RU2013129986A - Формирование магнитно-резонансного изображения с использованием многоточечного способа диксона - Google Patents

Формирование магнитно-резонансного изображения с использованием многоточечного способа диксона Download PDF

Info

Publication number
RU2013129986A
RU2013129986A RU2013129986/28A RU2013129986A RU2013129986A RU 2013129986 A RU2013129986 A RU 2013129986A RU 2013129986/28 A RU2013129986/28 A RU 2013129986/28A RU 2013129986 A RU2013129986 A RU 2013129986A RU 2013129986 A RU2013129986 A RU 2013129986A
Authority
RU
Russia
Prior art keywords
data set
magnetic resonance
image
adipose tissue
segment
Prior art date
Application number
RU2013129986/28A
Other languages
English (en)
Other versions
RU2592039C2 (ru
Inventor
Арьян Виллем СИМОНЕТТИ
Гвенаэль Анри ЭРИГО
Original Assignee
Конинклейке Филипс Электроникс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP10193467A external-priority patent/EP2461175A1/en
Priority claimed from EP11159548A external-priority patent/EP2503348A1/en
Application filed by Конинклейке Филипс Электроникс Н.В. filed Critical Конинклейке Филипс Электроникс Н.В.
Publication of RU2013129986A publication Critical patent/RU2013129986A/ru
Application granted granted Critical
Publication of RU2592039C2 publication Critical patent/RU2592039C2/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
    • G01R33/583Calibration of signal excitation or detection systems, e.g. for optimal RF excitation power or frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4828Resolving the MR signals of different chemical species, e.g. water-fat imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56527Correction of image distortions, e.g. due to magnetic field inhomogeneities due to chemical shift effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5607Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reducing the NMR signal of a particular spin species, e.g. of a chemical species for fat suppression, or of a moving spin species for black-blood imaging

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

1. Способ формирования магнитно-резонансного изображения по меньшей мере участка тела (10) пациента, помещенного в объем исследования магнитно-резонансного устройства (1), при этом способ содержит этапы, на которых:- подвергают участок тела (10) воздействию последовательности калибровки, содержащей РЧ-импульсы и переключаемые градиенты магнитного поля, управляемые таким образом, что набор данных калибровочного сигнала получают посредством многоточечного способа Диксона при первой разрешающей способности изображения;- сегментируют водный сегмент и сегмент жировой ткани из набора данных калибровочного сигнала;- получают калибровочные параметры для водного сегмента и для сегмента жировой ткани из набора данных калибровочного сигнала, при этом установки шиммирования получают из набора данных калибровочного сигнала, причем установки шиммирования используются для управления токами через катушки (2') шиммирования магнитно-резонансного устройства (1);- подвергают участок тела (10) воздействию последовательности формирования изображения, содержащей РЧ-импульсы и переключаемые градиенты магнитного поля, управляемые таким образом, что набор данных диагностического сигнала получают при второй разрешающей способности изображения, которая выше, чем первая разрешающая способность изображения; и- реконструируют диагностическое магнитно-резонансноеизображение из набора данных диагностического сигнала;при этом магнитно-резонансное устройство (1) работает в соответствии с полученными калибровочными параметрами во время получения набора данных диагностического сигнала и/или во время реконструкции диагностическо

Claims (10)

