RU2016139109A - Способ обнаружения неисправности первого газотурбинного двигателя двухмоторного вертолета и управления вторым газотурбинным двигателем и соответствующее устройство - Google Patents

Способ обнаружения неисправности первого газотурбинного двигателя двухмоторного вертолета и управления вторым газотурбинным двигателем и соответствующее устройство Download PDF

Info

Publication number
RU2016139109A
RU2016139109A RU2016139109A RU2016139109A RU2016139109A RU 2016139109 A RU2016139109 A RU 2016139109A RU 2016139109 A RU2016139109 A RU 2016139109A RU 2016139109 A RU2016139109 A RU 2016139109A RU 2016139109 A RU2016139109 A RU 2016139109A
Authority
RU
Russia
Prior art keywords
engine
malfunction
serviceable
faulty
engines
Prior art date
Application number
RU2016139109A
Other languages
English (en)
Other versions
RU2016139109A3 (ru
RU2674171C2 (ru
Inventor
Фабьен ЛЕШЕ
Жан Филипп Жак МАРЭН
Филипп ЭТШЕПАР
Original Assignee
Сафран Хеликоптер Энджинз
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сафран Хеликоптер Энджинз filed Critical Сафран Хеликоптер Энджинз
Publication of RU2016139109A publication Critical patent/RU2016139109A/ru
Publication of RU2016139109A3 publication Critical patent/RU2016139109A3/ru
Application granted granted Critical
Publication of RU2674171C2 publication Critical patent/RU2674171C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • B64D31/12Initiating means actuated automatically for equalising or synchronising power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • F02C3/10Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor with another turbine driving an output shaft but not driving the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/02Plural gas-turbine plants having a common power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/46Emergency fuel control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/56Control of fuel supply conjointly with another control of the plant with power transmission control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/12Plants including a gas turbine driving a compressor or a ducted fan characterised by having more than one gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/329Application in turbines in gas turbines in helicopters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/09Purpose of the control system to cope with emergencies
    • F05D2270/091Purpose of the control system to cope with emergencies in particular sudden load loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/09Purpose of the control system to cope with emergencies
    • F05D2270/093Purpose of the control system to cope with emergencies of one engine in a multi-engine system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/09Purpose of the control system to cope with emergencies
    • F05D2270/095Purpose of the control system to cope with emergencies by temporary overriding set control limits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/335Output power or torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Turbines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Eletrric Generators (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Claims (27)

