RU2013129772A - Инверсия одновременных источников для данных сейсмоприемной косы с взаимнокорреляционной целевой функцией - Google Patents
Инверсия одновременных источников для данных сейсмоприемной косы с взаимнокорреляционной целевой функцией Download PDFInfo
- Publication number
- RU2013129772A RU2013129772A RU2013129772/08A RU2013129772A RU2013129772A RU 2013129772 A RU2013129772 A RU 2013129772A RU 2013129772/08 A RU2013129772/08 A RU 2013129772/08A RU 2013129772 A RU2013129772 A RU 2013129772A RU 2013129772 A RU2013129772 A RU 2013129772A
- Authority
- RU
- Russia
- Prior art keywords
- seismogram
- model
- data
- sources
- encoded
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract 32
- 230000000704 physical effect Effects 0.000 claims abstract 25
- 238000004364 calculation method Methods 0.000 claims abstract 2
- 238000004088 simulation Methods 0.000 claims 8
- 238000004880 explosion Methods 0.000 claims 4
- 230000004913 activation Effects 0.000 claims 3
- 229930195733 hydrocarbon Natural products 0.000 claims 2
- 150000002430 hydrocarbons Chemical class 0.000 claims 2
- 238000004519 manufacturing process Methods 0.000 claims 2
- 238000005457 optimization Methods 0.000 claims 2
- 238000004422 calculation algorithm Methods 0.000 claims 1
- 238000004590 computer program Methods 0.000 claims 1
- 238000005553 drilling Methods 0.000 claims 1
- 230000002068 genetic effect Effects 0.000 claims 1
- 238000005192 partition Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 238000003860 storage Methods 0.000 claims 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/003—Seismic data acquisition in general, e.g. survey design
- G01V1/005—Seismic data acquisition in general, e.g. survey design with exploration systems emitting special signals, e.g. frequency swept signals, pulse sequences or slip sweep arrangements
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06G—ANALOGUE COMPUTERS
- G06G7/00—Devices in which the computing operation is performed by varying electric or magnetic quantities
- G06G7/48—Analogue computers for specific processes, systems or devices, e.g. simulators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/282—Application of seismic models, synthetic seismograms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
- G01V1/301—Analysis for determining seismic cross-sections or geostructures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/30—Analysis
- G01V1/303—Analysis for determining velocity profiles or travel times
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V2210/00—Details of seismic processing or analysis
- G01V2210/60—Analysis
- G01V2210/61—Analysis by combining or comparing a seismic data set with other data
- G01V2210/614—Synthetically generated data
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Acoustics & Sound (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geophysics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
1. Компьютерно-реализуемый способ для инверсии одновременных кодированных источников измеренных геофизических данных, полученных при условиях, где предположение фиксированных приемников инверсии одновременных кодированных источников не является действительным, чтобы определять модель физических свойств для области геологической среды, содержащий следующие этапы, при этом все суммирование, моделирование, вычисление и обновление выполняются на компьютере, который запрограммирован, чтобы выполнять их:(a) получение группы двух или более кодированных сейсмограмм измеренных геофизических данных, полученных при условиях, где предположение фиксированных приемников не является действительным, при этом каждая сейсмограмма является ассоциированной с одиночным обобщенным источником, или альтернативно с одиночным приемником, и при этом каждая сейсмограмма кодирована с помощью разной кодирующей функции, выбранной из набора неэквивалентных кодирующих функций;(b) суммирование кодированных сейсмограмм в группе посредством суммирования всех, или выбранных, записей данных в каждой сейсмограмме, которые соответствуют одиночному приемнику или альтернативно одиночному источнику, и повторение для каждого другого приемника или альтернативно для каждого другого источника, что дает результатом одновременную кодированную сейсмограмму;(c) предположение модели физических свойств области геологической среды, при этом упомянутая модель обеспечивает значения, по меньшей мере, одного физического свойства в местоположениях всюду по области геологической среды;(d) моделирование синтетической одновременной кодированн�
Claims (27)
1. Компьютерно-реализуемый способ для инверсии одновременных кодированных источников измеренных геофизических данных, полученных при условиях, где предположение фиксированных приемников инверсии одновременных кодированных источников не является действительным, чтобы определять модель физических свойств для области геологической среды, содержащий следующие этапы, при этом все суммирование, моделирование, вычисление и обновление выполняются на компьютере, который запрограммирован, чтобы выполнять их:
