RU201933U1 - Динамическая насадка для тепло- и массообменных процессов - Google Patents
Динамическая насадка для тепло- и массообменных процессов Download PDFInfo
- Publication number
- RU201933U1 RU201933U1 RU2020119763U RU2020119763U RU201933U1 RU 201933 U1 RU201933 U1 RU 201933U1 RU 2020119763 U RU2020119763 U RU 2020119763U RU 2020119763 U RU2020119763 U RU 2020119763U RU 201933 U1 RU201933 U1 RU 201933U1
- Authority
- RU
- Russia
- Prior art keywords
- mass transfer
- heat
- revolution
- transfer processes
- spring
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/30—Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Предлагаемое техническое решение относится к насадкам, применяемым в колонных аппаратах, прежде всего для проведения тепло- и массообменных процессов, и может найти применение в химической, нефтехимической, энергетической, металлургической, пищевой, фармакологической и других отраслях промышленности.Техническим результатом предлагаемой конструкции динамической насадки для тепло- и массообменных процессов является увеличение производительности массообменных аппаратов.Технический результат достигается тем, что динамическая насадка для тепло- и массообменных процессов, выполненная в виде расположенных одно внутри другого и соединенных тел вращения, выполненных в виде колец Рашига, внутреннее тело вращения расположено на расстоянии от наружного тела вращения, при этом отношение наружного диаметра внутреннего кольца к внутреннему диаметру наружного кольца равно 0,7, причем наружное и внутреннее кольца выполнены из полимерного материала и соединены между собой посредством выполненной также из полимерного материала конической пружины переменной жесткости, при этом внутреннее кольцо верхним торцом соединено с нижним наименьшим витком пружины, а верхний виток пружины переменной жесткости соединен с наружным кольцом на его верхнем торце.
Description
Предлагаемое техническое решение относится к насадкам, применяемым в колонных аппаратах, прежде всего для проведения тепло- и массообменных процессов абсорбции, экстракции, ректификации и может найти применение в химической, нефтехимической, энергетической, металлургической, пищевой, фармакологической и других отраслях промышленности, а также в экологических процессах разделения нефтешламов, отработанных растворов углеводородов, растворителей и других веществ для их разделения и очистки на молекулярном уровне.
Известна насадка для тепло- и массообменных процессов, выполненная в виде расположенных одно внутри другого и соединенных посредством двух пружин тел вращения, имеющих форму цилиндрических поверхностей, и внутреннее тело вращения расположено на расстоянии от наружного тела вращения, выполненного в виде колец Рашига и уложенных упорядоченно в ряды, при этом отношение наружного диаметра внутреннего тела вращения к внутреннему диаметру наружного кольца равно 0,7, а отношение их высот лежит в пределах:
где h и H - соответственно высоты внутреннего и наружного кольца, причем внутреннее тело вращения выполнено равномерно перфорированным с положительной плавучестью в рабочей жидкости соединено с наружным кольцом на нижнем кольце (Описание полезной модели к патенту РФ №162267, В01J 19/30, 2016 г.).
К причинам, препятствующим достижению заданного технического результата, относится недостаточная интенсивность тепло- и массообменных процессов и относительно невысокая производительность, связанные с узким динамическим диапазоном колебаний внутреннего тела (турбулизатора) и необходимость пространственной ориентации насадочных элементов, а также сложность изготовления из-за соединения внешнего и внутреннего тел вращения друг с другом посредством нескольких пружин.
Известна насадка для тепло- и массообменных процессов, выполненная в виде расположенных одно внутри другого и соединенных посредством двух пружин тел вращения, имеющих форму цилиндрических поверхностей, внутреннее тело вращения расположено на расстоянии от наружного тела вращения, выполненного в виде колец Рашига и уложенных упорядоченно в ряды, при этом отношение наружного диаметра внутреннего тела вращения к внутреннему диаметру наружного кольца равно 0,7, а внутреннее тело вращения выполнено равномерно перфорированным, отличающееся тем, что внутреннее тело вращения выполнено из материала, обладающего эффектом памяти, и соединено с наружным кольцом на верхнем торце, а отношение высоты внутреннего тела вращения к высоте наружного кольца лежит в пределах:
где h и H – соответственно высоты внутреннего тела вращения и наружного кольца, м (Описание полезной модели к патенту РФ №174152, ВО1J 19/30, 2017 г.).
