RU2019017C1 - Способ получения импульсно-периодического лазерного излучения - Google Patents

Способ получения импульсно-периодического лазерного излучения Download PDF

Info

Publication number
RU2019017C1
RU2019017C1 SU4920764A RU2019017C1 RU 2019017 C1 RU2019017 C1 RU 2019017C1 SU 4920764 A SU4920764 A SU 4920764A RU 2019017 C1 RU2019017 C1 RU 2019017C1
Authority
RU
Russia
Prior art keywords
resonator
active medium
radiation
cavity
gain
Prior art date
Application number
Other languages
English (en)
Inventor
Анатолий Николаевич Баранов
Ольга Юрьевна Николаева
Анатолий Иванович Одинцов
Николай Геннадьевич Туркин
Анатолий Иванович Федосеев
Original Assignee
Анатолий Николаевич Баранов
Ольга Юрьевна Николаева
Анатолий Иванович Одинцов
Николай Геннадьевич Туркин
Анатолий Иванович Федосеев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Анатолий Николаевич Баранов, Ольга Юрьевна Николаева, Анатолий Иванович Одинцов, Николай Геннадьевич Туркин, Анатолий Иванович Федосеев filed Critical Анатолий Николаевич Баранов
Priority to SU4920764 priority Critical patent/RU2019017C1/ru
Application granted granted Critical
Publication of RU2019017C1 publication Critical patent/RU2019017C1/ru