(a) получение группы двух или более кодированных сейсмограмм измеренных геофизических данных, полученных при условиях, где предположение фиксированных приемников не является действительным, при этом каждая сейсмограмма является ассоциированной с одиночным обобщенным источником, или альтернативно с одиночным приемником, и при этом каждая сейсмограмма кодирована с помощью разной кодирующей функции, выбранной из набора неэквивалентных кодирующих функций;
(b) суммирование кодированных сейсмограмм в группе посредством суммирования всех, или выбранных, записей данных в каждой сейсмограмме, которые соответствуют одиночному приемнику или альтернативно одиночному источнику, и повторение для каждого другого приемника или альтернативно для каждого другого источника, что дает результатом одновременную кодированную сейсмограмму;
(c) предположение модели физических свойств области геологической среды, при этом упомянутая модель обеспечивает значения, по меньшей мере, одного физического свойства в местоположениях всюду по области геологической среды;
(d) моделирование синтетической одновременной кодированной сейсмограммы данных, с использованием предполагаемой модели физических свойств, при этом моделирование использует кодированные формы импульсов источников, и при этом полная одновременная кодированная сейсмограмма моделируется в одиночной операции моделирования;
(e) вычисление целевой функции, измеряющей взаимную корреляцию между одновременной кодированной сейсмограммой измеренных данных и смоделированной одновременной кодированной сейсмограммой;
(f) обновление модели физических свойств посредством оптимизации целевой функции;
(g) повторение этапов (a)-(f), по меньшей мере, еще один раз с использованием обновленной модели физических свойств из предыдущей итерации в качестве предполагаемой модели физических свойств в этапе (c), что дает результатом дополнительную обновленную модель физических свойств; и
(h) загрузку, отображение, или сохранение дополнительной обновленной модели физических свойств в компьютерное хранилище.
2. Способ по п.1, в котором целевая функция
задается посредством или является математически эквивалентной следующему:
где
являются одновременной кодированной сейсмограммой измеренных данных, и
являются смоделированной одновременной кодированной сейсмограммой, включающей в себя трассы смоделированных данных для всех местоположений приемников, активных ли или неактивных в течение конкретного взрыва, и обозначает выбранную норму.
4. Способ по п.1, в котором кодирующая функция, используемая над сейсмограммой на этапе (a), изменяется в, по меньшей мере, одной из итераций.
5. Способ по п.4, в котором на каждой итерации используются два или более набора кодирующих функций и предназначены, чтобы получать средний градиент целевой функции.
6. Способ по п.1, в котором все кодирующие функции изменяются в каждой итерации.
7. Способ по п.1, дополнительно содержащий получение, по меньшей мере, одной дополнительной группы из двух или более кодированных сейсмограмм измеренных геофизических данных как на этапе (a), и выполнение этапа (b) для каждой дополнительной группы, затем накопление соответствующих вычисленных целевых функций из этапа (e), при этом обновление модели физических свойств на этапе (f) определяется посредством максимизации накопленных вычисленных целевых функций.
8. Способ по п.1, в котором упомянутые кодированные сейсмограммы измеренных данных кодируются посредством временной свертки всех трасс из сейсмограммы с кодирующей функцией, выбранной для сейсмограммы.
9. Способ по п.1, в котором две или более кодированных сейсмограмм измеренных данных получаются посредством получения сейсмограмм данных из геофизического обследования, в котором данные получаются из множества одновременно работающих, однозначно кодированных устройств источника.
10. Способ по п.1, в котором измеренные геофизические данные пребывают из сейсмического обследования области геологической среды.
11. Способ по п.10, в котором обобщенные сейсмические источники являются либо все точечными источниками, либо все источниками плоской волны.
12. Способ по п.1, в котором кодированные формы импульсов источников, используемые в моделировании синтетической одновременной кодированной сейсмограммы, либо используют одни и те же кодирующие функции, используемые, чтобы кодировать одновременную кодированную сейсмограмму измеренных данных, либо являются функциями, созданными посредством временной свертки измеренных или оцененных форм импульсов источников с одной и той же кодирующей функцией, используемой, чтобы кодировать соответствующую измеренную сейсмограмму на этапе (a), при этом измеренные геофизические данные включают в себя измеренные или оцененные формы импульсов источников каждой активации источников.
