RU2018696C1 - Уплотнение лопасти роторной машины - Google Patents

Уплотнение лопасти роторной машины Download PDF

Info

Publication number
RU2018696C1
RU2018696C1 SU4748137A RU2018696C1 RU 2018696 C1 RU2018696 C1 RU 2018696C1 SU 4748137 A SU4748137 A SU 4748137A RU 2018696 C1 RU2018696 C1 RU 2018696C1
Authority
RU
Russia
Prior art keywords
sealing
plates
blade
plate
seal
Prior art date
Application number
Other languages
English (en)
Inventor
Александр Иванович Бухтияров
Original Assignee
Александр Иванович Бухтияров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Иванович Бухтияров filed Critical Александр Иванович Бухтияров
Priority to SU4748137 priority Critical patent/RU2018696C1/ru
Application granted granted Critical
Publication of RU2018696C1 publication Critical patent/RU2018696C1/ru

Links

Images

Landscapes

  • Sealing Devices (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Сущность изобретения: уплотнительные пластины размещены в пазу лопасти и поджаты упругим элементом. Комплект пластин содержит профилированные элементы, размещенные в сопрягаемой детали соединения с образованием пространства, в котором расположен упругий элемент. Элементы выполнены клиновидными и/или имеют клиновидные участки и установлены с возможностью плотного контакта каждого с прилегающими элементами. Упругий элемент выполнен в виде разрезного пружинного кольца. 1 з.п.ф-лы, 14 ил.

