RU2016103031A - APPLICATION OF HIGH-EFFICIENT WORKING MEDIA FOR HEAT ENGINES - Google Patents

APPLICATION OF HIGH-EFFICIENT WORKING MEDIA FOR HEAT ENGINES Download PDF

Info

Publication number
RU2016103031A
RU2016103031A RU2016103031A RU2016103031A RU2016103031A RU 2016103031 A RU2016103031 A RU 2016103031A RU 2016103031 A RU2016103031 A RU 2016103031A RU 2016103031 A RU2016103031 A RU 2016103031A RU 2016103031 A RU2016103031 A RU 2016103031A
Authority
RU
Russia
Prior art keywords
heat engine
working medium
engine
heat
preceding paragraphs
Prior art date
Application number
RU2016103031A
Other languages
Russian (ru)
Other versions
RU2630949C2 (en
Inventor
Енс БУССЕ
Йёрн РОЛЬКЕР
Мухаммад Ирфан
Грегор ВЕСТФАЛЬ
Original Assignee
Эвоник Дегусса Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эвоник Дегусса Гмбх filed Critical Эвоник Дегусса Гмбх
Publication of RU2016103031A publication Critical patent/RU2016103031A/en
Application granted granted Critical
Publication of RU2630949C2 publication Critical patent/RU2630949C2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (11)

1. Тепловой двигатель для выполнения органического цикла (ORC) Ренкина, который содержит испаритель, двигатель, конденсатор и контур, содержащий текучую рабочую среду, при этом рабочая среда является метилформиатом, и при этом тепловой двигатель работает совместно с источником тепла в низкотемпературном диапазоне от 80°C до 150°C.1. A heat engine for performing an organic cycle (ORC) of Rankine, which contains an evaporator, an engine, a condenser and a circuit containing a fluid working medium, the working medium being methyl formate, and the heat engine working together with a heat source in the low temperature range from 80 ° C to 150 ° C. 2. Тепловой двигатель по п. 1, отличающийся тем, что при адиабатическом расширении во время органического цикла (ORC) Ренкина конденсируется от 1% до 30% массы рабочей среды, предпочтительно конденсируется от 10% до 20% массы рабочей среды.2. The heat engine according to claim 1, characterized in that during adiabatic expansion during the organic cycle (ORC), the Rankine condenses from 1% to 30% of the mass of the working medium, preferably condenses from 10% to 20% of the mass of the working medium. 3. Тепловой двигатель по любому из предыдущих пунктов, отличающийся тем, что тепловой двигатель является расширительной машиной, которая предпочтительно содержит двигатель расширения пара, содержащий поршни в качестве двигателя, или, которая содержит по меньшей мере одну турбину в качестве двигателя.3. A heat engine according to any one of the preceding paragraphs, characterized in that the heat engine is an expansion machine, which preferably comprises a steam expansion engine containing pistons as an engine, or which contains at least one turbine as an engine. 4. Тепловой двигатель по любому из предыдущих пунктов, отличающийся тем, что насос расположен между конденсатором и испарителем в контуре теплового двигателя, при этом указанный насос обеспечивает перемещение текучей рабочей среды из конденсатора в испаритель.4. A heat engine according to any one of the preceding paragraphs, characterized in that the pump is located between the condenser and the evaporator in the circuit of the heat engine, while this pump allows the movement of fluid from the condenser to the evaporator. 5. Тепловой двигатель по любому из предыдущих пунктов, отличающийся тем, что контур теплового двигателя не содержит рекуператора.5. The heat engine according to any one of the preceding paragraphs, characterized in that the heat engine circuit does not contain a recuperator. 6. Тепловой двигатель по любому из предыдущих пунктов, отличающийся тем, что скорость эрозии рабочей среды относительно нелегированной стали составляет менее 0,05 мм/год при температуре 150°C, и/или, что скорость эрозии рабочей среды относительно легированной стали (1.4571) составляет менее 0,005 мм/год при температуре 150°C.6. A heat engine according to any one of the preceding paragraphs, characterized in that the erosion rate of the working medium relative to unalloyed steel is less than 0.05 mm / year at a temperature of 150 ° C, and / or that the erosion rate of the working medium relative to alloy steel (1.4571) less than 0.005 mm / year at a temperature of 150 ° C. 7. Тепловой двигатель по любому из предыдущих пунктов, отличающийся тем, что рабочая среда не имеет эндотермических или экзотермических реакций, или фазовых переходов первого или второго рода в температурном диапазоне от 70°C до 200°C при подвержении температурным изменениям с течением времени, предпочтительно даже при подвержении десятикратному повторению температурно-временного профиля в диапазоне от 70°C до 200°C.7. A heat engine according to any one of the preceding paragraphs, characterized in that the working medium does not have endothermic or exothermic reactions, or phase transitions of the first or second kind in the temperature range from 70 ° C to 200 ° C when exposed to temperature changes over time, preferably even when exposed to tenfold repetition of the temperature-time profile in the range from 70 ° C to 200 ° C. 8. Применение метилформиата в качестве рабочей среды в тепловом двигателе, при этом тепловой двигатель работает совместно с источником тепла в низкотемпературном диапазоне от 80°C до 150°C.8. The use of methyl formate as a working medium in a heat engine, while the heat engine operates in conjunction with a heat source in the low temperature range from 80 ° C to 150 ° C. 9. Применение по п. 8, отличающееся тем, что при адиабатическом расширении во время органического цикла (ORC) Ренкина конденсируется от 1% до 30% массы рабочей среды, предпочтительно конденсируется от 10% до 20% массы рабочей среды.9. The use according to claim 8, characterized in that during adiabatic expansion during the organic cycle (ORC), the Rankine condenses from 1% to 30% of the mass of the working medium, preferably condenses from 10% to 20% of the mass of the working medium. 10. Применение по п. 8 или 9, отличающееся тем, что тепловой двигатель работает совместно с органическим циклом (ORC) Ренкина.10. The application of claim 8 or 9, characterized in that the heat engine operates in conjunction with the Rankine Organic Cycle (ORC). 11. Применение по любому из пп. 8–10, отличающееся тем, что расширительная машина, предпочтительно двигатель расширения пара, содержащий поршни или по меньшей мере одну турбину в качестве двигателя, используют в качестве теплового двигателя. 11. The use according to any one of paragraphs. 8-10, characterized in that the expansion machine, preferably a steam expansion engine containing pistons or at least one turbine as an engine, is used as a heat engine.
RU2016103031A 2013-07-01 2014-06-16 Application of high effective working mediums for thermal engines RU2630949C2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013212805.3A DE102013212805A1 (en) 2013-07-01 2013-07-01 Use of highly efficient working media for heat engines
DE102013212805.3 2013-07-01
PCT/EP2014/062516 WO2015000678A2 (en) 2013-07-01 2014-06-16 Use of highly efficient working media for heat engines