1. Способ формирования магнитно-резонансного изображения по меньшей мере участка тела (10) пациента, помещенного в объем исследования магнитно-резонансного устройства (1), при этом способ содержит этапы, на которых:
- подвергают участок тела (10) воздействию последовательности калибровки, содержащей РЧ-импульсы и переключаемые градиенты магнитного поля, управляемые таким образом, что набор данных калибровочного сигнала получают посредством многоточечного способа Диксона при первой разрешающей способности изображения;
- сегментируют водный сегмент и сегмент жировой ткани из набора данных калибровочного сигнала;
- получают калибровочные параметры для водного сегмента и для сегмента жировой ткани из набора данных калибровочного сигнала, при этом установки шиммирования получают из набора данных калибровочного сигнала, причем установки шиммирования используются для управления токами через катушки (2') шиммирования магнитно-резонансного устройства (1);
- подвергают участок тела (10) воздействию последовательности формирования изображения, содержащей РЧ-импульсы и переключаемые градиенты магнитного поля, управляемые таким образом, что набор данных диагностического сигнала получают при второй разрешающей способности изображения, которая выше, чем первая разрешающая способность изображения; и
- реконструируют диагностическое магнитно-резонансное
изображение из набора данных диагностического сигнала;
при этом магнитно-резонансное устройство (1) работает в соответствии с полученными калибровочными параметрами во время получения набора данных диагностического сигнала и/или во время реконструкции диагностического магнитно-резонансного изображения.
2. Способ по п. 1, в котором последовательность формирования изображения содержит один или более РЧ-импульсов подавления жировой ткани, производящих спектрально выборочное подавление сигналов жировой ткани в наборе данных диагностического сигнала.
3. Способ по п. 2, в котором частоту и/или ширину полосы одного или более спектрально выборочных РЧ-импульсов подавления жировой ткани получают из набора данных калибровочного сигнала.
4. Способ по п. 2 или 3, в котором моделированную карту В0 получают из набора данных калибровочного сигнала и из установок шиммирования, при этом частота и/или ширина полосы одного или более РЧ-импульсов подавления жировой ткани определяется из моделированной карты B0 таким образом, что минимизируется количество пикселей или вокселов в заданной интересующей области, имеющей В0 вне диапазона спектральной избирательности одного или более РЧ-импульсов подавления жировой ткани.
5. Способ по п. 2, в котором прогнозирование пикселей или вокселов диагностического магнитно-резонансного изображения, в котором спектрально выборочное подавление сигналов жировой ткани является неполным или отсутствует, получают из набора данных калибровочного сигнала.
6. Способ по п. 5, в котором диагностическое магнитно-
резонансное изображение корректируют на этапе последующей обработки в соответствии с результатами прогнозирования.
7. Способ по любому из пп. 1-3, 5-6, дополнительно содержащий этапы, на которых:
- реконструируют по меньшей мере одно изображение (21) воды и по меньшей мере одно изображение (22) жировой ткани из набора данных калибровочного сигнала;
- идентифицируют водную область (31) и область (32) жировой ткани на основе по меньшей мере одного изображения (21) воды и по меньшей мере одного изображения (22) жировой ткани; и
- определяют установки шиммирования, которые максимизируют однородность В0 в водной области (31) и/или в области (32) жировой ткани.
8. Способ по п. 7, в котором установки шиммирования вычисляют, оптимизируя функцию стоимости в зависимости от девиации В0 в водной области (31) и в области (32) жировой ткани.
9. Магнитно-резонансное устройство для выполнения способа по любому из пп. 1-8, причем магнитно-резонансное устройство (1) содержит по меньшей мере один основной соленоид (2) для формирования однородного постоянного магнитного поля В0 внутри объема исследования, набор градиентных катушек (4, 5, 6) для формирования переключаемых градиентов магнитного поля в различных пространственных направлениях внутри объема исследования, по меньшей мере одну РЧ-катушку (9) для тела, чтобы формировать РЧ-импульсы внутри объема исследования и/или для приема сигналов магнитного резонанса от тела (10) пациента, помещенного в объем исследования, дополнительно содержащее набор
катушек (21) шиммирования для оптимизации однородности магнитного поля B0, блок (15) управления для управления временной последовательностью РЧ-импульсов и переключаемых градиентов магнитного поля, блок (17) реконструкции и блок (18) визуализации, при этом магнитно-резонансное устройство (1) выполнено с возможностью осуществлять следующие этапы, на которых:
- получают установки шиммирования в качестве калибровочных параметров из набора данных калибровочного сигнала и для управления прохождением электрического тока через катушки (2') шиммирования магнитно-резонансного устройства (1) в соответствии с полученными установками шиммирования,
- подвергают участок тела (10) воздействию последовательности калибровки, содержащей РЧ-импульсы и переключаемые градиенты магнитного поля, управляемые таким образом, что набор данных калибровочного сигнала получают посредством многоточечного способа Диксона при первой разрешающей способности изображения;
- сегментируют водный сегмент и сегмент жировой ткани из набора данных калибровочного сигнала;
- получают калибровочные параметры для каждого из водного сегмента и сегмента жировой ткани;
- подвергают участок тела (10) воздействию последовательности формирования изображения, содержащей РЧ-импульсы и переключаемые градиенты магнитного поля, управляемые таким образом, что набор данных диагностического сигнала получают при второй разрешающей способности изображения, которая
выше, чем первая разрешающая способность изображения; и
- реконструируют диагностическое магнитно-резонансное изображение из набора данных диагностического сигнала;
при этом магнитно-резонансное устройство (1) работает в соответствии с полученными калибровочными параметрами во время получения набора данных диагностического сигнала и/или во время реконструкции диагностического магнитно-резонансного изображения.
10. Компьютерная программа, которая должна работать на магнитно-резонансном устройстве, причем компьютерная программа содержит команды, согласно которым:
- формируют последовательность калибровки, содержащую РЧ-импульсы и переключаемые градиенты магнитного поля, таким образом, что набор данных калибровочного сигнала получают посредством многоточечного способа Диксона при первой разрешающей способности изображения;
- сегментируют водный сегмент и сегмент жировой ткани из набора данных калибровочного сигнала;
- получают калибровочные параметры для каждого из водного сегмента и сегмента жировой ткани;
- получают установки шиммирования набора данных калибровочного сигнала, причем установки шиммирования используются для управления токами через катушки (2') шиммирования магнитно-резонансного устройства (1);
- формируют последовательность формирования изображения, содержащую РЧ-импульсы и переключаемые градиенты магнитного поля, таким образом, что набор данных диагностического сигнала
получают при второй разрешающей способности изображения, которая выше, чем первая разрешающая способность изображения; и
- реконструируют диагностическое магнитно-резонансное изображение из набора данных диагностического сигнала;
при этом получение набора данных диагностического сигнала и/или реконструкция диагностического магнитно-резонансного изображения выполняются в соответствии с полученными калибровочными параметрами.
RU2013129986/28A 2010-12-02 2011-11-28 Формирование магнитно-резонансного изображения с использованием многоточечного способа диксона RU2592039C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP10193467.7 2010-12-02
EP10193467A EP2461175A1 (en) 2010-12-02 2010-12-02 MR imaging using a multi-point Dixon technique
EP11159548.4 2011-03-24
EP11159548A EP2503348A1 (en) 2011-03-24 2011-03-24 MRI using a multi-point Dixon technique and a low resolution calibration scan
PCT/IB2011/055336 WO2012073181A2 (en) 2010-12-02 2011-11-28 Mr imaging using a multi-point dixon technique