Description

Изобретение относится к машиностроению, в частности к конструкциям уплотнений для роторных машин, например двигателей внутреннего сгорания (ДВС), компрессоров, насосов лопастного типа.
Известно радиальное уплотнение роторного ДВС, содержащее уплотнительную и две опорные пластины, а также экспандер, прижимающий опорные пластины к статору, которые по косой линии взаимодействует с уплотнительной пластиной (Бениович В. С. и др. Роторно-поршневые двигатели. М.: Машиностроение, 1968).
Недостаток уплотнения заключается в том, что оно не обеспечивает уплотнения всех поверхностей трения лопасти роторнолопастного ДВС.
Известно уплотнение лопасти с качающимися роторами, содержащее уплотнительные пластины, которые помещены в паз лопасти и соприкасаются друг с другом своими боковыми и торцовыми поверхностями, одновременно прижатые к поверхности трения пружинными элементами (патент Англии N 1358632, кл. F 01 C 9/00, 1974).
Недостатком этой конструкции является невысокие эффективность и надежность уплотнения. Низкая эффективность объясняется тем, что при работе и износе уплотнений между торцовыми поверхностями уплотнительных пластин начинают появляться зазоры. Через обращенный к камере сгорания промежуток между уплотнительными пластинами одного ряда газ сначала попадает в паз лопасти под уплотнительные пластины, а затем выходит через другой промежуток на противоположную сторону этого ряда уплотнительных пластин. Так происходит, пока газ не пройдет все ряды уплотнительных пластин, находящихся в пазу лопасти, и не попадет в соседнюю камеру сгорания. Невысокая надежность объясняется тем, что пружины вставлены в пазы, прорезанные в каждой уплотнительной пластине, которые являются концентраторами напряжений.
Целью изобретения является повышение эффективности и надежности уплотнения. Эффективность уплотнения достигается за счет того, что уплотнительные элементы выполнены клиновидными и при работе с помощью пружинного элемента компенсируют свой износ, исключая появление между собой и в местах соприкосновения с поверхностями трения каких-либо зазоров. Надежность уплотнения обеспечивается тем, что применяется малое количество элементов уплотнения, в частности пружинных элементов.
Все это обеспечивает снижение потерь рабочего тела в рабочей камере роторной машины, а также дает возможность применения меньшего количества рядов уплотнения в лопасти, что уменьшает потери на трение и упрощает конструкцию.
Поставленная цель достигается тем, что в конструкции уплотнения содержатся по меньшей мере четыре профилированных уплотнительных элемента, которые размещены в посадочном месте лопасти с образованием пространства, в котором находится пружинный элемент, плотно поджимающий уплотнительные элементы как друг к другу, так и к уплотняемым поверхностям. Уплотнительные элементы выполнены клиновидными или имеют клиновидные участки и в процессе работы постоянно компенсирует свой износ. Возможно выполнение упругого элемента в виде разрезного пружинного кольца.
На фиг. 1 показан боковой разрез части роторной машины; на фиг. 2 - сечение А-А на фиг. 1; на фиг. 3 - изображение взаимодействия пружины с боковыми уплотнительными пластинами; на фиг. 4 - уплотнение лопасти в неизношенном состоянии; на фиг. 5-7 - работа уплотнения при его износе; на фиг. 8 и 9 - роторы объемной машины с лопастями; на фиг. 10 - сечение Б-Б на фиг. 8; на фиг. 11 - сечение В-В на фиг. 9; на фиг. 12 - боковой разрез роторной машины в сборе; на фиг. 13 - сечение Г-Г на фиг. 12; на фиг. 14 - скорректированная фиг. 4 с изображением упругого элемента и посадочного места уплотнения.
Уплотнение лопасти роторной машины содержит четыре уплотнительные пластины и одну пружину. Пластины имеют клиновидную форму. Величины углов наклона их скошенных сторон рассчитываются с учетом коэффициентов трения материалов, из которых изготовлены уплотнительные и пружинный элементы, а также статор и ротор роторной машины. Пластины изготавливаются из износостойкого, а при необходимости из жаропрочного материала.
Уплотнение лопасти 1 ротора 2 роторной машины (фиг. 1 и 2) содержит пружину 3 в виде разрезного кольца, помещенного в прорезь 4 лопасти 1, две боковые уплотнительные пластины 5 и 6, одну опорную 7 и одну верхнюю уплотнительную 8 пластины . Пружина 3 в виде кольца выполнена из пружинного материала, наружная радиальная и боковые поверхности которого шлифованы. Уплотнительные 5, 6, 8 и опорная 7 пластины выполнены из износостойкого материала с малым коэффициентом трения. Пластины 5-8 отшлифованы по всем поверхностям. Пружина 3 установлена в прорези 4 лопасти 1 так, что ее разрезная часть находится между точками L и M (фиг. 4). На фиг.3-7 пружина 3 показана в виде сплошной окружности. На фиг. 4-7 контур лопасти, скрытый пластинами, показан пунктиром.