Publications (2)

Publication Number Publication Date
RU2016103031A true RU2016103031A (en) 2017-08-07
RU2630949C2 RU2630949C2 (en) 2017-09-14

Family

ID=50972704

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016103031A RU2630949C2 (en) 2013-07-01 2014-06-16 Application of high effective working mediums for thermal engines

Country Status (8)

Country Link
US (1) US20160153318A1 (en)
EP (1) EP3017153A2 (en)
CN (1) CN105473827A (en)
CA (1) CA2917085A1 (en)
DE (1) DE102013212805A1 (en)
MX (1) MX2015018034A (en)
RU (1) RU2630949C2 (en)
WO (1) WO2015000678A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012200907A1 (en) 2012-01-23 2013-07-25 Evonik Industries Ag Method and absorption medium for absorbing CO2 from a gas mixture
DE102015212749A1 (en) 2015-07-08 2017-01-12 Evonik Degussa Gmbh Method for dehumidifying moist gas mixtures
DE102016210483A1 (en) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Process and absorbent for dehumidifying moist gas mixtures
DE102016210484A1 (en) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Method for dehumidifying moist gas mixtures
DE102016210478A1 (en) 2016-06-14 2017-12-14 Evonik Degussa Gmbh Method for dehumidifying moist gas mixtures
DE102016210481B3 (en) 2016-06-14 2017-06-08 Evonik Degussa Gmbh Process for purifying an ionic liquid
EP3257843A1 (en) 2016-06-14 2017-12-20 Evonik Degussa GmbH Method of preparing a high purity imidazolium salt
EP3257568B1 (en) 2016-06-14 2019-09-18 Evonik Degussa GmbH Method for the removal of moisture from moist gas mixtures by use of ionic liquids
CN107542556B (en) * 2017-09-08 2023-05-09 天津大学 Self-adjusting power generation system for recovering waste heat of internal combustion engine and evaluation method thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR670497A (en) * 1928-06-19 1929-11-29 Thermal installation for vehicles, flying machines, boats and other marine craft
GB1491625A (en) * 1974-03-18 1977-11-09 Inoue Japax Res Electric power generation
JPS57191407A (en) * 1981-05-20 1982-11-25 Hitachi Ltd Rankine cycle system
US4489563A (en) * 1982-08-06 1984-12-25 Kalina Alexander Ifaevich Generation of energy
RU2122642C1 (en) * 1996-05-28 1998-11-27 Акционерное общество открытого типа "Энергетический научно-исследовательский институт им.Г.М.Кржижановского" Combined-cycle steam power plant
US6571548B1 (en) 1998-12-31 2003-06-03 Ormat Industries Ltd. Waste heat recovery in an organic energy converter using an intermediate liquid cycle
DE10008123A1 (en) * 1999-02-22 2001-08-23 Frank Eckert ORC energy conversion apparatus useful for generating electricity comprises one or more solar collectors employing an organic heat-transfer medium
US6960839B2 (en) 2000-07-17 2005-11-01 Ormat Technologies, Inc. Method of and apparatus for producing power from a heat source
US20050285078A1 (en) * 2004-06-29 2005-12-29 Minor Barbara H Refrigerant compositions comprising functionalized organic compounds and uses thereof
KR101403798B1 (en) * 2006-05-15 2014-06-03 뉴캐슬 이노베이션 리미티드 A method and system for generating power from a heat source
CN102317595A (en) * 2007-10-12 2012-01-11 多蒂科技有限公司 Have the high temperature double source organic Rankine circulation of gas separation
US20090139232A1 (en) * 2007-12-03 2009-06-04 Collis Matthew P Ambient Temperature Energy Generating System
DE102009020268B4 (en) * 2009-05-07 2011-05-26 Siemens Aktiengesellschaft Method for generating electrical energy and use of a working medium
DE102009024436B4 (en) 2009-06-05 2013-05-08 Devetec Gmbh Heat engine
FR2948679B1 (en) * 2009-07-28 2011-08-19 Arkema France HEAT TRANSFER METHOD
WO2012069932A2 (en) * 2010-08-26 2012-05-31 Michael Joseph Timlin, Iii The timlin cycle- a binary condensing thermal power cycle
WO2012110987A1 (en) * 2011-02-19 2012-08-23 Devendra Purohit Environmental energy conversion device
DE102011076157A1 (en) 2011-05-20 2012-11-22 Devetec Gmbh Heat engine
US9003797B2 (en) * 2011-11-02 2015-04-14 E L Du Pont De Nemours And Company Use of compositions comprising 1,1,1,2,3-pentafluoropropane and optionally Z-1,1,1,4,4,4-hexafluoro-2-butene in power cycles
US8783035B2 (en) * 2011-11-15 2014-07-22 Shell Oil Company System and process for generation of electrical power

