RU2014144472A - Лазерные архитектуры - Google Patents

Лазерные архитектуры Download PDF

Info

Publication number
RU2014144472A
RU2014144472A RU2014144472A RU2014144472A RU2014144472A RU 2014144472 A RU2014144472 A RU 2014144472A RU 2014144472 A RU2014144472 A RU 2014144472A RU 2014144472 A RU2014144472 A RU 2014144472A RU 2014144472 A RU2014144472 A RU 2014144472A
Authority
RU
Russia
Prior art keywords
radiation
doubler
architecture
microcircuits
frequency
Prior art date
Application number
RU2014144472A
Other languages
English (en)
Inventor
ЛИУВЕН Роберт ВАН
Бинг КСУ
Квинг ВАНГ
Чуни ГОШ
Original Assignee
Реалд Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/764,770 external-priority patent/US20130208741A1/en
Application filed by Реалд Инк. filed Critical Реалд Инк.
Publication of RU2014144472A publication Critical patent/RU2014144472A/ru

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02438Characterized by cooling of elements other than the laser chip, e.g. an optical element being part of an external cavity or a collimating lens
    • H01S5/02446Cooling being separate from the laser chip cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]

Abstract

1. Архитектура для лазерной системы с внешним резонатором, содержащая:по меньшей мере два элемента лазера поверхностного излучения с вертикальным резонатором (VCSEL), причем каждый элемент VCSEL направляет инфракрасное (ИК) излучение в резонатор на траектории световых лучей в первом направлении;по меньшей мере две микросхемы удвоителя частоты, размещенные в резонаторе и выполненные с возможностью приема ИК-излучения и, по существу, удвоения частоты по меньшей мере части принятого ИК-излучения;оптический элемент на конце резонатора, расположенный напротив элементов VCSEL и выполненный с высокой отражательной способностью для ИК-излучения; ибрюстеровскую пластинку, размещенную между элементами VCSEL и микросхемами удвоителя и расположенную под углом к траектории световых лучей, причем брюстеровская пластинка выполнена с возможностью:выводить из внешнего резонатора излучение удвоенной частоты, распространяющееся на траектории световых лучей во втором направлении, противоположном первому направлению.2. Архитектура по п. 1, в которой излучение удвоенной частоты содержит видимое излучение, выбранное из по меньшей мере одного из красного, зеленого, синего или ультрафиолетового излучения.3. Архитектура по п. 1, в которой оптический элемент содержит покрытие, расположенное на поверхностях микросхем удвоителя частоты на конце резонатора напротив элементов VCSEL.4. Архитектура по п. 1, в которой оптический элемент имеет высокую отражающую способность как для ИК-излучения, так и для излучения в видимой части спектра.5. Архитектура по п. 1, в которой оптический элемент является просветленным для излучения в видимой части спектра.6. Архитектура по п. 1, дополнительн

Claims (31)