С пружинным кольцом непосредственно соприкасаются своими торцами пластины 5-7, а пластина 8 опирается на пластины 5 и 7 и не соприкасается с пружиной 3 (фиг. 2 и 4).
Пластина 8 служит для уплотнения верхней поверхности трения лопасти 1 о статор 9 (фиг. 2). Пластина 5 необходима для уплотнения как боковой поверхности трения лопасти 1 о статор 9, так и поверхности трения лопасти 1 ротора 2 о другой ротор 10 (фиг. 2, 3 и 5). Пластина 6 служит для уплотнения другой боковой поверхности трения лопасти 1 о статор 9. Опорная пластина 7 нужна для устранения зазоров между уплотнительными пластинами 5, 6 и 8 при их износе по поверхности трения (фиг. 5-7).
Для изготовления уплотнительных и опорной пластин сначала необходимо выполнить графическое построение их форм.
Уплотнительная пластина 6 может иметь форму треугольника или трапеции (фиг. 4 и 2). В зависимости от размеров лопасти 1 и формы сечения статора 9 (фиг. 2) выбираются размеры АВ, ВС, CD, DЕ, FA (фиг. 4). Внутри фигуры, образованной линиями AB, BC, CD, DA, проводится окружность I (показана пунктиром) с таким диаметром, чтобы прямые линии а-а и б-б, проведенные к ней по касательной через точки В и С, составили между собой угол α > arctg F1 (фиг. 3), где F1 - коэффициент трения скольжения между материалом боковых пластин 5, 6 и материалом пружинного кольца. Проведенная через точку С другая касательная прямая в-в к окружности I составляет с отрезком ВС угол β , величина которого должна быть достаточной для обеспечения возможности движения пластины 8 в направлении силы F7 под действием силы F4 (фиг. 6). Для этого необходимо учесть коэффициенты трения скольжения материалов пластин 7 и 8 и материала статора 9.
Касательная 2-2 к окружности I проведена под углом γ > 2 arctg F2 к другой касательной д-д, проходящей через точку, которая является точкой соприкосновения опорной пластины 7 с пружинным кольцом, где F2 - коэффициент трения скольжения между материалами пружины 3 и пластин 5, 7. Это необходимо для того, чтобы пружина 3, разжимаясь, могла перемещаться в направлении силы R1-3 (фиг. 4) и постоянно действовать на пластину 6, прижимая ее к боковой поверхности трения статора 9 (фиг. 4-7).
Угол между прямой 2-2 и отрезком AF должен быть больше значения delta>> arctg F3, где F3 - коэффициент трения скольжения между материалом пластины 5 и материалом ротора 10. Это необходимо для движения пластины 5 в направлении силы F9 при ее износе по поверхности трения о статор 9 (фиг. 5).
Задав расстояние AF, можно окончательно получить форму боковой уплотнительной пластины 5. Расстояние AF выбирается с учетом возможной величины износа пластины 5 по поверхности трения о статор 9.
Итак, форма пластины 5 (фиг. 4) ограничена отрезком BN, где N - точка касания прямой а-а и окружности I, дугой NL этой окружности, отрезком LK, где L - точка касания прямой LK и окружности I, отрезками ВА и AF, проведенными параллельно поверхностям трения лопасти о статор 9 и ротор 10, и отрезком FK, длина которого выбирается с учетом возможной величины износа пластины 5 по поверхности трения о ротор 10.
Проведя касательные прямые е-е и ж-ж к окружности I соответственно параллельно или примерно параллельно прямым б-б и а-а, можно окончательно построить форму верхней уплотнительной пластины 8. Она будет ограничена отрезком ВС, равным ширине сечения камеры сгорания (фиг. 2 и 4), отрезком СР, являющимся частью прямой в-в, где Р - точка касания данной прямой с окружностью I, дугой PG' окружности I, отрезком GG', лежащим на прямой е-е, где G' - точка касания данной прямой с окружностью I, и отрезком GB, являющимся частью прямой а-а.
Форму опорной пластины 7 можно построить, выбран длину отрезка HI (фиг. 4), соединив при этом точки I и I' дугой радиусом окружности I, где I' - точка касания прямой ж-ж с данной окружностью. Длина отрезка HI выбирается такой, что при максимальном износе всех уплотнительных пластин, т.е. до выхода точек G, H, I за пределы контура лопасти (фиг. 5-7), или при полном разжатии пружины 3, последняя только начинает касаться верхней уплотнительной пластины 8, точка R (фиг. 7).
Для уменьшения контактных напряжений в месте касания пружины 3 с пластиной 7 (точка I), а также для возможности более позднего выхода точки Н за пределы контура лопасти 1 при износе пластины 8 по поверхности трения о статор 9 отрезок HI может быть выполнен с наклоном (см. пунктир, фиг. 4), отрезок IH'.
