RU2013129986A - Формирование магнитно-резонансного изображения с использованием многоточечного способа диксона - Google Patents
Формирование магнитно-резонансного изображения с использованием многоточечного способа диксона Download PDFInfo
- Publication number
- RU2013129986A RU2013129986A RU2013129986/28A RU2013129986A RU2013129986A RU 2013129986 A RU2013129986 A RU 2013129986A RU 2013129986/28 A RU2013129986/28 A RU 2013129986/28A RU 2013129986 A RU2013129986 A RU 2013129986A RU 2013129986 A RU2013129986 A RU 2013129986A
- Authority
- RU
- Russia
- Prior art keywords
- data set
- magnetic resonance
- image
- adipose tissue
- segment
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/58—Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
- G01R33/583—Calibration of signal excitation or detection systems, e.g. for optimal RF excitation power or frequency
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/4828—Resolving the MR signals of different chemical species, e.g. water-fat imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56527—Correction of image distortions, e.g. due to magnetic field inhomogeneities due to chemical shift effects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/5607—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reducing the NMR signal of a particular spin species, e.g. of a chemical species for fat suppression, or of a moving spin species for black-blood imaging
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
1. Способ формирования магнитно-резонансного изображения по меньшей мере участка тела (10) пациента, помещенного в объем исследования магнитно-резонансного устройства (1), при этом способ содержит этапы, на которых:- подвергают участок тела (10) воздействию последовательности калибровки, содержащей РЧ-импульсы и переключаемые градиенты магнитного поля, управляемые таким образом, что набор данных калибровочного сигнала получают посредством многоточечного способа Диксона при первой разрешающей способности изображения;- сегментируют водный сегмент и сегмент жировой ткани из набора данных калибровочного сигнала;- получают калибровочные параметры для водного сегмента и для сегмента жировой ткани из набора данных калибровочного сигнала, при этом установки шиммирования получают из набора данных калибровочного сигнала, причем установки шиммирования используются для управления токами через катушки (2') шиммирования магнитно-резонансного устройства (1);- подвергают участок тела (10) воздействию последовательности формирования изображения, содержащей РЧ-импульсы и переключаемые градиенты магнитного поля, управляемые таким образом, что набор данных диагностического сигнала получают при второй разрешающей способности изображения, которая выше, чем первая разрешающая способность изображения; и- реконструируют диагностическое магнитно-резонансноеизображение из набора данных диагностического сигнала;при этом магнитно-резонансное устройство (1) работает в соответствии с полученными калибровочными параметрами во время получения набора данных диагностического сигнала и/или во время реконструкции диагностическо
Claims (10)
1. Способ формирования магнитно-резонансного изображения по меньшей мере участка тела (10) пациента, помещенного в объем исследования магнитно-резонансного устройства (1), при этом способ содержит этапы, на которых:
- подвергают участок тела (10) воздействию последовательности калибровки, содержащей РЧ-импульсы и переключаемые градиенты магнитного поля, управляемые таким образом, что набор данных калибровочного сигнала получают посредством многоточечного способа Диксона при первой разрешающей способности изображения;
- сегментируют водный сегмент и сегмент жировой ткани из набора данных калибровочного сигнала;
- получают калибровочные параметры для водного сегмента и для сегмента жировой ткани из набора данных калибровочного сигнала, при этом установки шиммирования получают из набора данных калибровочного сигнала, причем установки шиммирования используются для управления токами через катушки (2') шиммирования магнитно-резонансного устройства (1);
- подвергают участок тела (10) воздействию последовательности формирования изображения, содержащей РЧ-импульсы и переключаемые градиенты магнитного поля, управляемые таким образом, что набор данных диагностического сигнала получают при второй разрешающей способности изображения, которая выше, чем первая разрешающая способность изображения; и
- реконструируют диагностическое магнитно-резонансное
изображение из набора данных диагностического сигнала;
при этом магнитно-резонансное устройство (1) работает в соответствии с полученными калибровочными параметрами во время получения набора данных диагностического сигнала и/или во время реконструкции диагностического магнитно-резонансного изображения.
2. Способ по п. 1, в котором последовательность формирования изображения содержит один или более РЧ-импульсов подавления жировой ткани, производящих спектрально выборочное подавление сигналов жировой ткани в наборе данных диагностического сигнала.
3. Способ по п. 2, в котором частоту и/или ширину полосы одного или более спектрально выборочных РЧ-импульсов подавления жировой ткани получают из набора данных калибровочного сигнала.