1. Способ обнаружения неисправности первого газотурбинного двигателя, называемого неисправным двигателем (4), двухмоторного вертолета с несущим винтом и управления вторым газотурбинным двигателем, называемым исправным двигателем (5), при этом каждый двигатель (4,5) содержит защитные упоры, регулируемые устройством (8) регулирования и определяющие режим максимальной мощности, отличающийся тем, что содержит:
этап (10) обнаружения признака неисправности упомянутого неисправного двигателя (4),
этап (11) изменения упомянутых защитных упоров упомянутого исправного двигателя (5) до защитных упоров, соответствующих режиму работы на одном двигателе, в случае обнаруженного признака неисправности,
этап (12) подтверждения неисправности упомянутого неисправного двигателя (4),
этап (13) подачи команды на немедленное увеличение расхода питания топливом упомянутого исправного двигателя (5) в случае подтверждения неисправности для обеспечения ускорения исправного двигателя, не дожидаясь автоматического регулирования исправного двигателя после падения скорости упомянутого несущего винта в результате неисправности неисправного двигателя.
2. Способ по п. 1, отличающийся тем, что на упомянутом этапе (10) обнаружения признака неисправности:
для каждого двигателя производят по меньшей мере одно измерение по меньшей мере одного параметра, характеризующего режим работы двигателей,
обнаруживают отклонение между упомянутыми измерениями, превышающее по абсолютной величине заранее определенный порог.
3. Способ по п. 2, отличающийся тем, что каждое обнаружение отклонения между упомянутыми измерениями модулируют при помощи по меньшей мере одной переменной, называемой модуляционной переменной (20), отображающей нормальные изменения упомянутых измерений во время номинального режима работы двигателей (4,5).
4. Способ по п. 3, отличающийся тем, что по меньшей мере одну модуляционную переменную (20) выбирают из группы, в которую входят: тип режимов двигателей (4,5); тип действительного уравновешивания двигателей (4,5); приближение измерений скоростей вала и крутящего момента двигателей (4,5) к максимальным значениям, допустимым для этих двигателей; степень ускорения и замедления скорости двигателей (4,5); время передачи упомянутых измерений каждого параметра, характеризующего режим работы двигателей.
5. Способ по одному из пп. 3 или 4, отличающийся тем, что дополнительно содержит этап обучения номинальных отклонений между упомянутыми измерениями параметра, характеризующего режим работы двигателей (4,5), во время устоявшихся режимов упомянутых двигателей, при этом определенные таким образом упомянутые номинальные отклонения представляют собой модуляционную переменную (20).
6. Способ по одному из пп. 2-5, в котором каждый двигатель содержит газогенератор, питающий свободную турбину, которая приводит во вращение выходной вал, отличающийся тем, что по меньшей мере одним параметром, характеризующим режим работы двигателей (4,5), является скорость вращения упомянутого газогенератора или крутящий момент, создаваемый упомянутым выходным валом этого двигателя.
7. Способ по п. 6, отличающийся тем, что упомянутый этап (11) изменения защитных упоров упомянутого исправного двигателя до защитных упоров, соответствующих режиму работы на одном двигателе, состоит в увеличении крутящего момента, создаваемого упомянутым выходным валом и в повышении скорости вращения упомянутого газогенератора (51) для достижения заранее определенных номинальных значений, соответствующих режиму работы на одном двигателе на полной мощности.
8. Способ по одному из пп. 1-7, отличающийся тем, что упомянутый этап (12) подтверждения неисправности упомянутого первого двигателя состоит в проверке соблюдения множества заранее определенных условий, отображающих реальную потерю мощности.
9. Способ по пп. 6 и 8 в комбинации, отличающийся тем, что упомянутые заранее определенными условиями являются следующими:
отмеченное отклонение между скоростью вращения упомянутого газогенератора (41) упомянутого неисправного двигателя (4) и скоростью вращения упомянутого газогенератора (51) упомянутого исправного двигателя (5) превышает отклонение, измеренное на упомянутом этапе (10) обнаружения признака для этого параметра,
отмеченное отклонение между крутящим моментом упомянутого выходного вала упомянутого неисправного двигателя (4) и крутящим моментов упомянутого выходного вала упомянутого исправного двигателя (5) превышает отклонение, измеренное на упомянутом этапе (10) обнаружения признака,
скорость вращения упомянутой свободной турбины (42) упомянутого неисправного двигателя (4) ниже заранее определенного заданного значения, уменьшенного на заранее определенное смещение,
временной дрейф скорости вращения упомянутого газогенератора (51) упомянутого исправного двигателя (5) превышает заранее определенный порог,
временной дрейф скорости вращения упомянутого газогенератора (41) упомянутого неисправного двигателя (4) ниже заранее определенного порога.
10. Способ по п. 9, отличающийся тем, что упомянутый этап (13) подачи команды на увеличение расхода питания топливом упомянутого исправного двигателя (5) состоит в переходе от правила упреждения мощности, связывающего измерение общего шага лопастей упомянутого вертолета с заданным значением скорости упомянутого газогенератора, в конфигурации работы на двух двигателях к правилу упреждения в конфигурации работы на одном двигателе.
11. Устройство обнаружения неисправности первого газотурбинного двигателя, называемого неисправным двигателем, двухмоторного вертолета и управления вторым газотурбинным двигателем, называемым исправным двигателем, при этом каждый двигатель содержит защитные упоры, регулируемые устройством регулирования, которые определяют режим максимальной мощности, содержащее:
модуль обнаружения признака неисправности упомянутого неисправного двигателя,
модуль увеличения упомянутых защитных упоров упомянутого исправного двигателя до упоров, соответствующих режиму работы на одном двигателе, в случае обнаруженного признака неисправности,
модуль подтверждения неисправности упомянутого неисправного двигателя,
модуль подачи команды на немедленное увеличение расхода питания топливом упомянутого исправного двигателя в случае подтверждения неисправности, чтобы обеспечить ускорение двигателя, не дожидаясь автоматического регулирования исправного двигателя вследствие падения скорости упомянутого несущего винта в результате неисправности неисправного двигателя.
12. Вертолет, содержащий по меньшей мере два газотурбинных двигателя, отличающийся тем, что содержит устройство по п. 11.
RU2016139109A 2014-03-27 2015-03-20 Способ обнаружения неисправности первого газотурбинного двигателя двухмоторного вертолета и управления вторым газотурбинным двигателем и соответствующее устройство RU2674171C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1452642 2014-03-27
FR1452642A FR3019225B1 (fr) 2014-03-27 2014-03-27 Procede de detection d'une defaillance d'un premier turbomoteur d'un helicoptere bimoteur et de commande du second turbomoteur, et dispositif correspondant
PCT/FR2015/050697 WO2015145041A1 (fr) 2014-03-27 2015-03-20 Procede de detection d'une defaillance d'un premier turbomoteur d'un helicoptere bimoteur et de commande du second turbomoteur, et dispositif correspondant