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

Сущность изобретения: излучение, формируемое в резонаторе проточного лазера, направляют в активную среду до втекания ее в резонатор, где его усиливают и тем самым уменьшают коэффициент усиления активной среды, т.е. насыщают активную среду. Величину потерь резонатора выбирают такой, чтобы при заполнении его насыщенной в усилителе активной средой происходил срыв генерации. Дополнительно изменяют размер усилителя вдоль потока активной среды или скорость потока, а также расстояние между усилителем и резонатором и апертуру резонатора. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к квантовой электронике, а именно к лазерам с движущейся активной средой и непрерывным или квазинепрерывным возбуждением, и может быть использовано для получения мощного импульсно-периодического излучения для технологических применений, систем оптической локации и физических исследований, а также для расширения возможностей и повышения эффективности технологических лазерных установок.
Известен способ получения импульсно-периодического излучения в лазерах с движущейся активной средой, реализованный в устройстве [1]. Он основан на непрерывном возбуждении активной среды (сверхзвукового потока рабочей смеси CO2: N2:He), ее прокачке через оптический резонатор и периодическом изменении соотношения коэффициента усиления среды и потерь в резонаторе лазера. Это соотношение изменяют путем модуляции добротности резонатора лазера, которая осуществляется вращением зеркала резонатора. Несоответствие периода модуляции добротности времени пролета частиц активной среды через резонатор приводит к снижению средней мощности генерации и КПД.
Известен способ получения импульсно-периодического излучения, выбранный в качестве прототипа, который заключается в непрерывном возбуждении активной среды, ее прокачке через оптический резонатор и периодическом изменении соотношения коэффициента усиления среды и потерь резонатора с помощью либо обтюратора, либо вращения зеркала резонатора, и согласовании периода модуляции усиления с временем заполнения резонатора активной средой, которое предлагается брать равным длине резонатора вдоль потока деленной на скорость потока активной среды [2].
Недостатком такого способа является трудность точного согласования времени заполнения резонатора активной средой с периодом модуляции добротности резонатора, поскольку в процессе работы скорость потока не измеряется и частота модуляции не подстраивается к ее возможным изменениям. Трудности указанного согласования значительно возрастают, если скорость прокачки активной среды не постоянна или слишком велика, как в предыдущем случае. Кроме того, за счет дополнительных потерь, вносимых в резонатор модулятором, происходит снижение мощности и КПД лазера. При модуляции добротности возникают также специфические потери, связанные с немгновенным характером включения добротности, вследствие чего в начале импульса генерации в условиях еще низкой добротности резонатора имеет место поглощение части излучения в модулирующем устройстве. Кроме того, при модуляции добротности вращающимся диском или обтюратором происходит некоторое смещение каустики типов колебаний в резонаторе, что приводит к дополнительным потерям мощности генерации и к увеличению расходимости излучения.
Целью изобретения является получение в лазере с движущейся активной средой и непрерывным возбуждением автомодуляционного режима генерации, который обеспечивает повышение мощности импульсно-периодического излучения КПД лазера, уменьшение угловой расходимости излучения и упрощение реализации способа.
Это достигается тем, что в известном способе получения импульсно-периодического излучения в лазерах с движущейся активной средой, включающем непрерывное возбуждение активной среды и ее прокачку через оптический резонатор, а также периодическое изменение соотношения коэффициента усиления среды и потерь резонатора, дополнительно выполняют излучение, формируемое в резонаторе лазера, направляют в активную среду до втекания ее в резонатор, где излучение усиливают и тем самым уменьшают коэффициент усиления активной среды, т.е. насыщают активную среду, причем величину потерь резонатора выбирают такой, чтобы при заполнении его насыщенной в усилителе активной средой происходил срыв генерации.
Другой целью изобретения является управление временными характеристиками генерации - частотой следования импульсов, их формой и длительностью для расширения технологических возможностей лазера, поскольку результат воздействия импульсно-периодического излучения на вещество существенно зависит от временных характеристик излучения.
Это достигается тем, что в предлагаемом выше способе дополнительно изменяют длину зоны усиления по потоку или скорость потока, а также величину зазора между усилителем и резонатором и апертуру резонатора.
Периодическое изменение соотношения коэффициента усиления и потерь в резонаторе лазера осуществляется путем насыщения активной среды лазерным излучением до втекания ее в резонатор, причем величину потерь резонатора выбирают такой, чтобы при заполнении его насыщенной в усилителе активной средой происходил срыв генерации.
На чертеже показана схема реализации способа, включающая движущуюся активную среду 1, зону 2 возбуждения, зону 3 усиления, зону 4 резонатора, зеркала 5 и 6 резонатора, из которых 5 - выходное, поворотные зеркала 7, зеркала усилителя 8 и выходящее из лазера излучение 9.