1. Архитектура для лазерной системы с внешним резонатором, содержащая:
по меньшей мере два элемента лазера поверхностного излучения с вертикальным резонатором (VCSEL), причем каждый элемент VCSEL направляет инфракрасное (ИК) излучение в резонатор на траектории световых лучей в первом направлении;
по меньшей мере две микросхемы удвоителя частоты, размещенные в резонаторе и выполненные с возможностью приема ИК-излучения и, по существу, удвоения частоты по меньшей мере части принятого ИК-излучения;
оптический элемент на конце резонатора, расположенный напротив элементов VCSEL и выполненный с высокой отражательной способностью для ИК-излучения; и
брюстеровскую пластинку, размещенную между элементами VCSEL и микросхемами удвоителя и расположенную под углом к траектории световых лучей, причем брюстеровская пластинка выполнена с возможностью:
выводить из внешнего резонатора излучение удвоенной частоты, распространяющееся на траектории световых лучей во втором направлении, противоположном первому направлению.
2. Архитектура по п. 1, в которой излучение удвоенной частоты содержит видимое излучение, выбранное из по меньшей мере одного из красного, зеленого, синего или ультрафиолетового излучения.
3. Архитектура по п. 1, в которой оптический элемент содержит покрытие, расположенное на поверхностях микросхем удвоителя частоты на конце резонатора напротив элементов VCSEL.
4. Архитектура по п. 1, в которой оптический элемент имеет высокую отражающую способность как для ИК-излучения, так и для излучения в видимой части спектра.
5. Архитектура по п. 1, в которой оптический элемент является просветленным для излучения в видимой части спектра.
6. Архитектура по п. 1, дополнительно содержащая множество микролинз, размещенных смежно с микросхемами удвоителя и соответствующих их количеству, причем микролинзы выполнены с возможностью направления излучения в микросхемы удвоителя, а также из них.
7. Архитектура по п. 1, в которой микросхемы удвоителя содержат кристаллы, выбранные из по меньшей мере одного из бората бария, дигидрофосфата калия, титанилфосфата калия, ниобата лития, трибората лития и ниобата калия.
8. Архитектура по п. 1, в которой микросхемы удвоителя располагают в виде набора смежно друг с другом через разделитель, причем архитектура дополнительно содержит носитель для удержания набора микросхем удвоителя таким образом, чтобы ИК-излучение поступало на края микросхем удвоителя.
9. Архитектура по п. 8, в которой набор микросхем удвоителя расположен на носителе на боковой поверхности микросхемы удвоителя, находящейся в конце набора.
10. Архитектура по п. 8, в которой набор микросхем удвоителя расположен на носителе на торцах микросхем удвоителя в наборе.
11. Архитектура по п. 10, дополнительно содержащая щели, сформированные в носителе для пропуска проходящего через него излучения, причем местоположение щелей, по существу, выровнено с по меньшей мере некоторыми гранями микросхем удвоителя.
12. Архитектура по п. 8, в которой разделители выполнены с возможностью рассеивать теплоту от микросхем удвоителя в по меньшей мере часть носителя.
13. Архитектура по п. 1, в которой по меньшей мере два элемента VCSEL содержат массив и в которой массив является более плоским, чем радиус кривизны, составляющий 5 мм.
14. Архитектура для лазерной системы с внешним резонатором, содержащая:
множество элементов лазера поверхностного излучения с вертикальным резонатором (VCSEL), причем каждый элемент VCSEL направляет инфракрасное (ИК) излучение в резонатор на траектории световых лучей в первом направлении;
множество микросхем удвоителя частоты, размещенных в резонаторе и выполненных с возможностью приема ИК-излучения и, по существу, удвоения частоты по меньшей мере части принятого ИК-излучения, причем множество микросхем удвоителя располагают в виде набора смежно друг с другом через разделитель;
носитель для удержания набора микросхем удвоителя таким образом, чтобы ИК-излучение поступало на края микросхем удвоителя;
множество микролинз, размещенных смежно с микросхемами удвоителя и выполненных с возможностью направления излучения в микросхемы удвоителя, а также из них;
оптический элемент на конце резонатора, расположенный напротив элементов VCSEL и выполненный с высокой отражательной способностью для ИК-излучения; и
брюстеровскую пластинку, размещенную между элементами VCSEL и микросхемами удвоителя и расположенную под углом к траектории световых лучей, причем брюстеровская пластинка выполнена с возможностью:
поляризовать по меньшей мере ИК-излучение, распространяющееся на траектории световых лучей в первом направлении; и