Publications (2)

Publication Number Publication Date
RU2013129986A true RU2013129986A (ru) 2015-01-10
RU2592039C2 RU2592039C2 (ru) 2016-07-20

Family

ID=45350442

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013129986/28A RU2592039C2 (ru) 2010-12-02 2011-11-28 Формирование магнитно-резонансного изображения с использованием многоточечного способа диксона

Country Status (5)

Country Link
US (1) US9575154B2 (ru)
EP (1) EP2646842A2 (ru)
CN (1) CN103238082B (ru)
RU (1) RU2592039C2 (ru)
WO (1) WO2012073181A2 (ru)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2461175A1 (en) * 2010-12-02 2012-06-06 Koninklijke Philips Electronics N.V. MR imaging using a multi-point Dixon technique
EP2646842A2 (en) * 2010-12-02 2013-10-09 Koninklijke Philips N.V. Mr imaging using a multi-point dixon technique
DE102011087210B4 (de) * 2011-11-28 2016-11-17 Siemens Healthcare Gmbh Verfahren zur Ermittlung einer Ansteuerungssequenz beim parallelen Senden
US20160146918A1 (en) * 2013-07-11 2016-05-26 Koninklijke Philips N.V. Corrected magnetic resonance imaging using coil sensitivities
JP6581584B2 (ja) * 2013-12-19 2019-09-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 水/脂肪分離を用いた位相感応型反転回復mri
DE102014211354A1 (de) * 2014-06-13 2015-12-17 Siemens Aktiengesellschaft Verfahren zur Magnetresonanz-Bildgebung
JP6713988B2 (ja) * 2014-09-26 2020-06-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 血流アーチファクトを抑制させたDixonMR撮像
CN105809662B (zh) * 2014-12-30 2018-09-04 中国科学院深圳先进技术研究院 磁共振成像的图像水脂分离方法和系统
US10718838B2 (en) 2015-05-15 2020-07-21 The Medical College of Wisconsin, lnc. Systems and methods for calibrated multi-spectral magnetic resonance imaging
EP3314284B1 (en) * 2015-06-26 2021-10-20 Koninklijke Philips N.V. Phase corrected dixon magnetic resonance imaging
US11041926B2 (en) * 2016-06-02 2021-06-22 Koninklijke Philips N.V. Dixon-type water/fat separation MR imaging
JP6636676B1 (ja) * 2016-11-17 2020-01-29 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 強度補正された磁気共鳴画像
DE102017201074A1 (de) 2017-01-24 2018-07-26 Siemens Healthcare Gmbh Verfahren zur Aufnahme von Magnetresonanzdaten, Magnetresonanzeinrichtung, Computerprogramm und Datenträger
EP3454072A1 (de) * 2017-09-06 2019-03-13 Siemens Healthcare GmbH Justierung einer mr-steuerungssequenz für eine magnetresonanzuntersuchung eines untersuchungsobjektes
EP3553547A1 (en) * 2018-04-12 2019-10-16 Koninklijke Philips N.V. Shim irons for a magnetic resonance apparatus
EP3581953A1 (en) * 2018-06-11 2019-12-18 Koninklijke Philips N.V. A method for configuring a rf transmit assembly
CN109709503B (zh) 2019-02-13 2021-03-23 上海联影医疗科技股份有限公司 一种磁共振系统控制方法、磁共振系统、计算机设备
CN111856360A (zh) 2019-04-24 2020-10-30 通用电气精准医疗有限责任公司 用于获取磁共振成像数据的方法和磁共振成像系统
RU2766393C1 (ru) * 2021-02-02 2022-03-15 Ирина Яковлевна Васильева Способ скрининга раннего рака молочной железы с помощью магнитно-резонансной томографии с внутривенным контрастированием по короткому протоколу
RU2748016C1 (ru) * 2021-02-02 2021-05-18 Ирина Яковлевна Васильева Способ скрининга раннего рака молочной железы с помощью магнитно-резонансной томографии с внутривенным контрастированием по короткому протоколу
GB2611315B (en) * 2021-09-29 2024-01-03 Siemens Healthcare Gmbh Method of operating a magnetic resonance scanner
EP4253984A1 (de) * 2022-03-30 2023-10-04 Siemens Healthcare GmbH Verfahren zur magnetresonanz-bildgebung, computerprogramm, speichermedium und magnetresonanzgerät