Способ получения импульсно-периодического излучения в лазере с движущейся активной средой осуществляют следующим образом. Возбуждение движущейся активной среды 1 производят непрерывным или квазинепрерывным образом, например, с помощью электрического разряда в зоне 2 возбуждения, которая может полностью или частично геометрически перекрываться с зоной усиления 3 и зоной резонатора 4. Затем активную среду через зону усиления направляют в зону 4 резонатора, оптическая ось которого перпендикулярна направлению потока.
Механизм формирования автомодуляционного импульсно-периодического режима генерации в предлагаемом способе заключается в следующем. При поступлении в резонатор возбужденной активной среды, коэффициент усиления которой превосходит величину потерь резонатора, в нем за счет индуцированных переходов генерируется лазерное излучение. Часть этого излучения, вышедшую через выходное зеркало 5 резонатора, направляют поворотными зеркалами 7 в усилитель, образованный высокоотражающими зеркалами 8, слегка наклоненными друг по отношению к другу для предотвращения в нем самовозбуждения генерации.
В усилителе это излучение усиливают в активной среде, многократно отражая от зеркал усилителя. Число проходов луча через активную среду усилителя выбирают достаточно большим для максимально полного съема энергии с активной среды. При этом инверсия на рабочем переходе и коэффициент усиления активной среды в зоне усилителя резко падают, т.е. происходит насыщение активной среды. При втекании такой насыщенной активной среды в резонатор генерация в нем прекращается. Для этого коэффициент пропускания выходного зеркала резонатора, определяющий величину потерь резонатора, выбирают достаточно большим, исходя из условия, чтобы коэффициент усиления насыщенной в усилителе активной среды с учетом его возможного частичного восстановления в промежуточной зоне между усилителем и резонатором был ниже уровня потерь резонатора. При заполнении усилителя и резонатора свежей (ненасыщенной) активной средой развивается следующий импульс генерации и процесс повторяется. Отметим, что упомянутый выше выбор величины потерь резонатора имеет принципиальное значение для реализации способа, так как при увеличении добротности резонатора автомодуляционные колебания могут оказаться затухающими и система перейдет в режим стационарной генерации, который в этих условиях будет для нее энергетически более выгодным.
В описанном способе основной съем энергии с активной среды производится в зоне усилителя, объем которого значительно превосходит объем резонатора. Поэтому некоторое снижение добротности резонатора не оказывает заметного влияния на высокую эффективность съема энергии с активной среды, достигаемую в данном способе.
Период следования импульсов излучения определяется временем пролета активной среды через систему. Длительность импульса определяется временем пролета, активной средой апертуры резонатора и зазора между усилителем и резонатором, а также величиной потерь резонатора. Форма импульса излучения определяется отношением величины зазора к апертуре резонатора, величиной потерь резонатора и свойствами активной среды.
Влияние релаксационных процессов в активной среде, таких как процессы колебательного энергообмена в молекулярных газах СО, СО2, N2, приводит к усложнению временных характеристик импульсно-периодического излучения. Последние сложным образом зависят от параметров системы (геометрические размеры, скорость потока, коэффициент усиления среды, расположение зоны возбуждения и другие) и констант релаксации среды. При этом может наблюдаться возникновение "пичковой структуры" в огибающей импульсов, увеличение частоты следования импульсов и другие явления.
Воздействие импульсно-периодического излучения на вещество сильно зависит от частоты следования импульсов, их длительности и формы, поэтому управление этими параметрами излучения лазера расширяет его технологические возможности.
Таким образом, в лазере с движущейся активной средой и непрерывным возбуждением возникает автомодуляционный режим генерирования импульсно-периодического излучения, что автоматически согласовывает частоту следования импульсов со скоростью потока (в том числе сверхзвукового) и приводит к повышению мощности генерируемого излучения и КПД лазера. Кроме того, открываются возможности управления периодом следования импульсов, их длительностью и формой путем изменения геометрических размеров элементов оптической системы, например изменением апертуры резонатора и величины зазора между усилителем и резонатором.
Дополнительными преимуществами способа по изобретению являются уменьшение угловой расходимости и простота реализации, что связано с отсутствием специального модулирующего элемента.
Заявляемый способ опробован в тепловом газодинамическом лазере. В качестве активной среды использовалась смесь СО2:Ar (1:3). Активная среда двигалась со скоростью ≈ 1500 м/с. Ненасыщенный коэффициент усиления на рабочем переходе 0310-1000 молекулы СО2 с длиной волны 18,4 мкм составлял около 1 м-1. В канале постоянного сечения поперек потока был установлен устойчивый резонатор, образованный глухим золотым зеркалом и полупрозрачным выходным зеркалом с коэффициентом пропускания ≈ 30% и размером апертуры около 1 см. Излучение, возникающее в резонаторе, направлялось в образованный плоскими золотыми зеркалами многопроходный усилитель с полной длиной усиления луча ≈ 5, расположенный выше резонатора по потоку. В усилителе излучение усиливалось до уровня 100 Вт, при этом коэффициент усиления активной среды насыщался согласно расчетам до величины kн
Figure 00000001
0/25 м-1/что обеспечивало срыв генерации в резонаторе. Таким образом, в газодинамическом лазере было получено импульсно-периодическое излучение с периодом ≈ 40 мкс и максимальной мощностью в импульсе ≈ 100 Вт. Средняя мощность генерации составила ≈ 12 Вт.