выводить из внешнего резонатора излучение удвоенной частоты, распространяющееся на траектории световых лучей во втором направлении, противоположном первому направлению.
15. Архитектура по п. 14, в которой излучение удвоенной частоты содержит видимое излучение, выбранное из по меньшей мере одного из красного, зеленого, синего или ультрафиолетового излучения.
16. Архитектура по п. 14, в которой оптический элемент содержит покрытие, расположенное на поверхностях микросхем удвоителя частоты на конце резонатора напротив элементов VCSEL.
17. Архитектура по п. 14, в которой оптический элемент имеет высокую отражающую способность как для ИК-излучения, так и для излучения в видимой части спектра.
18. Архитектура по п. 14, в которой оптический элемент является просветленным для излучения в видимой части спектра.
19. Архитектура по п. 14, в которой количество микролинз соответствует количеству микросхем удвоителя или превышает его.
20. Архитектура по п. 14, в которой микросхемы удвоителя содержат кристаллы, выбранные из по меньшей мере одного из бората бария, дигидрофосфата калия, титанилфосфата калия, ниобата лития, трибората лития и ниобата калия.
21. Архитектура по п. 14, в которой набор микросхем удвоителя расположен на боковой поверхности микросхемы удвоителя, находящейся в конце набора.
22. Архитектура по п. 14, в которой набор микросхем удвоителя расположен на носителе на торцах микросхем удвоителя в наборе.
23. Архитектура по п. 14, в которой по меньшей мере два элемента VCSEL содержат массив и в которой массив является более плоским, чем радиус кривизны, составляющий 5 мм.
24. Архитектура для лазерной системы с внешним резонатором, содержащая:
массив элементов лазера поверхностного излучения с вертикальным резонатором (VCSEL), причем каждый элемент VCSEL направляет инфракрасное (ИК) излучение в резонатор на траектории световых лучей в первом направлении, и массив является более плоским, чем радиус кривизны, составляющий 5 мм;
набор микросхем удвоителя частоты, разделенных с помощью разделителей, набор, размещенный в резонаторе и выполненный с возможностью приема ИК-излучения и, по существу, удвоения частоты по меньшей мере части принятого ИК-излучения;
носитель для удержания набора микросхем удвоителя таким образом, чтобы ИК-излучение поступало на края микросхем удвоителя, причем разделители находятся в тепловом контакте с носителем для рассеивания тепла из микросхем удвоителя;
множество микролинз, размещенных смежно с микросхемами удвоителя и выполненных с возможностью направления излучения в микросхемы удвоителя, а также из них;
оптический элемент на конце резонатора, расположенный напротив массива и выполненный с высокой отражательной способностью для ИК-излучения; и
брюстеровскую пластинку, размещенную между массивом и микросхемами удвоителя и расположенную под углом к траектории световых лучей, причем брюстеровская пластинка выполнена с возможностью:
поляризовать по меньшей мере ИК-излучение, распространяющееся на траектории световых лучей в первом направлении; и
выводить из внешнего резонатора излучение удвоенной частоты, распространяющееся на траектории световых лучей во втором направлении, противоположном первому направлению.
25. Архитектура по п. 24, в которой излучение удвоенной частоты содержит видимое излучение, выбранное из по меньшей мере одного из красного, зеленого, синего или ультрафиолетового излучения.
26. Архитектура по п. 24, в которой оптический элемент содержит покрытие, расположенное на поверхностях микросхем удвоения частоты на конце резонатора напротив массива.
27. Архитектура по п. 24, в которой оптический элемент имеет высокую отражающую способность как для ИК-излучения, так и для излучения в видимой части спектра.
28. Архитектура по п. 24, в которой оптический элемент является просветленным для излучения в видимой части спектра.
29. Архитектура по п. 24, в которой набор расположен на носителе на боковой поверхности микросхемы удвоителя, находящейся в конце набора.
30. Архитектура по п. 24, в которой набор расположен на носителей на торцах микросхем удвоителя в наборе.
31. Архитектура по п. 1, в которой брюстеровская пластинка выполнена с возможностью поляризации по меньшей мере ИК-излучения, распространяющегося на траектории световых лучей в первом направлении.
RU2014144472A 2012-04-06 2013-04-05 Лазерные архитектуры RU2014144472A (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261621067P 2012-04-06 2012-04-06
US61/621,067 2012-04-06
US13/764,770 US20130208741A1 (en) 2012-02-13 2013-02-11 Laser architectures
US13/764,770 2013-02-11
PCT/US2013/035485 WO2013152310A1 (en) 2012-04-06 2013-04-05 Laser architectures