4. Способ по п. 2 или 3, в котором моделированную карту В0 получают из набора данных калибровочного сигнала и из установок шиммирования, при этом частота и/или ширина полосы одного или более РЧ-импульсов подавления жировой ткани определяется из моделированной карты B0 таким образом, что минимизируется количество пикселей или вокселов в заданной интересующей области, имеющей В0 вне диапазона спектральной избирательности одного или более РЧ-импульсов подавления жировой ткани.
5. Способ по п. 2, в котором прогнозирование пикселей или вокселов диагностического магнитно-резонансного изображения, в котором спектрально выборочное подавление сигналов жировой ткани является неполным или отсутствует, получают из набора данных калибровочного сигнала.
6. Способ по п. 5, в котором диагностическое магнитно-
резонансное изображение корректируют на этапе последующей обработки в соответствии с результатами прогнозирования.
7. Способ по любому из пп. 1-3, 5-6, дополнительно содержащий этапы, на которых:
- реконструируют по меньшей мере одно изображение (21) воды и по меньшей мере одно изображение (22) жировой ткани из набора данных калибровочного сигнала;
- идентифицируют водную область (31) и область (32) жировой ткани на основе по меньшей мере одного изображения (21) воды и по меньшей мере одного изображения (22) жировой ткани; и
- определяют установки шиммирования, которые максимизируют однородность В0 в водной области (31) и/или в области (32) жировой ткани.
8. Способ по п. 7, в котором установки шиммирования вычисляют, оптимизируя функцию стоимости в зависимости от девиации В0 в водной области (31) и в области (32) жировой ткани.
9. Магнитно-резонансное устройство для выполнения способа по любому из пп. 1-8, причем магнитно-резонансное устройство (1) содержит по меньшей мере один основной соленоид (2) для формирования однородного постоянного магнитного поля В0 внутри объема исследования, набор градиентных катушек (4, 5, 6) для формирования переключаемых градиентов магнитного поля в различных пространственных направлениях внутри объема исследования, по меньшей мере одну РЧ-катушку (9) для тела, чтобы формировать РЧ-импульсы внутри объема исследования и/или для приема сигналов магнитного резонанса от тела (10) пациента, помещенного в объем исследования, дополнительно содержащее набор
катушек (21) шиммирования для оптимизации однородности магнитного поля B0, блок (15) управления для управления временной последовательностью РЧ-импульсов и переключаемых градиентов магнитного поля, блок (17) реконструкции и блок (18) визуализации, при этом магнитно-резонансное устройство (1) выполнено с возможностью осуществлять следующие этапы, на которых:
- получают установки шиммирования в качестве калибровочных параметров из набора данных калибровочного сигнала и для управления прохождением электрического тока через катушки (2') шиммирования магнитно-резонансного устройства (1) в соответствии с полученными установками шиммирования,
- подвергают участок тела (10) воздействию последовательности калибровки, содержащей РЧ-импульсы и переключаемые градиенты магнитного поля, управляемые таким образом, что набор данных калибровочного сигнала получают посредством многоточечного способа Диксона при первой разрешающей способности изображения;
- сегментируют водный сегмент и сегмент жировой ткани из набора данных калибровочного сигнала;
- получают калибровочные параметры для каждого из водного сегмента и сегмента жировой ткани;
- подвергают участок тела (10) воздействию последовательности формирования изображения, содержащей РЧ-импульсы и переключаемые градиенты магнитного поля, управляемые таким образом, что набор данных диагностического сигнала получают при второй разрешающей способности изображения, которая
выше, чем первая разрешающая способность изображения; и
- реконструируют диагностическое магнитно-резонансное изображение из набора данных диагностического сигнала;
при этом магнитно-резонансное устройство (1) работает в соответствии с полученными калибровочными параметрами во время получения набора данных диагностического сигнала и/или во время реконструкции диагностического магнитно-резонансного изображения.