13. Способ по п.8, в котором кодирующие функции имеют тип, выбранный из группы, состоящей из линейного кодирования, кодирования со случайной фазой, с линейной частотной модуляцией, модифицированной линейной частотной модуляцией, случайным временным сдвигом и частотно независимой фазой.
14. Способ по п.8, в котором кодирующие функции имеют один тип для некоторых источников и другой тип для других источников.
15. Способ по п.1, в котором кодирующие функции оптимизированы, чтобы улучшать качество целевой функции.
16. Способ по п.1, в котором моделирование на этапе (d) выполняется с кодом моделирования конечной разности, конечного элемента или конечного объема.
17. Способ по п.10, в котором модель физических свойств является моделью сейсмической волновой скорости, сейсмических эластичных параметров, сейсмических параметров анизотропии или сейсмических параметров квазиупругости.
18. Способ по п.1, в котором чтобы обновлять модель, используется способ глобальной оптимизации целевой функции, выбранный из группы, состоящей из Монте-Карло, искусственного аннилинга, генетического или эволюционного алгоритма.
19. Способ по п.1, в котором чтобы обновлять модель, используется способ локальной оптимизации целевой функции, выбранный из группы, состоящей из градиентного линейного поиска, сопряженных градиентов или способа Ньютона.
20. Способ по п.1, в котором максимизация целевой функции содержит вычисление градиента целевой функции по отношению к параметрам модели физических свойств.
21. Компьютерно-реализуемый способ для инверсии одновременных кодированных источников измеренных геофизических данных, полученных при условиях, где предположение фиксированных приемников инверсии одновременных кодированных источников не является действительным, чтобы определять модель физических свойств для области геологической среды, содержащий:
(a) получение измеренных геофизических данных от геофизического обследования области геологической среды, в котором предположение фиксированных приемников не было действительным;
(b) использование запрограммированного компьютера, чтобы инвертировать измеренные данные посредством итеративной инверсии, содержащей использование предполагаемой или обновленной модели физических свойств, чтобы одновременно моделировать данные обследования, представляющие множество источников обследования, или альтернативно множество приемников, при этом формы импульсов источников или приемников в моделировании кодируются, что дает результатом смоделированную одновременную кодированную сейсмограмму геофизических данных, при этом инверсия дополнительно содержит определение обновления модели для следующей итерации посредством оптимизации целевой функции, измеряющей взаимную корреляцию между смоделированной одновременной кодированной сейсмограммой и соответствующей одновременно кодированной сейсмограммой измеренных геофизических данных; и
(c) загрузку или отображение обновленной модели физических свойств или сохранение ее в компьютерной памяти или хранилище данных.
22. Способ по п.21, в котором некоторые или все из геофизических данных разбиваются на множество групп данных таким способом, который увеличивает разделение между местоположениями активации источников внутри каждой группы данных по сравнению с некоторыми или всеми из геофизических данных до разбиения, и смоделированная одновременная кодированная сейсмограмма для каждой итерации соответствует разной группе данных со всеми группами, которые используются в ходе итераций.
23. Компьютерный программный продукт, содержащий используемый компьютером постоянный носитель, имеющий машиночитаемый программный код, осуществленный на нем, при этом упомянутый машиночитаемый программный код выполнен с возможностью исполняться, чтобы осуществлять способ для инверсии одновременных кодированных источников измеренных геофизических данных, полученных при условиях, где предположение фиксированных приемников инверсии одновременных кодированных источников не является действительным, чтобы определять модель физических свойств для области геологической среды, при этом упомянутый способ содержит:
(a) ввод группы двух или более кодированных сейсмограмм измеренных геофизических данных, при этом каждая сейсмограмма ассоциирована с одиночным обобщенным источником, или альтернативно с одиночным приемником, и при этом каждая сейсмограмма кодирована с помощью разной кодирующей функции, выбранной из набора неэквивалентных кодирующих функций;
(b) суммирование кодированных сейсмограмм в группе посредством суммирования всех записей данных в каждой сейсмограмме, которые соответствуют одиночному приемнику или альтернативно одиночному источнику, и повторение для каждого другого приемника или альтернативно для каждого другого источника, что дает результатом одновременную кодированную сейсмограмму;
(c) ввод модели физических свойств области геологической среды, при этом упомянутая модель обеспечивает значения, по меньшей мере, одного физического свойства в местоположениях всюду по области геологической среды;
(d) моделирование синтетической одновременной кодированной сейсмограммы данных, с использованием предполагаемой модели физических свойств, при этом моделирование использует кодированные формы импульсов источников, и при этом полная одновременная кодированная сейсмограмма моделируется в одиночной операции моделирования;
(e) вычисление целевой функции, измеряющей взаимную корреляцию между одновременной кодированной сейсмограммой измеренных данных и смоделированной одновременной кодированной сейсмограммой;
(f) обновление модели физических свойств посредством оптимизации целевой функции; и
(g) повторение этапов (a)-(f), по меньшей мере, еще один раз с использованием обновленной модели физических свойств из предыдущей итерации в качестве предполагаемой модели физических свойств в этапе (c), что дает результатом дополнительную обновленную модель физических свойств.