Недостатком данной насадки для тепло- и массообменных процессов относится недостаточная интенсивность тепло- и массообменных процессов и относительно невысокая производительность, связанные с узким резонансным диапазоном колебаний внутреннего тела (турбулизатора), а также необходимость упорядоченной пространственной ориентации насадочных элементов, а также сложность изготовления из-за соединения внешнего и внутреннего тел вращения друг с другом посредством нескольких пружин.
Наиболее близким техническим решением по совокупности признаков к заявленному объекту и принятому за прототип является насадка для тепло- и массообменных процессов, выполненная в виде расположенных одно внутри другого и соединенных тел вращения, имеющих форму цилиндрических поверхностей, и внутреннее тело вращения расположено на расстоянии от наружного тела вращения, при этом тела вращения выполнены в виде колец Рашига и соединены на торцовых частях посредством не менее двух пружин, а отношение наружного диаметра внутреннего кольца к внутреннему диаметру наружного кольца равно 0,7, а отношение их высот лежит в пределах:
где h и H - соответственно высоты внутреннего и наружного колец (Описание полезной модели к патенту РФ №148733, В01J 19/00, 2014 г.).
К причинам, препятствующим достижению заданного технического результата, относится малая эффективность массообменных процессов и относительно невысокая производительность, связанные с узким резонансным диапазоном колебаний внутреннего тела (турбулизатора) и необходимость пространственной ориентации насадочных элементов, а также сложность изготовления из-за соединения внешнего и внутреннего тел вращения друг с другом посредством нескольких пружин.
Техническим результатом предлагаемой конструкции динамической насадки для тепло- и массообменных процессов является увеличение производительности массообменных аппаратов.
Технический результат достигается тем, что динамическая насадка для тепло- и массообменных процессов, выполненная в виде расположенных одно внутри другого и соединенных тел вращения, выполненных в виде колец Рашига, внутреннее тело вращения расположено на расстоянии от наружного тела вращения, при этом отношение наружного диаметра внутреннего кольца к внутреннему диаметру наружного кольца равно 0,7, причем наружное и внутреннее кольца выполнены из полимерного материала и соединены между собой посредством выполненной также из полимерного материала конической пружины переменной жесткости, при этом внутреннее кольцо верхним торцом соединено с нижним наименьшим витком пружины, а верхний виток пружины переменной жесткости соединен с наружным кольцом на его верхнем торце.
Соединение наружного и внутреннего колец Рашига посредством конической пружины переменной жесткости таким образом, что внутреннее кольцо верхним торцом соединено с нижним наименьшим витком пружины, а верхний виток пружины переменной жесткости соединен с наружным кольцом на его верхнем торце, позволит обеспечить резонансные колебания внутреннего тела вращения в виде кольца Рашига в широком диапазоне скоростей газовой (паровой) и жидкой фаз, что приведет к существенной интенсификации тепломассообменных процессов и повышению производительности массообменных аппаратов, кроме того, такая конструктивная компоновка насадочного элемента делает тепло- и массообменную насадку очень технологичной и простой в изготовлении, не предъявляющей строгих требований для пространственной ориентации и укладки в упорядоченные ряды.
Выполнение наружного и внутреннего колец, а также конической пружины переменной жесткости из полимерных материалов придает насадочным элементам большую химическую стойкость и удельную прочность (чем у металлических материалов пружин и наружных тел), что особенно актуально при очистке газовых выбросов и продуктов массообменных процессов от сернистых соединений и паров кислот в химической, нефтехимической, нефтегазоперерабатывающей и других отраслях промышленности. Кислотостойкость и устойчивость к сернистым соединениям обеспечит сохранность поверхностных свойств динамических насадочных элементов, позволит проявлять устойчивые динамические свойства в процессе эксплуатации массообменного оборудования, обеспечит стабильное протекание тепло- и массообменных процессов и устойчивость оптимальных гидродинамических режимов работы массообменных насадочных колонн, что в свою очередь обеспечит высокие показатели улавливания извлекаемых компонентов из газофазных выбросов (на примере процесса абсорбции) и повысит производительность массообменных аппаратов.
На чертеже показан общий вид динамической насадки для тепло- и массообменных процессов.