Publications (3)

Publication Number Publication Date
RU2016139109A true RU2016139109A (ru) 2018-04-27
RU2016139109A3 RU2016139109A3 (ru) 2018-10-10
RU2674171C2 RU2674171C2 (ru) 2018-12-05

Family

ID=50780777

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016139109A RU2674171C2 (ru) 2014-03-27 2015-03-20 Способ обнаружения неисправности первого газотурбинного двигателя двухмоторного вертолета и управления вторым газотурбинным двигателем и соответствующее устройство

Country Status (11)

Country Link
US (1) US10578031B2 (ru)
EP (1) EP3123020B1 (ru)
JP (1) JP6621757B2 (ru)
KR (1) KR102339468B1 (ru)
CN (1) CN106255814B (ru)
CA (1) CA2943150C (ru)
ES (1) ES2712863T3 (ru)
FR (1) FR3019225B1 (ru)
PL (1) PL3123020T3 (ru)
RU (1) RU2674171C2 (ru)
WO (1) WO2015145041A1 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760484B2 (en) 2016-09-16 2020-09-01 Pratt & Whitney Canada Corp. Multi-engine aircraft power plant with heat recuperation
FR3062881B1 (fr) * 2017-02-15 2019-03-15 Safran Helicopter Engines Procede et systeme de commande d'un dispositif d'urgence
FR3064680B1 (fr) 2017-04-03 2019-04-05 Safran Helicopter Engines Procede de verification de la puissance maximale disponible d'une turbomachine d'un aeronef equipe de deux turbomachines
US11247782B2 (en) * 2018-09-21 2022-02-15 Textron Innovations Inc. System and method for controlling rotorcraft
US11987375B2 (en) 2019-02-08 2024-05-21 Pratt & Whitney Canada Corp. System and method for operating engines of an aircraft in an asymmetric operating regime
US11725597B2 (en) 2019-02-08 2023-08-15 Pratt & Whitney Canada Corp. System and method for exiting an asymmetric engine operating regime
US11168621B2 (en) 2019-03-05 2021-11-09 Pratt & Whitney Canada Corp. Method and system for operating an engine in a multi-engine aircraft
CN109854389B (zh) * 2019-03-21 2020-07-31 南京航空航天大学 涡轴发动机双发扭矩匹配控制方法及装置
US11352900B2 (en) * 2019-05-14 2022-06-07 Pratt & Whitney Canada Corp. Method and system for operating a rotorcraft engine
US11299286B2 (en) 2019-05-15 2022-04-12 Pratt & Whitney Canada Corp. System and method for operating a multi-engine aircraft
US11781476B2 (en) 2019-06-25 2023-10-10 Pratt & Whitney Canada Corp. System and method for operating a multi-engine rotorcraft
US20210102504A1 (en) * 2019-10-04 2021-04-08 Pratt & Whitney Canada Corp. Method and system for operating an aircraft powerplant
FR3111668B1 (fr) * 2020-06-17 2023-04-07 Airbus Helicopters Procédé pour arrêter un moteur en survitesse, système et giravion associés
CN112173134B (zh) * 2020-09-25 2023-03-03 中国直升机设计研究所 一种三发直升机全发应急模式控制方法
US11668249B2 (en) * 2021-09-14 2023-06-06 Pratt & Whitney Canada Corp. System and method for operating a multi-engine aircraft
US20230339620A1 (en) * 2022-04-22 2023-10-26 Pratt & Whitney Canada Corp. Operating aircraft propulsion system during engine-inoperative event