10. Компьютерная программа, которая должна работать на магнитно-резонансном устройстве, причем компьютерная программа содержит команды, согласно которым:
- формируют последовательность калибровки, содержащую РЧ-импульсы и переключаемые градиенты магнитного поля, таким образом, что набор данных калибровочного сигнала получают посредством многоточечного способа Диксона при первой разрешающей способности изображения;
- сегментируют водный сегмент и сегмент жировой ткани из набора данных калибровочного сигнала;
- получают калибровочные параметры для каждого из водного сегмента и сегмента жировой ткани;
- получают установки шиммирования набора данных калибровочного сигнала, причем установки шиммирования используются для управления токами через катушки (2') шиммирования магнитно-резонансного устройства (1);
- формируют последовательность формирования изображения, содержащую РЧ-импульсы и переключаемые градиенты магнитного поля, таким образом, что набор данных диагностического сигнала
получают при второй разрешающей способности изображения, которая выше, чем первая разрешающая способность изображения; и
- реконструируют диагностическое магнитно-резонансное изображение из набора данных диагностического сигнала;
при этом получение набора данных диагностического сигнала и/или реконструкция диагностического магнитно-резонансного изображения выполняются в соответствии с полученными калибровочными параметрами.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10193467.7 | 2010-12-02 | ||
EP10193467A EP2461175A1 (en) | 2010-12-02 | 2010-12-02 | MR imaging using a multi-point Dixon technique |
EP11159548.4 | 2011-03-24 | ||
EP11159548A EP2503348A1 (en) | 2011-03-24 | 2011-03-24 | MRI using a multi-point Dixon technique and a low resolution calibration scan |
PCT/IB2011/055336 WO2012073181A2 (en) | 2010-12-02 | 2011-11-28 | Mr imaging using a multi-point dixon technique |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013129986A true RU2013129986A (ru) | 2015-01-10 |
RU2592039C2 RU2592039C2 (ru) | 2016-07-20 |
Family
ID=45350442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013129986/28A RU2592039C2 (ru) | 2010-12-02 | 2011-11-28 | Формирование магнитно-резонансного изображения с использованием многоточечного способа диксона |
Country Status (5)
Country | Link |
---|---|
US (1) | US9575154B2 (ru) |
EP (1) | EP2646842A2 (ru) |
CN (1) | CN103238082B (ru) |
RU (1) | RU2592039C2 (ru) |
WO (1) | WO2012073181A2 (ru) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2461175A1 (en) * | 2010-12-02 | 2012-06-06 | Koninklijke Philips Electronics N.V. | MR imaging using a multi-point Dixon technique |
EP2646842A2 (en) * | 2010-12-02 | 2013-10-09 | Koninklijke Philips N.V. | Mr imaging using a multi-point dixon technique |
DE102011087210B4 (de) * | 2011-11-28 | 2016-11-17 | Siemens Healthcare Gmbh | Verfahren zur Ermittlung einer Ansteuerungssequenz beim parallelen Senden |
US20160146918A1 (en) * | 2013-07-11 | 2016-05-26 | Koninklijke Philips N.V. | Corrected magnetic resonance imaging using coil sensitivities |
JP6581584B2 (ja) * | 2013-12-19 | 2019-09-25 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 水/脂肪分離を用いた位相感応型反転回復mri |
DE102014211354A1 (de) * | 2014-06-13 | 2015-12-17 | Siemens Aktiengesellschaft | Verfahren zur Magnetresonanz-Bildgebung |
JP6713988B2 (ja) * | 2014-09-26 | 2020-06-24 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 血流アーチファクトを抑制させたDixonMR撮像 |
CN105809662B (zh) * | 2014-12-30 | 2018-09-04 | 中国科学院深圳先进技术研究院 | 磁共振成像的图像水脂分离方法和系统 |
US10718838B2 (en) | 2015-05-15 | 2020-07-21 | The Medical College of Wisconsin, lnc. | Systems and methods for calibrated multi-spectral magnetic resonance imaging |
EP3314284B1 (en) * | 2015-06-26 | 2021-10-20 | Koninklijke Philips N.V. | Phase corrected dixon magnetic resonance imaging |
US11041926B2 (en) * | 2016-06-02 | 2021-06-22 | Koninklijke Philips N.V. | Dixon-type water/fat separation MR imaging |
JP6636676B1 (ja) * | 2016-11-17 | 2020-01-29 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 強度補正された磁気共鳴画像 |
