RU2019115854A - Способ картографирования урожайности - Google Patents

Способ картографирования урожайности Download PDF

Info

Publication number
RU2019115854A
RU2019115854A RU2019115854A RU2019115854A RU2019115854A RU 2019115854 A RU2019115854 A RU 2019115854A RU 2019115854 A RU2019115854 A RU 2019115854A RU 2019115854 A RU2019115854 A RU 2019115854A RU 2019115854 A RU2019115854 A RU 2019115854A
Authority
RU
Russia
Prior art keywords
yield
processors
field site
data
field
Prior art date
Application number
RU2019115854A
Other languages
English (en)
Other versions
RU2019115854A3 (ru
Inventor
Джеймс КУБ
Original Assignee
Басф Агро Трейдмаркс Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Басф Агро Трейдмаркс Гмбх filed Critical Басф Агро Трейдмаркс Гмбх
Publication of RU2019115854A publication Critical patent/RU2019115854A/ru
Publication of RU2019115854A3 publication Critical patent/RU2019115854A3/ru

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • G06V20/188Vegetation

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Husbandry (AREA)
  • Mining & Mineral Resources (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Development Economics (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Primary Health Care (AREA)
  • Multimedia (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Processing (AREA)

Claims (30)

1. Система (300) для создания карты (110) урожайности для полевой площадки, причем система (300) содержит:
одно или несколько устройств (325) визуализации,
один или несколько процессоров (312), и
одно или несколько запоминающих устройств (314), причем одно или несколько запоминающих устройств (314) сохраняют машиночитаемые команды (316), которые при их выполнении одним или несколькими процессорами (312) принуждают один или несколько процессоров (312) к выполнению операций, причем операции содержат:
получение одним или несколькими процессорами (312) данных, отображающих урожайность (110) для полевой площадки,
получение одним или несколькими процессорами (312) изображения (122) вегетативного индекса (VI) полевой площадки, причем изображение (122) VI содержит множество пикселей (125), причем каждый пиксель (125) в изображении (122) VI имеет пиксельное значение, связанное с количеством растительности в соответствующем пикселю (125) обособленном подучастке полевой площадки,
определение одним или несколькими процессорами (312) распределения урожайности для полевой площадки, причем распределение урожайности содержит значение урожайности для каждого из множества обособленных подучастков полевой площадки определенное, по меньшей мере, частично основываясь на отображающих урожайность (110) данных и пиксельном значении пикселя (125) в изображении (122) VI, соответствующего обособленным подучасткам на полевой площадке,
создание посредством одного или нескольких процессоров (312) карты (150) урожайности для полевой площадки, по меньшей мере, частично основываясь на распределении урожайности, причем карта (150) урожайности содержит множество пикселей (155), причем пиксельное значение каждого пикселя в карте (150) урожайности определено, по меньшей мере, частично основываясь на значении урожайности для соответствующих пикселю (155) обособленных подучастков полевой площадки.
2. Система (300) по п. 1, причем операции, кроме того, содержат усовершенствование одним или несколькими процессорами (312) распределения урожайности, по меньшей мере, частично основываясь на одном или нескольких типах (120) данных.
3. Система (300) по п. 1 или 2, причем операции, кроме того, содержат предоставление одним или несколькими процессорами (312) карты (150) урожайности для отображения на одном или нескольких устройствах (325) визуализации.
4. Система (300) по п. 2 или 3, причем один или несколько типов (120) данных содержат одно или несколько захваченных в различные периоды времени изображений (122) VI, одно или несколько изображений (126) лазерного локатора, одно или несколько спутниковых изображений (124), воздушных изображений (124), или наземных изображений (124) полевой площадки, данные (128) густоты стояния растений, полученные от посадочной техники (130) посадочные значения, или одно или несколько гиперспектральных изображений (130).