Also Published As

Publication number Publication date
EP3017153A2 (en) 2016-05-11
DE102013212805A1 (en) 2015-01-08
RU2630949C2 (en) 2017-09-14
WO2015000678A3 (en) 2015-05-28
WO2015000678A2 (en) 2015-01-08
MX2015018034A (en) 2016-06-24
CA2917085A1 (en) 2015-01-08
US20160153318A1 (en) 2016-06-02
CN105473827A (en) 2016-04-06

Similar Documents

Publication Publication Date Title
RU2016103031A (en) APPLICATION OF HIGH-EFFICIENT WORKING MEDIA FOR HEAT ENGINES
EP2613026A3 (en) Non-azeotropic working fluid mixtures for rankine cycle systems
WO2013107949A3 (en) Device for controlling a working fluid in a closed circuit operating according to the rankine cycle, and method using said device
WO2008131810A3 (en) Working fluid for a steam circuit process and method for the operation thereof and steam circuit process device
Guzović et al. The comparision of a basic and a dual-pressure ORC (Organic Rankine Cycle): Geothermal Power Plant Velika Ciglena case study
WO2010017981A3 (en) Operating fluid for a vapour circuit processing device and a method for operating same
JP6132214B2 (en) Rankine cycle apparatus, combined heat and power system, and operation method of Rankine cycle apparatus
CL2013003008A1 (en) Apparatus for the generation of energy by means of the rankine organic cycle comprising at least one heat exchanger for exchanging heat between a high temperature source and an organic working fluid, at least one expansion turbine, at least one condenser, where the turbine expansion is radial outflow type; process.
JP2016529334A5 (en)
RU2017111353A (en) SYSTEM AND METHOD FOR WATER HEAT ENERGY REGENERATION
MX347561B (en) Method and apparatus for operating a steam cycle process with a lubricated expander.
RU2016112366A (en) DEVICE AND METHOD FOR RELIABLE STARTING OF SYSTEMS WITH ORGANIC RENKIN CYCLE (ORC)
WO2014004061A3 (en) Triple expansion waste heat recovery system and method
EP2993426A3 (en) Expendable driven heat pump cycles
WO2008105410A1 (en) Working medium for heat cycle
WO2012019706A3 (en) Expansion device for use in a working medium circuit, and method for operating an expansion device
HRP20180961T1 (en) Heat recovery and upgrading method and compressor for using in said method
WO2012069932A3 (en) The timlin cycle- a binary condensing thermal power cycle
Fan et al. A new corresponding-states model for estimating the vaporization heat of working fluids used in Organic Rankine Cycle
MX2022005938A (en) Plant based upon combined joule-brayton and rankine cycles working with directly coupled reciprocating machines.
Lv et al. Organic Rankine cycle simulation based on Aspen Plus
Sui et al. Conversion of low-grade heat from FCC absorption-stabilization system to electricity by organic Rankine cycles: Simulation and optimization
WO2017101959A1 (en) Device for absorbing thermal energy from the surrounding environment and using same (generator)
EP2814898B1 (en) Composition of zeotropic mixtures having predefined temperature glide
WO2014008531A3 (en) Heat engine system

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190617