изменения температуры в сочетании с наиболее эффективным использованием энергоресурсов (горячей воды и теплового излучения источника света)
П р и м е р. Культивирование фотосинтезирующих микроорганизмов.
При культивировании Chlorella vulgaris штамм ЛАРГ-3 в культиваторе микроводорослей (см. фиг.) насыщали суспензию микроводорослей углекислотой с расходом 90 лвс в 1 ч и концентрацией углекислоты в воздухе 2 об.%, облученности фотореактора 300 Вт/м2 ФАР (фотосинтетически активной радиации), постоянном сливе суспензии микроводорослей 0,4 лсс в культиваторе и концентрации биомассы в суспензии 2 г АСВ/лс и изменении температуры суспензии были получены следующие результаты:

Claims (2)

1. Способ культивирования фотосинтезирующих микроорганизмов, включающий регулирование температуры суспензии микроорганизмов, отличающийся тем, что, с целью повышения производительности фотосинтеза микроорганизмов, поддерживают максимальное значение интенсивности фотосинтеза путем изменения температуры суспензии и совмещения фотосинтеза с управляемым теплообменом за счет изменения поверхности теплообмена суспензии с теплоносителем и температуры теплоносителя.
2. Установка для культивирования фотосинтезирующих микроорганизмов, включающая фотореактор, теплообменник, газообменник, побудитель расхода суспензии, напорный и всасывающий трубопроводы, внешний источник света, отличающаяся тем, что, с целью повышения производительности, фотореактор совмещен с теплообменником путем погружения фотореактора в теплоноситель теплообменника, а установка дополнительно оснащена устройством измерения интенсивности фотосинтеза, включающего два датчика растворенного кислорода и два газоанализатора концентрации кислорода, регулирующими устройствами подачи холодного и горячего теплоносителя в теплообменник, регулирующим устройством слива теплоносителя из теплообменника, датчиками температуры суспензии, расположенными на входе и выходе фотореактора, датчиком уровня теплоносителя в теплообменнике и управляющим вычислительным устройством, причем выходы датчиков растворенного кислорода, газоанализаторов концентрации кислорода, датчиков температуры и датчика уровня соединены с входами управляющего вычислительного устройства, а выходы последнего соединены с регулирующими устройствами подачи холодного и горячего теплоносителя в теплообменник и регулирующим устройством слива теплоносителя из теплообменника.
SU4884836 1990-11-01 1990-11-01 Способ культивирования фотосинтезирующих микроорганизмов и установка для его осуществления RU2019564C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4884836 RU2019564C1 (ru) 1990-11-01 1990-11-01 Способ культивирования фотосинтезирующих микроорганизмов и установка для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4884836 RU2019564C1 (ru) 1990-11-01 1990-11-01 Способ культивирования фотосинтезирующих микроорганизмов и установка для его осуществления

Publications (1)

Publication Number Publication Date
RU2019564C1 true RU2019564C1 (ru) 1994-09-15

Family

ID=21546551

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4884836 RU2019564C1 (ru) 1990-11-01 1990-11-01 Способ культивирования фотосинтезирующих микроорганизмов и установка для его осуществления

Country Status (1)

Country Link
RU (1) RU2019564C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053394A1 (ru) * 2008-11-05 2010-05-14 Общество С Ограниченной Ответственностью "Центр Вихревых Технологий" Биореактор и способ культивирования фотосинтезирующих микроорганизмов с его использованием
RU2458147C2 (ru) * 2010-11-19 2012-08-10 Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (ГОУ ВПО ВГТА) Способ управления процессом культивирования фотоавтотрофных микроорганизмов
RU2622081C1 (ru) * 2016-04-28 2017-06-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВО "ВГУИТ"). Способ управления процессом культивирования фотоавтотрофных микроорганизмов
RU2772586C1 (ru) * 2018-09-14 2022-05-23 Кианос Биотекноложи Способ культивирования нужных микроорганизмов и соответствующая установка

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Авторское свидетельство СССР N 686686, кл. A 01G 33/02, 1977. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053394A1 (ru) * 2008-11-05 2010-05-14 Общество С Ограниченной Ответственностью "Центр Вихревых Технологий" Биореактор и способ культивирования фотосинтезирующих микроорганизмов с его использованием
RU2458147C2 (ru) * 2010-11-19 2012-08-10 Государственное образовательное учреждение высшего профессионального образования Воронежская государственная технологическая академия (ГОУ ВПО ВГТА) Способ управления процессом культивирования фотоавтотрофных микроорганизмов
RU2622081C1 (ru) * 2016-04-28 2017-06-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет инженерных технологий" (ФГБОУ ВО "ВГУИТ"). Способ управления процессом культивирования фотоавтотрофных микроорганизмов
RU2772586C1 (ru) * 2018-09-14 2022-05-23 Кианос Биотекноложи Способ культивирования нужных микроорганизмов и соответствующая установка

Similar Documents

Publication Publication Date Title
Qiang et al. Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate photobioreactor
Sandnes et al. Combined influence of light and temperature on growth rates of Nannochloropsis oceanica: linking cellular responses to large-scale biomass production
US5541056A (en) Method of control of microorganism growth process
Qiang et al. Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria)
ES8200997A1 (es) Procedimiento e instalacion para el tratamiento de residuos agricolas liquidos
ATE221724T1 (de) Hydroponisches kulturverfahren und vorrichtung für seine durchführung
Kajiwara et al. Design of the bioreactor for carbon dioxide fixation by Synechococcus PCC7942
Pipes et al. Light-limited growth of Chlorella in continuous cultures
RU2019564C1 (ru) Способ культивирования фотосинтезирующих микроорганизмов и установка для его осуществления
Cook Chemical engineering problems in large scale culture of algae
CN109997771A (zh) 一种基于碳、铁、光调控的水塘调水系统及利用该系统对水塘调水的方法
RU2019565C1 (ru) Способ культивирования фотосинтезирующих микроорганизмов и установка для его осуществления
SU1666537A1 (ru) Способ культивировани фотосинтезирующих микроорганизмов с периодическим чередованием световых и темновых интервалов облучени суспензии
Pipes Carbon dioxide-limited growth of Chlorella in continuous culture
SU1604842A1 (ru) Способ культивировани фотосинтезирующих микроорганизмов
RU2126053C1 (ru) Способ и установка культивирования фотосинтезирующих микроорганизмов
SU1395666A1 (ru) Способ культивировани фотосинтезирующих микроорганизмов
JP7139729B2 (ja) 栽培システム及び栽培システムにおける照度制御方法
SU438396A1 (ru) СПОСОБ НЕПРЕРБ1ВНОГО КУЛЬТИВИРОВАНИЯ ФОТОАВТОТРОФНЫХ МИКРООРГАНИЗМОВВ il 1 ьГ1 е^ШОЕРЮ!
RU1773937C (ru) Способ культивировани фотосинтезирующих микроорганизмов
SU1731807A1 (ru) Способ культивировани фотосинтезирующих микроорганизмов
JPS6423889A (en) Method for cultivating phytoplankton and device therefor
SU886835A1 (ru) Способ регулировани факторов внешней среды при выращивании растений и устройство дл осуществлени способа
SU1366526A1 (ru) Установка дл выращивани микроводорослей
JP2023500201A (ja) 微細藻類バイオマスの製造方法及び製造装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20051102