5. Способ (200) создания карты (150) урожайности для полевой площадки, содержащий:
получение (202) одним или несколькими процессорами (312) данных, отображающих урожайность (110) для полевой площадки,
получение (204) одним или несколькими процессорами (312) одного или несколько типов (120) данных, связанных с полевой площадкой, причем каждый из типов (120) данных предоставляет геопространственное распределение данных, связанных с растительностью в пределах полевой площадки,
определение (208) одним или несколькими процессорами (312) распределения урожайности для полевой площадки, по меньшей мере, частично основываясь на данных, отображающих урожайность (110), а также одном или нескольких типах (120) данных,
создание (210) одним или несколькими процессорами (312) карты (150) урожайности для полевой площадки, по меньшей мере, частично основываясь на распределении урожайности.
6. Способ (200) по п. 5, который, кроме того, содержит:
предоставление (212) одним или несколькими процессорами (312) карты (150) урожайности для отображения на одном или нескольких устройствах (325) визуализации.
7. Способ (200) по п. 5 или 6, причем определение (208) одним или несколькими процессорами (312) распределения урожайности для полевой площадки содержит:
получение (206) одним или несколькими процессорами (312) модели (140), которая задает значения урожайности для обособленных подучастков полевой площадки как функцию по меньшей мере одного или нескольких типов (120) данных, и
определение (208) одним или несколькими процессорами (312) распределения урожайности, по меньшей мере, частично основываясь на этой модели (140).
8. Способ (200) по одному из пп. 5-7, причем карта (150) урожайности содержит множество пикселей (155), и причем пиксельное значение каждого пикселя (155) определяют, по меньшей мере, частично основываясь назначении урожайности для обособленных соответствующих пикселю (155) подучастков полевой площадки.
9. Способ (200) по одному из пп. 5-8, причем один или несколько типов (120) данных содержат изображение (122) вегетативного индекса (VI) полевой площадки.
10. Способ (200) по п. 9, причем определение (208) одним или несколькими процессорами (312) распределения урожайности для полевой площадки содержит определение одним или несколькими процессорами (312) значений урожайности для обособленных подучастков полевой площадки, по меньшей мере, частично основываясь на пиксельном значении пикселя (125), соответствующего обособленным подучасткам в изображении (122) VI.
11. Способ (200) по одному из пп. 5-10, причем один или несколько типов (120) данных содержат множество изображений (122) VI, и причем каждое из этих изображений (122) VI захватывают в различное время.
12. Способ (200) по одному из пп. 5-11, причем один или несколько типов (120) данных содержат полученные от посадочной техники посадочные значения (130) и/или данные (128) густоты стояния растений для полевой площадки.
13. Способ (200) по одному из пп. 5-12, причем один или несколько типов (120) данных содержат одно или несколько связанных с полевой площадкой изображений (126) лазерного локатора и/или одно или несколько полученных для полевой площадки гиперспектральных изображений (130).
14. Способ (200) по одному из пп. 5-13, причем один или несколько типов (120) данных содержат одно или несколько спутниковых изображений (124), воздушных изображений (124), или наземных изображений (124) для полевой площадки.
15. Элемент компьютерной программы для управления системой согласно одному из пп. 1-4, который, при выполнении его процессором, выполнен для осуществления способа по одному из пп. 5-14.
16. Машиночитаемый носитель с сохраненным элементом программы по п. 15.
RU2019115854A 2016-10-31 2017-10-31 Способ картографирования урожайности RU2019115854A (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662414928P 2016-10-31 2016-10-31
US62/414,928 2016-10-31
PCT/US2017/059146 WO2018081759A1 (en) 2016-10-31 2017-10-31 Method for mapping crop yields