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1519144A (en) * 1974-07-09 1978-07-26 Lucas Industries Ltd Electronic fuel control for a gas turbine engine
US4500966A (en) * 1982-05-26 1985-02-19 Chandler Evans Inc. Super contingency aircraft engine control
US5265826A (en) * 1991-08-27 1993-11-30 United Technologies Corporation Helicopter engine control having lateral cyclic pitch anticipation
US5363317A (en) * 1992-10-29 1994-11-08 United Technologies Corporation Engine failure monitor for a multi-engine aircraft having partial engine failure and driveshaft failure detection
US6873887B2 (en) * 2001-11-13 2005-03-29 Goodrich Pump & Engine Control Systems, Inc. Rotor torque anticipator
GB0317394D0 (en) * 2003-07-25 2003-08-27 Goodrich Control Sys Ltd Engine fuel control
US9464573B2 (en) * 2007-09-25 2016-10-11 Airbus Sas Method for operating a gas turbine engine, power supplying device for conducting such method and aircraft using such method
FR2967132B1 (fr) * 2010-11-04 2012-11-09 Turbomeca Procede d'optimisation de la consommation specifique d'un helicoptere bimoteur et architecture bimoteur dissymetrique a systeme de regulation pour sa mise en oeuvre
FR2985715B1 (fr) * 2012-01-12 2013-12-27 Eurocopter France Installation motrice d'un aeronef, aeronef, et procede de pilotage dudit aeronef

Also Published As

Publication number Publication date
RU2016139109A3 (ru) 2018-10-10
CN106255814A (zh) 2016-12-21
JP6621757B2 (ja) 2019-12-18
KR20160140703A (ko) 2016-12-07
US20170101938A1 (en) 2017-04-13
US10578031B2 (en) 2020-03-03
FR3019225A1 (fr) 2015-10-02
CA2943150C (fr) 2022-06-14
ES2712863T3 (es) 2019-05-16
PL3123020T3 (pl) 2019-06-28
FR3019225B1 (fr) 2018-06-22
EP3123020B1 (fr) 2019-01-30
KR102339468B1 (ko) 2021-12-15
RU2674171C2 (ru) 2018-12-05
WO2015145041A1 (fr) 2015-10-01
CA2943150A1 (fr) 2015-10-01
CN106255814B (zh) 2018-10-26
EP3123020A1 (fr) 2017-02-01
JP2017521586A (ja) 2017-08-03

Similar Documents

Publication Publication Date Title
RU2016139109A (ru) Способ обнаружения неисправности первого газотурбинного двигателя двухмоторного вертолета и управления вторым газотурбинным двигателем и соответствующее устройство
US9346553B2 (en) Balancing the power of two turboshaft engines of an aircraft
CN105332855B (zh) 用于风力涡轮机的控制方法和控制系统
EP3693571B1 (en) Transient operation control of a hybrid gas turbine engine
JP2012112377A5 (ru)
DK2807370T5 (en) SAFETY CHAIN AND PROCEDURE FOR WINDMILL OPERATION
CN102472248A (zh) 用于避免共因关机的风力发电场控制器
WO2017108047A1 (en) Wind turbine system with time distributed transitions
JP6847118B2 (ja) 風力発電設備
US9297313B2 (en) Control apparatus for angling guide vanes of a torque converter
CN104405582A (zh) 兆瓦级风力发电机组轮毂安全链及其控制方法
US20110293418A1 (en) Device and method for controlling wind turbine
JP2019074080A (ja) 風力発電装置及びその制御方法並びに制御プログラム
EP2881549B1 (en) System and method for preventing an emergency over-speed condition in a rotating machine
US20150367951A1 (en) Monitor system for monitoring the starting of a rotary wing aircraft, an aircraft, and a method using the system
EP4019396A1 (en) System and method for detecting propeller malfunction
US20140200790A1 (en) Monitor system for monitoring the starting of a rotary wing aircraft, an aircraft, and a method using the system
JP2015102000A (ja) 風車ピッチ用ブレーキ機能検出装置
EP3722597A1 (en) System and method for preventing catastrophic damage in drivetrain of a wind turbine
EP3835559A1 (en) System and method for detecting and accommodating a loss of torque signal on a gas turbine engine
EP3260671A1 (en) Turbine control valves dynamic interaction
US20190301307A1 (en) Turbine speed and acceleration limiter
EP2851559B1 (en) Method and arrangement for controlling a rotor movement of a wind turbine rotor
KR102669981B1 (ko) 하이브리드 엔진 시스템 및 그 제어 방법
JP2019527802A (ja) 駆動装置、および回転数を制限する方法