Криволинейные поверхности пластин 5, 7 и 8 могут быть отшлифованы по копиру или кругом определенного диаметра.
Возможно размещение нескольких рядов таких уплотнений, как в общем пазу лопасти 1, так и в отдельных. При общем размещении уплотнений в одном пазу необходимо, чтобы у пружинных колец по наружной радиальной поверхности были сняты фаски или же соседние ряды уплотнений отделялись друг от друга тонким вкладышем (фольгой). Это необходимо для исключения возможности действия пружинного кольца и пластин одного ряда на другой. Зафиксирована от проворачивания пружина 3 может быть штифтом 11 (фиг. 2), впрессованным в тело лопасти 1 или каким-либо другим способом.
При работе роторной машины уплотнительные 6, 8 и опорная 7 пластины лопасти 1 ротора 2 изнашиваются в местах соприкосновения их со статором 9, а уплотнительная пластина 5 боковой своей частью - со статором 9, нижней - с ротором 10 (фиг. 2). Роторы 10 и 2 совершают в процессе работы роторной машины колебательные движения относительно друг друга.
Взаимодействие пружинного кольца и боковых уплотнительных пластин 5 и 6 показано на фиг. 3. Сжатое кольцо, помещенное между уплотнительными пластинами 5 и 6, стремясь разжаться под действием сил упругости, двигается в направлении силы R1-2. Сила реакции R1-2 является геометрической суммой реакций R1 и R2, возникающих от действия кольца на пластины 5 и 6.
Движение пружины 3 возможно только при условии, что величина угла α (фиг. 3) должна быть больше величины 2 arctg F.
Движение кольца необходимо для того, чтобы оно, разжимаясь и двигаясь вверх, через опорную пластину 7 прижимало верхнюю и боковую 6 пластины к поверхностям трения статора 9.
Сила F2, действующая на уплотнительную пластину 6 (фиг. 3), прижимает ее к боковой стенке статора 9, сила F1, воздействуя на пластину 5, прижимает ее как к боковой стенке статора 9, так и к поверхности трения ротора 10 (фиг. 2).
Взаимодействие пружинного кольца через опорную пластину 7 на уплотнительные пластины 5, 6 и 8 показано на фиг. 4-6.
Кольцо, действуя на опорную пластину 7 (фиг. 4,5 ), в точке I силой F3 прижимает ее к пластинам 8 и 6. В результате на пластину 8 действует сила F4, являющаяся составляющей силы F3, с помощью которой пластина 8 прижимается к поверхности трения статора 9 (фиг. 4). Составляющая F5 силы F3 стремится двигать опорную пластину 7 в своем направлении, последняя дополнительно сможет поджимать пластину 6 к боковой поверхности трения статора 9 с силой F6, являющейся в свою очередь составляющей силы F5 (фиг. 5).
Под действием силы F7, являющейся составляющей силы F4, пластина 8 прижимается к пластине 5, дополнительно прижимая ее к боковой поверхности трения статора 9 (фиг. 6). Это возможно при условии, что величина угла β достаточна для возможности движения пластины 8 в направлении силы F7. При этом учитываются коэффициенты трения скольжения материалов статора 9, пластин 7 и 8.
Пружинное кольцо должно иметь силу упругости, достаточную для преодоления сил трения, возникающих в местах соприкосновения пластин как друг с другом, так и с пружиной 3, а также с поверхностями трения ротора 10 и статора 9.
Введение указанных элементов и связей позволяет повысить эффективность и надежность уплотнения. Это достигается за счет того, что уплотнительные и опорная пластины взаимодействуют друг с другом своими торцовыми поверхностями по косым линиям и при износе их по поверхностям трения о статор и ротор не образуют между собой никаких зазоров. Это обеспечивается действием одного пружинного кольца сразу же на две боковые уплотнительные пластины, которое прижимает их к поверхностям трения, и одновременным действием кольца на опорную пластину, которая своими скошенными сторонами действует на соседние, боковую и верхнюю уплотнительные пластины, прижимая их к поверхностям трения. Опорная пластина, действуя как клин, не допускает появления зазоров между всеми пластинами при их износе, при этом сама изнашивается в том месте, где соприкасается со статором.
Все это повышает эффективность уплотнения, что ведет к уменьшению потерь рабочего тела в камере сгорания роторной машины, увеличению экономичности роторного ДВС, возможности применения меньшего количества рядов уплотнений в лопасти, что уменьшает потери на трение и упрощает конструкцию.
При изготовлении уплотнения, применяя различный материал для пластин и пружин и подбирая в каждом конкретном случае углы наклона скошенных сторон пластин, можно добиться оптимального режима работы уплотнения в целом.