Publications (2)

Publication Number Publication Date
RU2019115854A true RU2019115854A (ru) 2020-11-30
RU2019115854A3 RU2019115854A3 (ru) 2021-03-15

Family

ID=60515795

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019115854A RU2019115854A (ru) 2016-10-31 2017-10-31 Способ картографирования урожайности

Country Status (7)

Country Link
US (2) US10719787B2 (ru)
EP (1) EP3533008A1 (ru)
CN (1) CN109891440A (ru)
AR (1) AR110005A1 (ru)
BR (1) BR112019008676A2 (ru)
RU (1) RU2019115854A (ru)
WO (1) WO2018081759A1 (ru)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018081759A1 (en) * 2016-10-31 2018-05-03 Bayer Cropscience Lp Method for mapping crop yields
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US12069978B2 (en) 2018-10-26 2024-08-27 Deere & Company Predictive environmental characteristic map generation and control system
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US20220405863A1 (en) * 2019-11-18 2022-12-22 Sony Group Corporation Information processing device, information processing method, and program
US11508092B2 (en) 2019-12-16 2022-11-22 X Development Llc Edge-based crop yield prediction
US12035648B2 (en) 2020-02-06 2024-07-16 Deere & Company Predictive weed map generation and control system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US12013245B2 (en) 2020-10-09 2024-06-18 Deere & Company Predictive map generation and control system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US12069986B2 (en) 2020-10-09 2024-08-27 Deere & Company Map generation and control system
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
JP7471211B2 (ja) * 2020-12-10 2024-04-19 株式会社クボタ 圃場マップ生成システム
US12082531B2 (en) 2022-01-26 2024-09-10 Deere & Company Systems and methods for predicting material dynamics
US12058951B2 (en) 2022-04-08 2024-08-13 Deere & Company Predictive nutrient map and control
CN116757867B (zh) * 2023-08-18 2023-11-03 山东征途信息科技股份有限公司 一种基于多源数据融合的数字乡村构建方法及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208680B2 (en) * 2006-11-07 2012-06-26 The Curators Of The University Of Missouri Method of predicting crop yield loss due to N-deficiency
US8135178B2 (en) * 2007-04-10 2012-03-13 Deere & Company Process for normalizing images or other data layers
US10096073B2 (en) * 2011-05-13 2018-10-09 The Climate Corporation Systems to prescribe and deliver fertilizer over agricultural fields and related methods
US20150206255A1 (en) * 2011-05-13 2015-07-23 HydroBio, Inc Method and system to prescribe variable seeding density across a cultivated field using remotely sensed data
US10373353B2 (en) * 2013-10-31 2019-08-06 Trimble Inc. Crop yield data adjustments
US10667456B2 (en) 2014-09-12 2020-06-02 The Climate Corporation Methods and systems for managing agricultural activities
EP3295344A4 (en) * 2015-05-14 2019-01-23 Board of Trustees of Michigan State University PROCESSES AND SYSTEMS FOR THE ASSESSMENT OF HARVEST AREAS AND ADMINISTRATION OF THE GROWTH OF ERNTEGUT
WO2017147682A1 (en) * 2016-03-04 2017-09-08 Crop Production Services (Canada) Inc. System and method for prescribing fertilizer application rates for spatial distribution of a product
EP3528613B1 (en) * 2016-10-24 2022-12-07 Board of Trustees of Michigan State University Method for mapping temporal and spatial sustainability of a cropping system
WO2018081759A1 (en) * 2016-10-31 2018-05-03 Bayer Cropscience Lp Method for mapping crop yields

Also Published As

Publication number Publication date
BR112019008676A2 (pt) 2019-07-09
US11361256B2 (en) 2022-06-14
EP3533008A1 (en) 2019-09-04
US20200057968A1 (en) 2020-02-20
WO2018081759A1 (en) 2018-05-03
US20200364629A1 (en) 2020-11-19
CN109891440A (zh) 2019-06-14
AR110005A1 (es) 2019-02-13
US10719787B2 (en) 2020-07-21
RU2019115854A3 (ru) 2021-03-15

Similar Documents

Publication Publication Date Title
RU2019115854A (ru) Способ картографирования урожайности
Zahawi et al. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery
Kuc et al. Sentinel-2 imagery for mapping and monitoring imperviousness in urban areas
Chu et al. Cotton growth modeling and assessment using unmanned aircraft system visual-band imagery
Riaño et al. Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests
US20160307373A1 (en) Method and system for generating augmented reality agricultural presentations
Hassan-Esfahani et al. Topsoil moisture estimation for precision agriculture using unmmaned aerial vehicle multispectral imagery
Gómez-Candón et al. Geo-referencing remote images for precision agriculture using artificial terrestrial targets
CN107833279B (zh) 一种基于dem的地形坡度分析方法
Baofeng et al. Digital surface model applied to unmanned aerial vehicle based photogrammetry to assess potential biotic or abiotic effects on grapevine canopies
da Silveira et al. Use of MSI/Sentinel-2 and airborne LiDAR data for mapping vegetation and studying the relationships with soil attributes in the Brazilian semi-arid region
CN101403795A (zh) 估算城区树覆盖率的遥感测量方法及其遥感测量系统
Clark Enhanced processing of SPOT multispectral satellite imagery for environmental monitoring and modelling
Almeida et al. Deforestation monitoring in different Brazilian Biomes: challenges and lessons
CN108985154B (zh) 基于影像聚集度的小尺寸地物亚像元定位方法和系统
Jurišić et al. Methodology of development of purpose maps in GIS environment–resource management
Sharma et al. Landuse and landcover mapping of East District of Sikkim using IRSP6 Satellite Imagery
Cunliffe et al. Drone-derived canopy height predicts biomass across non-forest ecosystems globally
Ichikawa et al. Identification of paddy fields in Northern Japan using RapidEye images
Wulfsohn et al. The use of a multirotor and high-resolution imaging for precision horticulture in Chile: An industry perspective
Selin Modeling of effective leaf area index
Attarzadeh et al. Investigating the Possibility of Preparing Small Scale Soil Moisture Map from Coupled SENTINEL-1 and SENTINEL-2 Data
García-Torres et al. Management of remote imagery for precision agriculture
Lang et al. Mapping Vegetation Height from Multispectral Sentinel-2 Images at Country Scale using Deep Learning
Ebrahimi et al. The Estimation of Land Use Changes under Irrigation Water of Traditional Streams of Khansar City