RU2016104767A - CONTROL SYSTEM IN THE LONGITUDINAL CHANNEL OF PILOTED AND UNMANNED AERIAL VEHICLES IN THE MODE OF ATTRACTION FROM DANGEROUS HEIGHT WHEN WORKING ON LAND OBJECTS - Google Patents

CONTROL SYSTEM IN THE LONGITUDINAL CHANNEL OF PILOTED AND UNMANNED AERIAL VEHICLES IN THE MODE OF ATTRACTION FROM DANGEROUS HEIGHT WHEN WORKING ON LAND OBJECTS Download PDF

Info

Publication number
RU2016104767A
RU2016104767A RU2016104767A RU2016104767A RU2016104767A RU 2016104767 A RU2016104767 A RU 2016104767A RU 2016104767 A RU2016104767 A RU 2016104767A RU 2016104767 A RU2016104767 A RU 2016104767A RU 2016104767 A RU2016104767 A RU 2016104767A
Authority
RU
Russia
Prior art keywords
signal
control
stu
output
input
Prior art date
Application number
RU2016104767A
Other languages
Russian (ru)
Other versions
RU2644048C2 (en
Inventor
Денис Александрович Михайлин
Григорий Михайлович Синевич
Original Assignee
Акционерное общество "Концерн радиостроения "Вега"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Концерн радиостроения "Вега" filed Critical Акционерное общество "Концерн радиостроения "Вега"
Priority to RU2016104767A priority Critical patent/RU2644048C2/en
Publication of RU2016104767A publication Critical patent/RU2016104767A/en
Application granted granted Critical
Publication of RU2644048C2 publication Critical patent/RU2644048C2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)

Claims (8)