Динамическая насадка для тепло- и массообменных процессов состоит из выполненных из полимерного материала наружного тела вращения, выполненного в виде кольца Рашига 1 с внутренним диаметром D, и внутреннего тела вращения, выполненного в виде кольца Рашига 2 с наружным диаметром d. Отношение наружного диаметра d внутреннего кольца 2 к внутреннему диаметру D наружного кольца 1 равно 0,7.
Наружное 1 и внутреннее 2 кольца соединены между собой посредством выполненной из полимерного материала конической пружины 3 переменной жесткости, при этом внутреннее кольцо 2 верхним торцом соединено с нижним наименьшим витком пружины 3, а верхний виток пружины 3 переменной жесткости соединен с наружным кольцом 1 на его верхнем торце. Тепло- и массообменные насадочные элементы могут засыпаться внавал или укладываться в упорядоченные ряды, в зависимости от требований конкретного процесса и аппарата и габаритных размеров насадочных элементов.
Торцы наружных колец 1 не взаимодействуют с торцами внутренних колец 2, и последние могут свободно колебаться на пружине 3 внутри наружных колец 1.
Динамическая насадка для тепло- и массообменных процессов работает следующим образом.
Тепло- и массообменные насадочные элементы, состоящие из наружного кольца Рашига 1 с внутренним диаметром D и внутреннего кольца Рашига 2 с наружным диаметром d, которые соединены между собой посредством конической пружины 3 переменной жесткости, засыпаются в колонну внавал или укладываться в упорядоченные ряды.
Сверху насадка орошается жидкостью, а снизу подается газ (пар) в случаях применения данной насадки для процессов абсорбции или ректификации. В случае жидкостной насадочной экстракции, экстрагент и раствор могут осуществлять через насадку различные схемы тока, противоток или прямоток. Под действием потока газа (пара) или импульса колебаний столба жидкости (насадочная пульсационная экстракция) каждое внутреннее тело вращения 2 совершает резонансные колебания, которые приводят к локальной турбулизации в пределах каждого насадочного элемента, передаются всплывающими пузырьками газа, приводят к активизации омывания пленок жидкости, покрывающих внутренние насадочные тела, либо активизируют взаимное перемешивание продуктов экстракции. Этот эффект приводит к интенсификации тепло- и массообмена на границе раздела фаз газа (пара) и жидкости (для абсорбции и ректификации), к активизации диффузионных процессов и взаимному перемешиванию жидкофазных продуктов экстракции, что в целом приводит к увеличению производительности тепло- и массообменных аппаратов. Выполнение наружного 1 и внутреннего 2 колец, а также конической пружины 3 переменной жесткости из полимерных материалов придает насадочным элементам большую химическую стойкость и удельную прочность (чем у металлических материалов пружин и наружных тел), что особенно актуально при очистке газовых выбросов от сернистых соединений и паров кислот в процессах абсорбции химической, нефтехимической, нефтегазоперерабатывающей и других отраслях промышленности. То есть выполнение насадочных элементов из полимерных материалов позволяет существенно расширить спектр применения динамических насадочных элементов и продлить срок службы и ревизионного обслуживания в самых неблагоприятных с точки зрения химических агрессивных воздействий условиях осуществления массообменных процессов. Кислотостойкость и устойчивость к сернистым соединениям обеспечит сохранность поверхностных свойств динамических насадочных элементов, позволит проявлять интенсифицирующие динамические свойства в процессе всего срока эксплуатации массообменного оборудования, обеспечит стабильное протекание тепло- и массообменных процессов и устойчивость оптимальных гидродинамических режимов работы массообменных насадочных колонн, что в свою очередь обеспечит высокие показатели улавливания извлекаемых компонентов из газовых выбросов (например, в процессе абсорбции) и повысит производительность массообменных аппаратов.
