RU2014145348A - METHOD FOR MONITORING THE WELDING PROCESS OF PRODUCTS FROM SUPER ALLOYS BASED ON NICKEL - Google Patents

METHOD FOR MONITORING THE WELDING PROCESS OF PRODUCTS FROM SUPER ALLOYS BASED ON NICKEL Download PDF

Info

Publication number
RU2014145348A
RU2014145348A RU2014145348A RU2014145348A RU2014145348A RU 2014145348 A RU2014145348 A RU 2014145348A RU 2014145348 A RU2014145348 A RU 2014145348A RU 2014145348 A RU2014145348 A RU 2014145348A RU 2014145348 A RU2014145348 A RU 2014145348A
Authority
RU
Russia
Prior art keywords
welding
products
welded
parameters
weldability
Prior art date
Application number
RU2014145348A
Other languages
Russian (ru)
Inventor
Александр Владимирович Кондратьев
Денис Юрьевич Сараев
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2014145348A publication Critical patent/RU2014145348A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/12Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to investigating the properties, e.g. the weldability, of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • G09B19/24Use of tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Arc Welding In General (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

1. Способ контроля процесса сварки изделий из суперсплавов на основе никеля, при этом способ включает:предоставление данных, относящихся к геометрии свариваемых изделий, включающих геометрические параметры изделий, сварного шва и его положение в свариваемых изделиях,предоставление данных, относящихся к материалу свариваемых изделий, включающих химический состав свариваемых изделий,выбор технологии сварки и сварочного оборудования,предоставление данных, относящихся к параметрам выбранной технологии сварки и сварочного оборудования, включающих тип и мощность сварочного источника, распределение мощности, скорость подачи сварочного электрода,генерирование, посредством вычислительного средства, модели сварки на основании данных, относящихся к геометрии свариваемых изделий, к материалу свариваемых изделий и к параметрам выбранной технологии сварки и сварочного оборудования,реализацию, посредством вычислительного средства, процесса виртуальной сварки с использованием указанной модели сварки для определения в любой момент времени процесса сварки для каждого участка сварного шва или зоны термического влияния параметров напряженно-деформированного состояния, температурного поля и фазового состава,определение характеристик свариваемости суперсплавов при заданных условиях в заданный момент времени на основе определенных для каждого участка сварного шва или зоны термического влияния параметров напряженно-деформированного состояния, температурного и фазового распределения, и использование результата определения для оценки качества сварного соединения,при этом:при удовлетворительной характери1. A method of controlling the welding process of products from nickel-based superalloys, the method comprising: providing data related to the geometry of the products being welded, including the geometric parameters of the products, the weld and its position in the products being welded, providing data related to the material of the products being welded, including the chemical composition of the welded products, the choice of welding technology and welding equipment, the provision of data related to the parameters of the selected welding technology and welding equipment, including the type and power of the welding source, power distribution, the feed speed of the welding electrode, generating, by means of a computing tool, a welding model based on data relating to the geometry of the products being welded, to the material of the products being welded and to the parameters of the selected welding technology and welding equipment, implementation, by computing means, a virtual welding process using the specified welding model to determine at any time the welding process for each site ka of the weld or heat-affected zone of the parameters of the stress-strain state, temperature field and phase composition, determination of the weldability characteristics of superalloys under given conditions at a given point in time based on the parameters of the stress-strain state, temperature and phase distribution, and the use of the determination result to assess the quality of the welded joint, while: with a satisfactory nature and

Claims (5)