Система, состоящая из радиовысотомера малых высот (РВ), системы воздушных сигналов (СВС) для измерения вертикальной скорости Vy и воздушной скорости V, бесплатформенной инерциальной навигационной системы (БИНС), в составе датчика нормальной перегрузки ny, датчика угловой скорости тангажа ωz и датчика положения ручки летчика Xp, цифровой системы траекторного управления (СТУ), и модальной системы дистанционного управления (СДУ) в составе блока формирования приведенного коэффициента подъемной силы
Figure 00000001
в зависимости от условий полета по высоте и воздушной скорости, вычислителя желаемой передаточной функции Wж(p) по критерию Шомбера-Гертсена оптимальной управляемости по угловой скорости тангажа ωzm, на вход которого подключены сигналы
Figure 00000002
и Xp и вычислитель формирования астатической невязки по разности (ωzzm), входы которого соответственно соединены с датчиками угловой скорости тангажа ωz и вычислителем Wж(p), а выход соединен с первым входом электрогидравлического привода, второй вход которого соединен с выходом демпфера по сигналу ωzm и ny, причем в СДУ поступают данные с датчиков первичной информации БИНС, от СВС, РВ и датчика положения ручки летчика Xp, отличается тем, что в состав СТУ введен вычислитель управления высотой (ВУВ) и вычислитель алгоритма (ВАСОВ) для формирования сигнала опасной высоты Ноп, на вход которого поступают сигнал текущей высоты с выхода радиовысотомера малых высот HPB, сигнал безопасной высоты Ноп+ΔН, введенный с пульта РВ и корректируемый сигнал вертикальной скорости с выхода СВС, при условии HPB≤Hбо+k⋅Vy с выхода BACOB выдается сформированный сигнал Ноп, который поступает на вход вычислителя управления высотой (ВУВ) и обеспечивает начало его работы, также на соответствующие входы ВУВ поступают сигналы HPB, Нбо и k⋅Vy, при этом на выходе ВУВ формируется сигнал управления гидравлическим приводом ЛА по правилу:
A system consisting of a low altitude radio altimeter (RV), an airborne signal system (AHS) for measuring vertical speed V y and airspeed V, a strapdown inertial navigation system (SINS), consisting of a normal overload sensor n y , and a pitch angular velocity sensor ω z and a pilot position sensor X p , a digital trajectory control system (STU), and a modal remote control system (SDU) as part of the unit for generating a reduced lift coefficient
Figure 00000001
depending on flight conditions in altitude and airspeed, calculator of the desired transfer function W w (p) according to the Schombert-Gertsen criterion of optimal controllability in terms of pitch angular velocity ω zm , to the input of which signals
Figure 00000002
and X p and a calculator of the formation of an astatic residual by difference (ω zzm ), the inputs of which are respectively connected to the pitch angular velocity sensors ω z and the calculator W w (p), and the output is connected to the first input of the electro-hydraulic drive, the second input of which with the damper output by the signal ω zm and n y , moreover, the SDE receives data from the primary information sensors of the SINS, from the SHS, RV, and the position sensor of the pilot’s handle X p , differs in that the STU includes a height control computer (VUV) and a computer algorithm (YOU) for form Hovhan dangerous height signal H op, the input of which receives the signal current output from the radio altimeter altitude low altitude H PB, safe altitude signal H? H + op inputted from the remote CM and corrected vertical signal SVS speed output provided bo H PB ≤H + k⋅V y from the BACOB output, the generated signal Н op is generated, which is fed to the input of the height control computer (HLW) and provides the beginning of its operation, also H PB , Н Bo and k⋅V y signals are received at the corresponding inputs of the HLW, Hydraulic control signal is generated at the output of the water turbine Aircraft driven by the rule:
Figure 00000003
, где:
Figure 00000003
where:
UCTY=k1(HPB-Hбo)+k2Vy - управляющий сигнал СТУ;U CTY = k 1 (H PB -H bo ) + k 2 V y - control signal STU; k - масштабный коэффициент для формирования скорректированного значения вертикальной скорости Vускорр;k is the scale factor for the formation of the corrected values of the vertical velocity V accelerator ; k1 - коэффициент закона управления СТУ в невязке по высоте;k 1 - coefficient of the law of control of the STU in the residual in height; k2 - коэффициент закона управления СТУ по вертикальной скорости;k 2 - coefficient of control law STU in vertical speed; k4 - коэффициент закона управления модальной СДУ в пропорциональной и интегральной составляющих по невязке в угловых скоростях тангажа;k 4 is the coefficient of the control law of the modal CDS in the proportional and integral components of the residual in the pitch angular velocities; k5 - коэффициент закона управления модальной СДУ по вертикальной перегрузке.k 5 - coefficient of the control law of the modal CDS for vertical overload.
RU2016104767A 2016-02-12 2016-02-12 Control system in longitudinal channel of manned and unmanned aircrafts in mode of creeping from dangerous height at work on ground objects RU2644048C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016104767A RU2644048C2 (en) 2016-02-12 2016-02-12 Control system in longitudinal channel of manned and unmanned aircrafts in mode of creeping from dangerous height at work on ground objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016104767A RU2644048C2 (en) 2016-02-12 2016-02-12 Control system in longitudinal channel of manned and unmanned aircrafts in mode of creeping from dangerous height at work on ground objects

Publications (2)

Publication Number Publication Date
RU2016104767A true RU2016104767A (en) 2017-08-17
RU2644048C2 RU2644048C2 (en) 2018-02-07

Family

ID=59633112

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016104767A RU2644048C2 (en) 2016-02-12 2016-02-12 Control system in longitudinal channel of manned and unmanned aircrafts in mode of creeping from dangerous height at work on ground objects

Country Status (1)