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155836A (ja) 1987-12-14 1989-06-19 Toshiba Corp 磁気共鳴イメージング装置
NL8900990A (nl) 1989-04-20 1990-11-16 Philips Nv Werkwijze voor het bepalen van een kernmagnetisatieverdeling van een deelvolume van een object, werkwijze voor het homogeniseren van een deel van een stationair veld waarin het object zich bevindt, en magnetische resonantieinrichting voor het uitvoeren van een dergelijke werkwijze.
US5309102A (en) 1993-05-07 1994-05-03 General Electric Company Frequency calibration for MRI scanner
US5617028A (en) 1995-03-09 1997-04-01 Board Of Trustees Of The Leland Stanford Junior University Magnetic field inhomogeneity correction in MRI using estimated linear magnetic field map
US6064208A (en) 1998-04-02 2000-05-16 Picker International, Inc. Two-peak alignment method of field shimming
DE19959720B4 (de) 1999-12-10 2005-02-24 Siemens Ag Verfahren zum Betrieb eines Magnetresonanztomographiegeräts
US6466014B1 (en) 2000-08-29 2002-10-15 Ge Medical Systems Global Technology Company, Llc Suppression of fat signals in MR water images produced in Dixon imaging
US6529002B1 (en) 2000-08-31 2003-03-04 The Board Of Trustees Of The Leland Stanford Junior University High order shimming of MRI magnetic fields using regularization
US7099499B2 (en) 2002-08-15 2006-08-29 General Electric Company Fat/water separation and fat minimization magnetic resonance imaging systems and methods
US7199585B2 (en) 2003-06-19 2007-04-03 Koninklijke Philips Electronics N.V. Method for shimming a main magnetic field in magnetic resonance
US7235971B2 (en) 2003-07-11 2007-06-26 Koninklijke Philips Electronics N.V. Shimming of MRI scanner involving fat suppression and/or black blood preparation
US6995559B2 (en) 2003-10-30 2006-02-07 Ge Medical Systems Global Technology Company, Llc Method and system for optimized pre-saturation in MR with corrected transmitter frequency of pre-pulses
US20050165295A1 (en) 2004-01-23 2005-07-28 Debiao Li Local magnetic resonance image quality by optimizing imaging frequency
DE102005019859A1 (de) 2004-05-11 2005-12-08 Siemens Ag Verfahren zur Durchführung einer Magnetresonanzuntersuchung eines Patienten
CN1732848A (zh) * 2004-05-11 2006-02-15 西门子公司 对患者进行磁共振检查的方法
US7116106B1 (en) 2004-11-16 2006-10-03 Fonar Corporation Process and system for detecting and correcting errors in an MRI scan process
US7233143B2 (en) 2005-02-15 2007-06-19 Case Western Reserve University Brorc-s2pd
CN100396239C (zh) 2005-02-28 2008-06-25 西门子(中国)有限公司 磁共振多通道成像水脂分离重建算法
US7609060B2 (en) 2007-04-20 2009-10-27 Albert Einstein College Of Medicine Of Yeshiva University Non iterative shimming in magnetic resonance imaging in the presence of high LIPID levels
CN101680938A (zh) * 2007-05-31 2010-03-24 皇家飞利浦电子股份有限公司 自动采集磁共振图像数据的方法
DE102008044844B4 (de) * 2008-08-28 2018-08-30 Siemens Healthcare Gmbh Verfahren zur Ermittlung einer Schwächungskarte zur Verwendung in der Positronenemissionstomographie und von Homogenitätsinformationen des Magnetresonanzmagnetfeldes
US8138759B2 (en) * 2008-11-25 2012-03-20 The United States Of America As Represented By The Secretary, Department Of Health And Human Services System for adjusting a magnetic field for MR and other use
US9500731B2 (en) * 2010-10-15 2016-11-22 Eleazar Castillo Shimming device and method to improve magnetic field homogeneity in magnetic resonance imaging devices
EP2646842A2 (en) * 2010-12-02 2013-10-09 Koninklijke Philips N.V. Mr imaging using a multi-point dixon technique
EP2461175A1 (en) * 2010-12-02 2012-06-06 Koninklijke Philips Electronics N.V. MR imaging using a multi-point Dixon technique
EP2506026A1 (en) * 2011-03-29 2012-10-03 Universitätsklinikum Freiburg Method of dynamically compensating for magnetic field heterogeneity in magnetic resonance imaging
EP3004908B1 (en) * 2013-06-06 2021-04-28 Koninklijke Philips N.V. Parallel mri with b0 distortion correction and multi-echo dixon water-fat separation using regularised sense reconstruction