1. Способ контроля процесса сварки изделий из суперсплавов на основе никеля, при этом способ включает: 1. A method for controlling the welding process of products from nickel-based superalloys, the method comprising: предоставление данных, относящихся к геометрии свариваемых изделий, включающих геометрические параметры изделий, сварного шва и его положение в свариваемых изделиях, providing data related to the geometry of the welded products, including the geometric parameters of the products, the weld and its position in the welded products, предоставление данных, относящихся к материалу свариваемых изделий, включающих химический состав свариваемых изделий, the provision of data related to the material of the welded products, including the chemical composition of the welded products, выбор технологии сварки и сварочного оборудования,selection of welding technology and welding equipment, предоставление данных, относящихся к параметрам выбранной технологии сварки и сварочного оборудования, включающих тип и мощность сварочного источника, распределение мощности, скорость подачи сварочного электрода, providing data related to the parameters of the selected welding technology and welding equipment, including the type and power of the welding source, power distribution, feed speed of the welding electrode, генерирование, посредством вычислительного средства, модели сварки на основании данных, относящихся к геометрии свариваемых изделий, к материалу свариваемых изделий и к параметрам выбранной технологии сварки и сварочного оборудования, the generation, by means of computing means, of a welding model based on data relating to the geometry of the welded products, to the material of the welded products and to the parameters of the selected welding technology and welding equipment, реализацию, посредством вычислительного средства, процесса виртуальной сварки с использованием указанной модели сварки для определения в любой момент времени процесса сварки для каждого участка сварного шва или зоны термического влияния параметров напряженно-деформированного состояния, температурного поля и фазового состава, the implementation, by means of computing means, of a virtual welding process using the specified welding model to determine at any point in time the welding process for each section of the weld or heat-affected zone of the parameters of the stress-strain state, temperature field and phase composition, определение характеристик свариваемости суперсплавов при заданных условиях в заданный момент времени на основе определенных для каждого участка сварного шва или зоны термического влияния параметров напряженно-деформированного состояния, температурного и фазового распределения, и использование результата определения для оценки качества сварного соединения, determination of the weldability characteristics of superalloys under given conditions at a given point in time based on the parameters of the stress-strain state, temperature and phase distribution determined for each section of the weld or heat affected zone, and using the determination result to assess the quality of the welded joint, при этом:wherein: при удовлетворительной характеристике свариваемости выдается уведомление о возможности получения качественных сварных изделий и проводится сварка изделий с использованием параметров сварки, установленных в процессе виртуальной сварки согласно указанной модели сварки, аwith a satisfactory weldability characteristic, a notification is issued on the possibility of obtaining high-quality welded products and products are welded using the welding parameters established in the virtual welding process according to the specified welding model, and при неудовлетворительной характеристике свариваемости выдается предупреждение и информация о возможности возникновения дефекта сварки и его локализации, а также предоставляются рекомендации для изменения по меньшей мере одного параметра сварки для устранения упомянутого дефекта. if the weldability is unsatisfactory, a warning is issued and information about the possibility of a welding defect and its localization, as well as recommendations for changing at least one welding parameter to eliminate the defect. 2. Способ по п. 1, который дополнительно включает отображение определенной характеристики свариваемости на устройстве отображения.2. The method of claim 1, further comprising displaying a specific weldability characteristic on a display device. 3. Способ по п. 1, в котором определение характеристик свариваемости суперсплавов может включать определение локальной свариваемости на каждом из участков сварки и определение общей свариваемости изделий из суперсплава.3. The method according to p. 1, in which the determination of the weldability characteristics of superalloys may include determining the local weldability at each of the welding sites and determining the overall weldability of products from superalloy. 4. Способ по п. 1, в котором характеристики свариваемости суперсплавов определяют на основе по меньшей мере одного критерия, выбранного из группы, содержащей критерий растрескивания шва, определяемый наличием позади сварочного источника растягивающего напряжения и/или растягивающего перемещения выше критического значения, критерий наличия непровара, критерий ликвационного растрескивания и критерий формирования границы зерна вдоль центральной линии сварного шва. 4. The method according to p. 1, in which the weldability characteristics of superalloys are determined based on at least one criterion selected from the group comprising a criterion for weld cracking, determined by the presence of tensile stress and / or tensile displacement above the critical value behind the welding source, the criterion for the lack of penetration , the criterion of segregation cracking and the criterion for the formation of grain boundaries along the center line of the weld. 5. Машиночитаемый носитель, на котором записана компьютерная программа, которая включает в себя инструкции для осуществления способа контроля процесса сварки изделий из суперсплавов на основе никеля по любому из пп. 1-4. 5. A machine-readable medium on which a computer program is recorded, which includes instructions for implementing a method for controlling the welding process of nickel-based superalloys according to any one of claims. 1-4.
RU2014145348A 2012-04-12 2012-04-12 METHOD FOR MONITORING THE WELDING PROCESS OF PRODUCTS FROM SUPER ALLOYS BASED ON NICKEL RU2014145348A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/RU2012/000281 WO2013154451A1 (en) 2012-04-12 2012-04-12 Method for a welding process control of nickel based superalloy products

Publications (1)

Publication Number Publication Date
RU2014145348A true RU2014145348A (en) 2016-06-10

Family

ID=49327918

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014145348A RU2014145348A (en) 2012-04-12 2012-04-12 METHOD FOR MONITORING THE WELDING PROCESS OF PRODUCTS FROM SUPER ALLOYS BASED ON NICKEL

Country Status (3)