Country Link
RU (1) RU2644048C2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115857557A (en) * 2023-03-01 2023-03-28 西安航天动力研究所 Lateral position control method for longitudinal instruction matching of target climbing section
CN116453378A (en) * 2023-06-16 2023-07-18 陕西德鑫智能科技有限公司 Unmanned aerial vehicle navigation section handover switching method and device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU7755U1 (en) * 1997-08-04 1998-09-16 Летно-исследовательский институт им.М.М.Громова PILOT AND NAVIGATION COMPLEX
RU2207613C1 (en) * 2002-03-15 2003-06-27 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт "Гранит" Airborne equipment of control systems of drone
RU2235042C1 (en) * 2003-11-12 2004-08-27 Оао "Миэа" Method of control of aircraft
US8761970B2 (en) * 2008-10-21 2014-06-24 The Boeing Company Alternative method to determine the air mass state of an aircraft and to validate and augment the primary method
RU2443602C2 (en) * 2009-11-26 2012-02-27 Московский государственный университет приборостроения и информатики Aircraft pitch automatic control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115857557A (en) * 2023-03-01 2023-03-28 西安航天动力研究所 Lateral position control method for longitudinal instruction matching of target climbing section
CN116453378A (en) * 2023-06-16 2023-07-18 陕西德鑫智能科技有限公司 Unmanned aerial vehicle navigation section handover switching method and device
CN116453378B (en) * 2023-06-16 2023-09-08 陕西德鑫智能科技有限公司 Unmanned aerial vehicle navigation section handover switching method and device

Also Published As

Publication number Publication date
RU2644048C2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
US10276051B2 (en) Dynamic collision-avoidance system and method
CA2746297C (en) Method and system for vertical navigation using time-of-arrival control
Eck et al. Aerial magnetic sensing with an UAV helicopter
EP3143468B1 (en) Advanced aircraft vision system utilizing multi-sensor gain scheduling
US9856032B2 (en) Method and device for controlling at least one actuator control system of an aircraft, associated computer program product and aircraft
KR20180014815A (en) Vertical flight display system and method
Mullins et al. Dynamic separation thresholds for a small airborne sense and avoid system
JP2016164060A (en) Method of automatically controlling descent phase of aircraft using aircraft avionics executing descent algorithm
RU2016104767A (en) CONTROL SYSTEM IN THE LONGITUDINAL CHANNEL OF PILOTED AND UNMANNED AERIAL VEHICLES IN THE MODE OF ATTRACTION FROM DANGEROUS HEIGHT WHEN WORKING ON LAND OBJECTS
Nobahari et al. Application of model aided inertial navigation for precise altimetry of Unmanned Aerial Vehicles in ground proximity
RU2514293C2 (en) Method of pilotage promotion, pilotage aid and aircraft
Çetin System identification and control of a fixed wing aircraft by using flight data obtained from x-plane flight simulator
CN105843232A (en) Aircraft gliding deceleration control method
RU2387578C1 (en) System for automatic control of highly-maneuverable aircraft flight
Gašparović et al. Unmanned Aerial Photogrammetric Systems in the Service of Engineering Geodesy
EP2947008A2 (en) Terrain adaptive flight control
Aksenov et al. An application of computer vision systems to solve the problem of unmanned aerial vehicle control
RU2015149470A (en) REMOTE RESERVED SYSTEM OF AUTOMATED MODAL CONTROL IN THE LONGITUDINAL CHANNEL OF MANEUVERED PILOTED AND UNMANNED AERIAL VEHICLES
RU2014144659A (en) METHOD FOR COMBINED GUIDANCE OF AIRCRAFT
James et al. Vision based algorithm for automatic landing system of unmanned aerial vehicles: a review
RU2042170C1 (en) System for controlling side motion of pilot-free small-size flying object
Cappello et al. Aircraft Dynamics Model Augmentation of GNSS Based Navigation and Guidance Systems for RPAS
RU2304299C2 (en) The arrangement for control over the speed of a flying vehicle
Sharma et al. Optimum Flight Trajectories and Sensitivity Analysis for Terrain Collision Avoidance Systems
RU2588173C1 (en) Method for automatic control of longitudinal movement of aircraft landing