Also Published As

Publication number Publication date
WO2012073181A2 (en) 2012-06-07
WO2012073181A3 (en) 2012-07-26
US20130249554A1 (en) 2013-09-26
CN103238082A (zh) 2013-08-07
EP2646842A2 (en) 2013-10-09
RU2592039C2 (ru) 2016-07-20
CN103238082B (zh) 2015-07-15
US9575154B2 (en) 2017-02-21

Similar Documents

Publication Publication Date Title
RU2013129986A (ru) Формирование магнитно-резонансного изображения с использованием многоточечного способа диксона
RU2013150082A (ru) Магнитно-резонансная визуализация с картированием поля в1
RU2014136352A (ru) Мрт с коррекцией движения с помощью навигаторов, получаемых с помощью метода диксона
JP6554729B2 (ja) 縮小視野磁気共鳴イメージングのシステムおよび方法
JP2014503249A5 (ru)
US9638781B2 (en) Enhancement of MT effect and/or CEST effect
RU2702859C2 (ru) Параллельная мультисрезовая мр-визуализация с подавлением артефактов боковой полосы частот
JP2016514563A5 (ru)
KR101695266B1 (ko) 동시 mr 이미징 방법 및 동시 다중 핵 mr 이미징 장치
US9720061B2 (en) Systems, methods and GUI for chemical exchange saturation transfer (CEST) analysis
JP2014508622A5 (ru)
US20150253408A1 (en) Method and apparatus for magnetic resonance imaging
US20120319689A1 (en) Magnetic resonance imaging apparatus
RU2014119867A (ru) Магнитно-резонансная (mr) томография с использованием общей информации для изображений с разной контрастностью
RU2014119872A (ru) Магнитно-резонансная (mr)
US10481232B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US20130249552A1 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
JP2015163109A (ja) 磁気共鳴装置およびプログラム
US10162033B2 (en) Magnetic resonance imaging method and apparatus
JP5377838B2 (ja) 磁気共鳴イメージング装置
US9804240B2 (en) Method and device for controlling a magnetic resonance imaging apparatus
JP2010035991A (ja) 磁気共鳴撮影装置
EP3550319A1 (en) Emulation mode for mri
US9229083B2 (en) Magnetic resonance method and system to generate an optimized MR image of an examination subject
US10909729B2 (en) Image processing apparatus