Publications (1)

Publication Number Publication Date
RU2014144472A true RU2014144472A (ru) 2016-05-27

Family

ID=49301093

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014144472A RU2014144472A (ru) 2012-04-06 2013-04-05 Лазерные архитектуры

Country Status (5)

Country Link
EP (1) EP2834890A4 (ru)
KR (1) KR20140140637A (ru)
CN (1) CN104364984A (ru)
RU (1) RU2014144472A (ru)
WO (1) WO2013152310A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145021B (zh) * 2015-03-26 2017-12-29 中科院南通光电工程中心 光学微纳谐振腔结构及其制作方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327444A (en) * 1989-04-20 1994-07-05 Massachusetts Institute Of Technology Solid state waveguide lasers
US5164947A (en) * 1991-02-28 1992-11-17 Amoco Corporation Single-frequency, frequency doubled laser
US6370168B1 (en) * 1999-10-20 2002-04-09 Coherent, Inc. Intracavity frequency-converted optically-pumped semiconductor laser
US6953291B2 (en) * 2003-06-30 2005-10-11 Finisar Corporation Compact package design for vertical cavity surface emitting laser array to optical fiber cable connection
EP1686415A4 (en) * 2003-11-20 2011-10-05 Nat Inst For Materials Science WAVE LENGTH IMPLEMENTING ELEMENT WITH MULTIPLE GRIDS AND LIGHT GENERATING DEVICE THEREWITH AND COLLARANT FERROELECTRIC SINGLE CRYSTAL AND LIGHT GENERATION DEVICE THEREWITH
US7322704B2 (en) * 2004-07-30 2008-01-29 Novalux, Inc. Frequency stabilized vertical extended cavity surface emitting lasers
EP1771767A4 (en) * 2004-07-30 2009-12-23 Novalux Inc PROJECTION DISPLAY DEVICE, SYSTEM AND METHOD
CN101072996A (zh) * 2004-12-10 2007-11-14 皇家飞利浦电子股份有限公司 多点检验设备
CN101233657A (zh) * 2005-07-28 2008-07-30 松下电器产业株式会社 激光光源和显示器装置
KR20070074749A (ko) * 2006-01-10 2007-07-18 삼성전자주식회사 미러면을 갖는 2차 조화파 발생 결정을 구비하는 외부공진기형 면발광 레이저
US7630125B2 (en) * 2007-12-11 2009-12-08 Young Optics Inc. Laser module
JP5056629B2 (ja) * 2008-07-04 2012-10-24 セイコーエプソン株式会社 レーザ光源装置、波長変換素子、波長変換素子の製造方法、プロジェクタ、モニタ装置

Also Published As

Publication number Publication date
WO2013152310A1 (en) 2013-10-10
KR20140140637A (ko) 2014-12-09
CN104364984A (zh) 2015-02-18
EP2834890A4 (en) 2015-12-16
EP2834890A1 (en) 2015-02-11

Similar Documents

Publication Publication Date Title
US20170293094A1 (en) Optical transmitter assembly for vertical coupling
JP6446955B2 (ja) 光送信モジュール
US9519151B2 (en) Optical multiplexer and transmitter optical subassembly
US9829641B2 (en) Integrated lens-array-on-substrate for optical coupling system and fabrication method thereof
CN104102011B (zh) 具有复用光束的复合棱镜的光学模块
JP6582968B2 (ja) 光源装置
JP2009105106A5 (ru)
JP2015096878A5 (ru)
CN102859433A (zh) 光开关
JP2014157282A5 (ru)
JP2014191188A5 (ru)
RU2013148791A (ru) Способ и система для криогенно-охлаждаемого лазерного усилителя
WO2017205553A1 (en) Optical coupling device and method
RU2014144472A (ru) Лазерные архитектуры
CN103776536A (zh) 级联式大光程差弹光调制干涉仪
US9696485B2 (en) Optical circulator array
TW201426153A (zh) 光調變器
WO2018216216A1 (ja) 光合波器
RU2339138C2 (ru) Твердотельный лазер с диодной накачкой (варианты)
KR101753849B1 (ko) 자외선 led 모듈 및 이를 구비한 자외선 경화장치
JP6048182B2 (ja) 光送信モジュール
CN105511089A (zh) 一种大功率半导体激光器线阵束参积调整的装置
Gambini et al. Demonstration of a photonic integrated network-on-chip with multi microrings
KR20170041044A (ko) 파장 변환 소자
BR112013017747A2 (pt) sistema, chip de laser-em-cmos, e método para definir um comprimento de onda a ser utilizado pelo chip de laser-em-cmos

Legal Events

Date Code Title Description
FA94 Acknowledgement of application withdrawn (non-payment of fees)

Effective date: 20181010