24. Способ для добычи углеводородов из области геологической среды, содержащий:
(a) выполнение сейсмического обследования области геологической среды, при этом предположение фиксированных приемников инверсии одновременных кодированных источников не является удовлетворенным;
(b) получение скоростной модели области геологической среды, определенной посредством способа, содержащего:
инвертирование измеренных данных обследования посредством итеративной инверсии, содержащей использование предполагаемой или обновленной скоростной модели, чтобы одновременно моделировать данные обследования, представляющие множество источников обследования, или альтернативно множество приемников, при этом формы импульсов источников или приемников в моделировании кодируются, что дает результатом смоделированную одновременную кодированную сейсмограмму геофизических данных, при этом инверсия дополнительно содержит определение обновления скоростной модели для следующей итерации посредством оптимизации целевой функции, измеряющей взаимную корреляцию между смоделированной одновременной кодированной сейсмограммой и соответствующей одновременно кодированной сейсмограммой измеренных данных;
(c) бурение скважины в слое в области геологической среды, идентифицированной, по меньшей мере, частично из интерпретации структуры в области геологической среды, созданной с использованием обновленной скоростной модели из (b); и
(d) добычу углеводородов из скважины.
25. Способ по п.1, в котором кодирование выполняется посредством умножения каждой сейсмограммы и каждой формы импульсов источника на выбранную кодирующую функцию, и при этом на каждой итерации из этапа (g) одна или более кодирующих функций устанавливаются равными нулю, так что записи данных, не обнуленные, соответствуют местоположениям активации источников, которые являются более разделенными, в среднем, чем в измеренных геофизических данных до кодирования, при этом в ходе итераций используются все записи данных, т.е. которые не являются обнуленными.
26. Способ по п.25, в котором кодирующие функции используются, чтобы случайным образом выбирать взрывы в каждой итерации, что дает результатом увеличенную расстановку взрывов.
27. Способ по п.1, в котором измеренные геофизические данные, которые инвертируются, являются сейсмическими данными полного волнового поля.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41869410P | 2010-12-01 | 2010-12-01 | |
US61/418,694 | 2010-12-01 | ||
US201161509904P | 2011-07-20 | 2011-07-20 | |
US61/509,904 | 2011-07-20 | ||
PCT/US2011/050209 WO2012074592A1 (en) | 2010-12-01 | 2011-09-01 | Simultaneous source inversion for marine streamer data with cross-correlation objective function |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013129772A true RU2013129772A (ru) | 2015-01-10 |
RU2587498C2 RU2587498C2 (ru) | 2016-06-20 |
Family
ID=46163017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013129772/28A RU2587498C2 (ru) | 2010-12-01 | 2011-09-01 | Инверсия одновременных источников для данных сейсмоприемной косы с взаимнокорреляционной целевой функцией |
Country Status (11)
Country | Link |
---|---|
US (1) | US8688381B2 (ru) |
EP (1) | EP2646944A4 (ru) |
KR (1) | KR101797451B1 (ru) |
CN (1) | CN103238158B (ru) |
AU (1) | AU2011337143B2 (ru) |
BR (1) | BR112013008503A2 (ru) |
CA (1) | CA2815054C (ru) |
MY (1) | MY160148A (ru) |
RU (1) | RU2587498C2 (ru) |
SG (1) | SG189850A1 (ru) |
WO (1) | WO2012074592A1 (ru) |
Families Citing this family (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102741854B (zh) * | 2009-10-23 | 2015-08-19 | 埃克森美孚上游研究公司 | 利用梯度信息进行优化的方法 |
US8694299B2 (en) | 2010-05-07 | 2014-04-08 | Exxonmobil Upstream Research Company | Artifact reduction in iterative inversion of geophysical data |