DE102017201074A1 (de) | 2017-01-24 | 2018-07-26 | Siemens Healthcare Gmbh | Verfahren zur Aufnahme von Magnetresonanzdaten, Magnetresonanzeinrichtung, Computerprogramm und Datenträger |
EP3454072A1 (de) * | 2017-09-06 | 2019-03-13 | Siemens Healthcare GmbH | Justierung einer mr-steuerungssequenz für eine magnetresonanzuntersuchung eines untersuchungsobjektes |
EP3553547A1 (en) * | 2018-04-12 | 2019-10-16 | Koninklijke Philips N.V. | Shim irons for a magnetic resonance apparatus |
EP3581953A1 (en) * | 2018-06-11 | 2019-12-18 | Koninklijke Philips N.V. | A method for configuring a rf transmit assembly |
CN109709503B (zh) | 2019-02-13 | 2021-03-23 | 上海联影医疗科技股份有限公司 | 一种磁共振系统控制方法、磁共振系统、计算机设备 |
CN111856360A (zh) | 2019-04-24 | 2020-10-30 | 通用电气精准医疗有限责任公司 | 用于获取磁共振成像数据的方法和磁共振成像系统 |
RU2766393C1 (ru) * | 2021-02-02 | 2022-03-15 | Ирина Яковлевна Васильева | Способ скрининга раннего рака молочной железы с помощью магнитно-резонансной томографии с внутривенным контрастированием по короткому протоколу |
RU2748016C1 (ru) * | 2021-02-02 | 2021-05-18 | Ирина Яковлевна Васильева | Способ скрининга раннего рака молочной железы с помощью магнитно-резонансной томографии с внутривенным контрастированием по короткому протоколу |
GB2611315B (en) * | 2021-09-29 | 2024-01-03 | Siemens Healthcare Gmbh | Method of operating a magnetic resonance scanner |
EP4253984A1 (de) * | 2022-03-30 | 2023-10-04 | Siemens Healthcare GmbH | Verfahren zur magnetresonanz-bildgebung, computerprogramm, speichermedium und magnetresonanzgerät |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01155836A (ja) | 1987-12-14 | 1989-06-19 | Toshiba Corp | 磁気共鳴イメージング装置 |
NL8900990A (nl) | 1989-04-20 | 1990-11-16 | Philips Nv | Werkwijze voor het bepalen van een kernmagnetisatieverdeling van een deelvolume van een object, werkwijze voor het homogeniseren van een deel van een stationair veld waarin het object zich bevindt, en magnetische resonantieinrichting voor het uitvoeren van een dergelijke werkwijze. |
US5309102A (en) | 1993-05-07 | 1994-05-03 | General Electric Company | Frequency calibration for MRI scanner |
US5617028A (en) | 1995-03-09 | 1997-04-01 | Board Of Trustees Of The Leland Stanford Junior University | Magnetic field inhomogeneity correction in MRI using estimated linear magnetic field map |
US6064208A (en) | 1998-04-02 | 2000-05-16 | Picker International, Inc. | Two-peak alignment method of field shimming |
DE19959720B4 (de) | 1999-12-10 | 2005-02-24 | Siemens Ag | Verfahren zum Betrieb eines Magnetresonanztomographiegeräts |
US6466014B1 (en) | 2000-08-29 | 2002-10-15 | Ge Medical Systems Global Technology Company, Llc | Suppression of fat signals in MR water images produced in Dixon imaging |
US6529002B1 (en) | 2000-08-31 | 2003-03-04 | The Board Of Trustees Of The Leland Stanford Junior University | High order shimming of MRI magnetic fields using regularization |
US7099499B2 (en) | 2002-08-15 | 2006-08-29 | General Electric Company | Fat/water separation and fat minimization magnetic resonance imaging systems and methods |
US7199585B2 (en) | 2003-06-19 | 2007-04-03 | Koninklijke Philips Electronics N.V. | Method for shimming a main magnetic field in magnetic resonance |
US7235971B2 (en) | 2003-07-11 | 2007-06-26 | Koninklijke Philips Electronics N.V. | Shimming of MRI scanner involving fat suppression and/or black blood preparation |
US6995559B2 (en) | 2003-10-30 | 2006-02-07 | Ge Medical Systems Global Technology Company, Llc | Method and system for optimized pre-saturation in MR with corrected transmitter frequency of pre-pulses |
US20050165295A1 (en) | 2004-01-23 | 2005-07-28 | Debiao Li | Local magnetic resonance image quality by optimizing imaging frequency |
DE102005019859A1 (de) | 2004-05-11 | 2005-12-08 | Siemens Ag | Verfahren zur Durchführung einer Magnetresonanzuntersuchung eines Patienten |
CN1732848A (zh) * | 2004-05-11 | 2006-02-15 | 西门子公司 | 对患者进行磁共振检查的方法 |
US7116106B1 (en) | 2004-11-16 | 2006-10-03 | Fonar Corporation | Process and system for detecting and correcting errors in an MRI scan process |
US7233143B2 (en) | 2005-02-15 | 2007-06-19 | Case Western Reserve University | Brorc-s2pd |
CN100396239C (zh) | 2005-02-28 | 2008-06-25 | 西门子(中国)有限公司 | 磁共振多通道成像水脂分离重建算法 |