Таким образом, соединение выполненных из полимерного материала наружного и внутреннего колец Рашига посредством выполненной также из полимерного материала конической пружины переменной жесткости так, что внутреннее кольцо верхним торцом соединено с нижним наименьшим витком пружины, а верхний виток пружины переменной жесткости соединен с наружным кольцом на его верхнем торце, приводит к интенсификации массообменных процессов и активизации диспергирования и микроперемешивания жидкофазных продуктов экстракции и турбулизации газо-жидкостной смеси (абсорбция и ректификация) не только во всем объеме массообменной насадки, но и в пределах каждого отдельного насадочного элемента. И эти локальные интенсифицирующие эффекты проявляются естественным образом, без дополнительных энергетических затрат, за счет энергии пульсационных колебаний столба жидкости в экстракционной колонне или скоростей газовой и паровой фаз, омывающих насадочные элементы в процессах абсорбции и ректификации. Кроме того, разработанные насадочные элементы не предъявляют строгих требований к характеру укладки и пространственной ориентации, проявляя турбулизирующий эффект в любых положениях, что существенно упрощает пуско-наладочные операции и ревизионное обслуживание технологического оборудования в процессе эксплуатации.
Claims (1)
- Динамическая насадка для тепло- и массообменных процессов, выполненная в виде расположенных одно внутри другого и соединенных тел вращения, выполненных в виде колец Рашига, внутреннее тело вращения расположено на расстоянии от наружного тела вращения, при этом отношение наружного диаметра внутреннего кольца к внутреннему диаметру наружного кольца равно 0,7, отличающаяся тем, что наружное и внутреннее кольца выполнены из полимерного материала и соединены между собой посредством выполненной также из полимерного материала конической пружины переменной жесткости, при этом внутреннее кольцо верхним торцом соединено с нижним наименьшим витком пружины, а верхний виток пружины переменной жесткости соединен с наружным кольцом на верхнем торце.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020119763U RU201933U1 (ru) | 2020-06-16 | 2020-06-16 | Динамическая насадка для тепло- и массообменных процессов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020119763U RU201933U1 (ru) | 2020-06-16 | 2020-06-16 | Динамическая насадка для тепло- и массообменных процессов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU201933U1 true RU201933U1 (ru) | 2021-01-21 |
Family
ID=74212689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020119763U RU201933U1 (ru) | 2020-06-16 | 2020-06-16 | Динамическая насадка для тепло- и массообменных процессов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU201933U1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6265717A (ja) * | 1985-09-13 | 1987-03-25 | Nippon Shokubai Kagaku Kogyo Co Ltd | 充填物 |
CN2558450Y (zh) * | 2002-04-23 | 2003-07-02 | 胡萍德 | 三叶环填料 |
CN203899610U (zh) * | 2013-12-23 | 2014-10-29 | 梁泰安 | 泰安环填料 |
RU148733U1 (ru) * | 2014-04-22 | 2014-12-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) | Насадка для тепло- и массообменных процессов |
RU189422U1 (ru) * | 2019-03-01 | 2019-05-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Насадка для тепло- и массообменных процессов |
-
2020
- 2020-06-16 RU RU2020119763U patent/RU201933U1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6265717A (ja) * | 1985-09-13 | 1987-03-25 | Nippon Shokubai Kagaku Kogyo Co Ltd | 充填物 |
CN2558450Y (zh) * | 2002-04-23 | 2003-07-02 | 胡萍德 | 三叶环填料 |
CN203899610U (zh) * | 2013-12-23 | 2014-10-29 | 梁泰安 | 泰安环填料 |
RU148733U1 (ru) * | 2014-04-22 | 2014-12-10 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Волгоградский государственный технический университет" (ВолгГТУ) | Насадка для тепло- и массообменных процессов |
RU189422U1 (ru) * | 2019-03-01 | 2019-05-22 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) | Насадка для тепло- и массообменных процессов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU189422U1 (ru) | Насадка для тепло- и массообменных процессов | |
RU148733U1 (ru) | Насадка для тепло- и массообменных процессов | |
US3855368A (en) | Apparatus for bringing fluid phases into mutual contact | |
RU196444U1 (ru) | Насадка для тепло- и массообменных процессов | |
RU162267U1 (ru) | Насадка для тепло- и массообменных процессов | |
RU201960U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
US3618910A (en) | Tower packing | |
RU201933U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU201974U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU200833U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU201932U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU200835U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU201934U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU202051U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU200837U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU200776U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU174152U1 (ru) | Насадка для тепло- и массообменных процессов | |
RU200775U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU200778U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU200777U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU200863U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU201931U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU205538U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU201975U1 (ru) | Динамическая насадка для тепло- и массообменных процессов | |
RU200836U1 (ru) | Динамическая насадка для тепло- и массообменных процессов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM9K | Utility model has become invalid (non-payment of fees) |
Effective date: 20210126 |