CA2825395A1 (en) | 2011-03-30 | 2012-10-04 | Partha S. Routh | Convergence rate of full wavefield inversion using spectral shaping |
US9176930B2 (en) * | 2011-11-29 | 2015-11-03 | Exxonmobil Upstream Research Company | Methods for approximating hessian times vector operation in full wavefield inversion |
US9453928B2 (en) | 2012-03-06 | 2016-09-27 | Westerngeco L.L.C. | Methods and computing systems for processing data |
US20130242693A1 (en) * | 2012-03-13 | 2013-09-19 | Seoul National University R&Db Foundation | Seismic imaging system using a reverse time migration algorithm |
SG11201503218RA (en) | 2012-11-28 | 2015-06-29 | Exxonmobil Upstream Resarch Company | Reflection seismic data q tomography |
GB2510873A (en) | 2013-02-15 | 2014-08-20 | Total Sa | Method of modelling a subsurface volume |
GB2510872A (en) * | 2013-02-15 | 2014-08-20 | Total Sa | Method of modelling a subsurface volume |
AU2014237711B2 (en) * | 2013-03-15 | 2017-06-01 | Chevron U.S.A. Inc. | Beam inversion by Monte Carlo back projection |
BR112015025516A2 (pt) | 2013-05-24 | 2017-07-18 | Exxonmobil Upstream Res Co | inversão de multiparâmetros através de fwi elástica dependente de deslocamento |
US10459117B2 (en) | 2013-06-03 | 2019-10-29 | Exxonmobil Upstream Research Company | Extended subspace method for cross-talk mitigation in multi-parameter inversion |
US10871584B2 (en) * | 2013-06-17 | 2020-12-22 | Westerngeco L.L.C. | Seismic data processing |
US9702998B2 (en) | 2013-07-08 | 2017-07-11 | Exxonmobil Upstream Research Company | Full-wavefield inversion of primaries and multiples in marine environment |
US20150019180A1 (en) * | 2013-07-12 | 2015-01-15 | Jonathan Liu | Model Replacement in a Local Region by Inversion |
US9772413B2 (en) | 2013-08-23 | 2017-09-26 | Exxonmobil Upstream Research Company | Simultaneous sourcing during both seismic acquisition and seismic inversion |
US10036818B2 (en) | 2013-09-06 | 2018-07-31 | Exxonmobil Upstream Research Company | Accelerating full wavefield inversion with nonstationary point-spread functions |
EP3069171B1 (en) | 2013-11-12 | 2021-08-25 | Westerngeco LLC | Seismic data processing |
US9910189B2 (en) | 2014-04-09 | 2018-03-06 | Exxonmobil Upstream Research Company | Method for fast line search in frequency domain FWI |
WO2015159151A2 (en) * | 2014-04-14 | 2015-10-22 | Cgg Services Sa | Method for iterative inversion of data from non-encoded composite sources |
EP3140675A1 (en) | 2014-05-09 | 2017-03-15 | Exxonmobil Upstream Research Company | Efficient line search methods for multi-parameter full wavefield inversion |
WO2015184549A1 (en) * | 2014-06-03 | 2015-12-10 | Mtt Innovation Incorporated | Efficient, dynamic, high contrast lensing with applications to imaging, illumination and projection |
US10185046B2 (en) | 2014-06-09 | 2019-01-22 | Exxonmobil Upstream Research Company | Method for temporal dispersion correction for seismic simulation, RTM and FWI |
EP3158367A1 (en) | 2014-06-17 | 2017-04-26 | Exxonmobil Upstream Research Company | Fast viscoacoustic and viscoelastic full-wavefield inversion |
US10838092B2 (en) | 2014-07-24 | 2020-11-17 | Exxonmobil Upstream Research Company | Estimating multiple subsurface parameters by cascaded inversion of wavefield components |
US10422899B2 (en) | 2014-07-30 | 2019-09-24 | Exxonmobil Upstream Research Company | Harmonic encoding for FWI |
US9921324B2 (en) | 2014-08-13 | 2018-03-20 | Chevron U.S.A. Inc. | Systems and methods employing upward beam propagation for target-oriented seismic imaging |
US20160061986A1 (en) * | 2014-08-27 | 2016-03-03 | Schlumberger Technology Corporation | Formation Property Characteristic Determination Methods |