Country Link
EP (1) EP2836331A4 (en)
RU (1) RU2014145348A (en)
WO (1) WO2013154451A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104646801B (en) * 2014-12-30 2016-12-07 上海锅炉厂有限公司 GH984G high temperature nickel ferrous alloy welding procedure
JP6619301B2 (en) * 2016-07-27 2019-12-11 株式会社神戸製鋼所 Welding equipment
CN107908831B (en) * 2017-10-26 2020-04-17 燕山大学 Method for predicting weld seam on-line heat treatment defects of welded steel pipe
CN109325292B (en) * 2018-09-25 2023-01-10 辽宁石油化工大学 ANSYS-based setting method for complex welding track heat source loading local coordinate system
RU2715408C1 (en) * 2018-10-29 2020-02-27 Татьяна Васильевна Молочная Method of controlling lapping welded connection of elements of different thickness
CN110866359B (en) * 2019-11-13 2023-05-02 重庆理工大学 Welding simulation method based on corrected double-ellipsoid heat source model
CN113065272A (en) * 2021-04-30 2021-07-02 中国核工业华兴建设有限公司 Method for rapidly realizing numerical simulation of welding deformation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2113327C1 (en) * 1996-04-25 1998-06-20 Павел Павлович Архипов Process of monitoring of quality of fusion welding and gear for its implementation
US6333484B1 (en) * 2000-03-17 2001-12-25 Chromalloy Gas Turbine Corporation Welding superalloy articles
US8301286B2 (en) * 2007-04-20 2012-10-30 Edison Welding Institute, Inc. Remote high-performance computing material joining and material forming modeling system and method
RU2009116471A (en) * 2009-05-04 2010-11-10 Владимир Иванович Хоменко (RU) PIPELINE WELDED QUALITY CONTROL
US8706282B2 (en) * 2010-01-12 2014-04-22 Ford Global Technologies, Llc Weldability prediction and recommendation systems and methods
RU101958U1 (en) * 2010-08-10 2011-02-10 Владимир Иванович Хоменко LASEROGRAPHIC CONTROL DEVICE

Also Published As

Publication number Publication date
WO2013154451A1 (en) 2013-10-17
EP2836331A4 (en) 2016-04-06
EP2836331A1 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
RU2014145348A (en) METHOD FOR MONITORING THE WELDING PROCESS OF PRODUCTS FROM SUPER ALLOYS BASED ON NICKEL
Ye et al. Controlling hot cracking in Ni-based Inconel-718 superalloy cast sheets during tungsten inert gas welding
Sun et al. Study on the weldability, microstructure and mechanical properties of thick Inconel 617 plate using narrow gap laser welding method
Jang et al. Mechanical property variation within Inconel 82/182 dissimilar metal weld between low alloy steel and 316 stainless steel
Wan et al. Effect of self-support friction stir welding on microstructure and microhardness of 6082-T6 aluminum alloy joint
Wang et al. Effects of TIG welding parameters on morphology and mechanical properties of welded joint of Ni-base superalloy
CN101992350B (en) System and method of dual laser beam welding using first and second filler metals
Zhang et al. Preliminary investigation on real-time induction heating-assisted underwater wet welding
Damodaram et al. Effect of post-weld heat treatments on microstructure and mechanical properties of friction welded alloy 718 joints
Guo et al. A comparing study of defect generation in IN738LC superalloy fabricated by laser powder bed fusion: Continuous-wave mode versus pulsed-wave mode
Yan et al. Liquation cracking behavior and control in the heat affected zone of GH909 alloy during Nd: YAG laser welding
Muhammad et al. Unravelling the ultrasonic effect on residual stress and microstructure in dissimilar ultrasonic-assisted friction stir welding of Al/Mg alloys
Rao et al. Effect of friction stir processing on corrosion resistance of aluminum–copper alloy gas tungsten arc welds
Singh et al. Optimization of process parameters during vibratory welding technique using Taguchi's analysis
Ma et al. Microstructure evolution in a single crystal nickel-based superalloy joint by linear friction welding
Ma et al. Investigation of arc stability, microstructure evolution and corrosion resistance in underwater wet FCAW of duplex stainless steel
Wang et al. High-frequency pulse-modulated square wave AC TIG welding of AA6061-T6 aluminum alloy
Ghafoori-Ahangar et al. Fatigue behavior of load-carrying cruciform joints with partial penetration fillet welds under three-point bending
Li et al. Microstructure evolution and mechanical properties in the depth direction of ultra-high power laser-arc hybrid weld joint of 316L stainless steel
García-García et al. Experimental and FEM study of Ti-containing TWIP steel weldability
Júnior et al. Influence of heat input and cold wire feeding rate on pitting corrosion resistance of submerged arc welding duplex stainless steel welds
Li et al. Effect of welding speed in high speed laser-TIG welding of magnesium alloy
Li et al. Improvement of microstructure and mechanical properties for underwater wet 16Mn/304L dissimilar steel welded joints assisted by presetting butter layer
CN107020440A (en) A kind of preparation method with human weld's crack defect test plate (panel)
Fehrenbacher et al. Towards process control of friction stir welding for different aluminum alloys