Claims (2)

1. УПЛОТНЕНИЕ ЛОПАСТИ РОТОРНОЙ МАШИНЫ, содержащее по меньшей мере один комплект уплотнительных пластин, размещенных в пазу лопасти и поджатых посредством упругого элемента, отличающееся тем, что, с целью повышения эффективности и надежности путем компенсации износа элементов, комплект включает по меньшей мере четыре профилированных элемента, размещенных в сопрягаемой детали соединения с образованием пространства, в котором возможно размещение как минимум одного упругого элемента, при этом элементы выполнены клиновидными и/или имеют клиновидные участки и расположены с возможностью плотного контакта каждого с прилегающими элементами, а также с частями места установки.
2. Уплотнение по п.1, отличающееся тем, что упругий элемент выполнен в виде разрезного пружинного кольца.
SU4748137 1989-08-11 1989-08-11 Уплотнение лопасти роторной машины RU2018696C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4748137 RU2018696C1 (ru) 1989-08-11 1989-08-11 Уплотнение лопасти роторной машины

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4748137 RU2018696C1 (ru) 1989-08-11 1989-08-11 Уплотнение лопасти роторной машины

Publications (1)

Publication Number Publication Date
RU2018696C1 true RU2018696C1 (ru) 1994-08-30

Family

ID=21474042

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4748137 RU2018696C1 (ru) 1989-08-11 1989-08-11 Уплотнение лопасти роторной машины

Country Status (1)

Country Link
RU (1) RU2018696C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2505690C2 (ru) * 2011-11-14 2014-01-27 Владимир Николаевич Васецкий Роторно-поршневой двигатель внутреннего сгорания

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Патент Англии N 1358632, кл. F 01C 9/00, 1974. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2505690C2 (ru) * 2011-11-14 2014-01-27 Владимир Николаевич Васецкий Роторно-поршневой двигатель внутреннего сгорания

Similar Documents

Publication Publication Date Title
CA1051843A (en) Axial compliance means with radial sealing for scroll-type apparatus
US4082484A (en) Scroll-type apparatus with fixed throw crank drive mechanism
CA1185942A (en) Mechanically actuated tip seals for scroll apparatus and scroll apparatus embodying the same
US5836752A (en) Scroll-type compressor with spirals of varying pitch
US20070296160A1 (en) "L" butt gap seal between segments in seal assemblies
US4050702A (en) Segmented sealing structure
EP0805921A1 (en) Volumetric machine with curved liners
RU2018696C1 (ru) Уплотнение лопасти роторной машины
GB2200408A (en) Scroll-type displacement machine for compressible media
US5692887A (en) Fixed vane rotary compressor
EP0494912A1 (en) Rotary piston machine seal
CA2233017C (en) Non-contiguous thrust bearing interface for a scroll compressor
US6071101A (en) Scroll-type fluid displacement device having flow diverter, multiple tip seal and semi-radial compliant mechanism
JP3445794B2 (ja) 高い固有容積比を有するスクロール型流体排出装置およびセミ・コンプライアント・バイアス機構
CA1077780A (en) Method for sealing off in the radial direction a volume of fluid bound between a stator and a rotor and an arrangement for carrying out said method
JPH0610860A (ja) 圧縮性流体用圧縮機
US9464567B2 (en) Dual tip seals for a rotary engine
EP1113201A2 (en) Brush seal and segment for rotary machines such as turbines
RU2012824C1 (ru) Уплотнение
RU2086841C1 (ru) Уплотнение
KR100498392B1 (ko) 스크롤 압축기의 축방향 누설 방지 장치
SU1404728A2 (ru) Пара трени торцового уплотнени
SU1421937A1 (ru) Поршневое уплотнение
JPS62126203A (ja) スクロ−ル流体機械
EP0345392A1 (en) Rotary engine