US7609060B2 (en) | 2007-04-20 | 2009-10-27 | Albert Einstein College Of Medicine Of Yeshiva University | Non iterative shimming in magnetic resonance imaging in the presence of high LIPID levels |
CN101680938A (zh) * | 2007-05-31 | 2010-03-24 | 皇家飞利浦电子股份有限公司 | 自动采集磁共振图像数据的方法 |
DE102008044844B4 (de) * | 2008-08-28 | 2018-08-30 | Siemens Healthcare Gmbh | Verfahren zur Ermittlung einer Schwächungskarte zur Verwendung in der Positronenemissionstomographie und von Homogenitätsinformationen des Magnetresonanzmagnetfeldes |
US8138759B2 (en) * | 2008-11-25 | 2012-03-20 | The United States Of America As Represented By The Secretary, Department Of Health And Human Services | System for adjusting a magnetic field for MR and other use |
US9500731B2 (en) * | 2010-10-15 | 2016-11-22 | Eleazar Castillo | Shimming device and method to improve magnetic field homogeneity in magnetic resonance imaging devices |
EP2646842A2 (en) * | 2010-12-02 | 2013-10-09 | Koninklijke Philips N.V. | Mr imaging using a multi-point dixon technique |
EP2461175A1 (en) * | 2010-12-02 | 2012-06-06 | Koninklijke Philips Electronics N.V. | MR imaging using a multi-point Dixon technique |
EP2506026A1 (en) * | 2011-03-29 | 2012-10-03 | Universitätsklinikum Freiburg | Method of dynamically compensating for magnetic field heterogeneity in magnetic resonance imaging |
EP3004908B1 (en) * | 2013-06-06 | 2021-04-28 | Koninklijke Philips N.V. | Parallel mri with b0 distortion correction and multi-echo dixon water-fat separation using regularised sense reconstruction |
-
2011
- 2011-11-28 EP EP11797152.3A patent/EP2646842A2/en not_active Withdrawn
- 2011-11-28 WO PCT/IB2011/055336 patent/WO2012073181A2/en active Application Filing
- 2011-11-28 US US13/990,089 patent/US9575154B2/en active Active
- 2011-11-28 CN CN201180057547.XA patent/CN103238082B/zh not_active Expired - Fee Related
- 2011-11-28 RU RU2013129986/28A patent/RU2592039C2/ru active
Also Published As
Publication number | Publication date |
---|---|
WO2012073181A2 (en) | 2012-06-07 |
WO2012073181A3 (en) | 2012-07-26 |
US20130249554A1 (en) | 2013-09-26 |
CN103238082A (zh) | 2013-08-07 |
EP2646842A2 (en) | 2013-10-09 |
RU2592039C2 (ru) | 2016-07-20 |
CN103238082B (zh) | 2015-07-15 |
US9575154B2 (en) | 2017-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2013129986A (ru) | Формирование магнитно-резонансного изображения с использованием многоточечного способа диксона | |
RU2013150082A (ru) | Магнитно-резонансная визуализация с картированием поля в1 | |
RU2014136352A (ru) | Мрт с коррекцией движения с помощью навигаторов, получаемых с помощью метода диксона | |
JP6554729B2 (ja) | 縮小視野磁気共鳴イメージングのシステムおよび方法 | |
JP2014503249A5 (ru) | ||
US9638781B2 (en) | Enhancement of MT effect and/or CEST effect | |
RU2702859C2 (ru) | Параллельная мультисрезовая мр-визуализация с подавлением артефактов боковой полосы частот | |
JP2016514563A5 (ru) | ||
KR101695266B1 (ko) | 동시 mr 이미징 방법 및 동시 다중 핵 mr 이미징 장치 | |
US9720061B2 (en) | Systems, methods and GUI for chemical exchange saturation transfer (CEST) analysis | |
JP2014508622A5 (ru) | ||
US20150253408A1 (en) | Method and apparatus for magnetic resonance imaging | |
US20120319689A1 (en) | Magnetic resonance imaging apparatus | |
RU2014119867A (ru) | Магнитно-резонансная (mr) томография с использованием общей информации для изображений с разной контрастностью | |
RU2014119872A (ru) | Магнитно-резонансная (mr) | |
US10481232B2 (en) | Magnetic resonance imaging apparatus and magnetic resonance imaging method | |
US20130249552A1 (en) | Magnetic resonance imaging apparatus and magnetic resonance imaging method | |
JP2015163109A (ja) | 磁気共鳴装置およびプログラム | |
US10162033B2 (en) | Magnetic resonance imaging method and apparatus | |
JP5377838B2 (ja) | 磁気共鳴イメージング装置 | |
US9804240B2 (en) | Method and device for controlling a magnetic resonance imaging apparatus | |
JP2010035991A (ja) | 磁気共鳴撮影装置 | |
EP3550319A1 (en) | Emulation mode for mri | |
US9229083B2 (en) | Magnetic resonance method and system to generate an optimized MR image of an examination subject | |
US10909729B2 (en) | Image processing apparatus |