Claims (2)

  1. СПОСОБ ПОЛУЧЕНИЯ ИМПУЛЬСНО-ПЕРИОДИЧЕСКОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ, включающий непрерывное возбуждение рабочей среды и ее прокачку через оптический резонатор, а также периодическое изменение соотношения коэффициента усиления среды и потерь резонатора, отличающийся тем, что, с целью получения автомодуляционного режима генерации, повышения мощности и КПД лазера, а также уменьшения угловой расходимости излучения и упрощения реализации способа, периодическое изменение соотношения коэффициента усиления и потерь резонатора производят за счет насыщения возбужденной рабочей среды путем пропускания сформированного в оптическом резонаторе излучения через область усиления, расположенную выше по потоку оптического резонатора, при этом величину потерь резонатора устанавливают такой, при которой при заполнении резонатора насыщенной средой происходит срыв генерации излучения.
  2. 2. Способ по п.1, отличающийся тем, что, с целью управления частотой следования, формой и длительностью импульсов генерации, производят изменение размера области усиления вдоль потока рабочей среды или скорости прокачки рабочей среды, а также расстояния между областью усиления и оптическим резонатором и апертуры резонатора.
SU4920764 1991-03-20 1991-03-20 Способ получения импульсно-периодического лазерного излучения RU2019017C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4920764 RU2019017C1 (ru) 1991-03-20 1991-03-20 Способ получения импульсно-периодического лазерного излучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4920764 RU2019017C1 (ru) 1991-03-20 1991-03-20 Способ получения импульсно-периодического лазерного излучения

Publications (1)

Publication Number Publication Date
RU2019017C1 true RU2019017C1 (ru) 1994-08-30

Family

ID=21565941

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4920764 RU2019017C1 (ru) 1991-03-20 1991-03-20 Способ получения импульсно-периодического лазерного излучения

Country Status (1)

Country Link
RU (1) RU2019017C1 (ru)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. B.L Wexler etal, C Wand improved pulsed operation of the 14 - and 16 - mm CO(2) lasers. Appl. Phus, 1977, v.31, N11, р.730-732. *
2. Патент США N 4418413, кл. H 01S 3/095, опублик. 1983. *

Similar Documents

Publication Publication Date Title
US5040182A (en) Mode-locked laser
US4314210A (en) Mode-locking and chirping system for lasers
US3978429A (en) Mode-locked laser
US3836866A (en) Q-switched laser mode selection system
Lachambre et al. Frequency and amplitude characteristics of a high repetition rate hybrid TEA-CO 2 laser
RU2019017C1 (ru) Способ получения импульсно-периодического лазерного излучения
JP3035613B1 (ja) 単一モ―ドレ―ザ光のパルス化増幅装置および方法
Sakai et al. Q-switched CO2 laser using intense pulsed rf discharge and high-speed rotating chopper
US4760577A (en) CPM pulse laser device having a feedback means
RU2019016C1 (ru) Импульсно-периодический лазер с прокачкой рабочей среды
US5173918A (en) High power laser having staged laser adjoint pulsed feedback
Hill et al. Breakdown thresholds in rare and molecular gases using pulsed 10· 6 μm radiation
JP3131079B2 (ja) Qスイッチco2レーザ装置
US4112390A (en) Laser generator device emitting at a wavelength close to 1.3 microns
US3922618A (en) Multiple transition laser
US4249139A (en) CO2 laser emitting at 16 microns in 02°0-01'0 transition
Buczek et al. Premixed CW chemical laser
US3676797A (en) Atomic fluorine laser
RU2080717C1 (ru) Способ получения импульсно-периодического автомодулированного лазерного излучения
JPH06310795A (ja) Co2レーザのqスイッチ方法
SU824854A1 (ru) Лазер на парах металлов
Marowsky et al. Traveling wave oscillations of a cw dye laser
US3500235A (en) Q-switched molecular laser
Washio et al. Actively initiated quasi-passive mode-locking in a CW SELFOC Nd: glass laser
Javan High pressure gas laser technology for atmospheric remote sensing