US10386511B2 (en) | 2014-10-03 | 2019-08-20 | Exxonmobil Upstream Research Company | Seismic survey design using full wavefield inversion |
EP3210050A1 (en) | 2014-10-20 | 2017-08-30 | Exxonmobil Upstream Research Company | Velocity tomography using property scans |
US10359532B2 (en) | 2014-12-10 | 2019-07-23 | Schlumberger Technology Corporation | Methods to characterize formation properties |
AU2015363241A1 (en) | 2014-12-18 | 2017-06-29 | Exxonmobil Upstream Research Company | Scalable scheduling of parallel iterative seismic jobs |
US10520618B2 (en) | 2015-02-04 | 2019-12-31 | ExxohnMobil Upstream Research Company | Poynting vector minimal reflection boundary conditions |
US10317546B2 (en) | 2015-02-13 | 2019-06-11 | Exxonmobil Upstream Research Company | Efficient and stable absorbing boundary condition in finite-difference calculations |
SG11201704623RA (en) | 2015-02-17 | 2017-09-28 | Exxonmobil Upstream Res Co | Multistage full wavefield inversion process that generates a multiple free data set |
AU2016270000B2 (en) | 2015-06-04 | 2019-05-16 | Exxonmobil Upstream Research Company | Method for generating multiple free seismic images |
US10838093B2 (en) | 2015-07-02 | 2020-11-17 | Exxonmobil Upstream Research Company | Krylov-space-based quasi-newton preconditioner for full-wavefield inversion |
US10310113B2 (en) | 2015-10-02 | 2019-06-04 | Exxonmobil Upstream Research Company | Q-compensated full wavefield inversion |
US10520619B2 (en) | 2015-10-15 | 2019-12-31 | Exxonmobil Upstream Research Company | FWI model domain angle stacks with amplitude preservation |
CN105572742B (zh) * | 2015-12-21 | 2018-08-10 | 中国石油天然气集团公司 | 一种确定海水深度的方法和装置 |
US10768324B2 (en) | 2016-05-19 | 2020-09-08 | Exxonmobil Upstream Research Company | Method to predict pore pressure and seal integrity using full wavefield inversion |
EP3458883A1 (en) * | 2016-05-20 | 2019-03-27 | Exxonmobil Research And Engineering Company | Shape-based geophysical parameter inversion |
WO2018013257A1 (en) * | 2016-07-13 | 2018-01-18 | Exxonmobil Upstream Research Company | Joint full wavefield inversion of p-wave velocity and attenuation using an efficient first order optimization |
US10871585B2 (en) * | 2016-08-03 | 2020-12-22 | Harris Corporation | System for processing seismic data based upon linear optimization and related methods |
CN106646615B (zh) * | 2016-12-29 | 2018-12-25 | 中国石油天然气集团公司 | 一种面波频散曲线的数据处理方法及装置 |
US10908305B2 (en) | 2017-06-08 | 2021-02-02 | Total Sa | Method for evaluating a geophysical survey acquisition geometry over a region of interest, related process, system and computer program product |
EP3649490B1 (en) * | 2017-07-06 | 2021-11-17 | Chevron U.S.A. Inc. | System and method for full waveform inversion of seismic data |
US11656377B2 (en) * | 2018-03-30 | 2023-05-23 | Cgg Services Sas | Visco-acoustic full waveform inversion of velocity and Q |
US11231516B2 (en) | 2018-05-15 | 2022-01-25 | Exxonmobil Upstream Research Company | Direct migration of simultaneous-source survey data |
US11372123B2 (en) | 2019-10-07 | 2022-06-28 | Exxonmobil Upstream Research Company | Method for determining convergence in full wavefield inversion of 4D seismic data |
CN112698389B (zh) * | 2019-10-22 | 2024-02-20 | 中国石油化工股份有限公司 | 一种地震资料反演成像方法及装置 |
CN113484914B (zh) * | 2021-07-13 | 2023-09-12 | 中海石油(中国)有限公司 | 海上风浪一致性影响量板制作方法、系统、介质及设备 |
Family Cites Families (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3812457A (en) | 1969-11-17 | 1974-05-21 | Shell Oil Co | Seismic exploration method |
US3864667A (en) | 1970-09-11 | 1975-02-04 | Continental Oil Co | Apparatus for surface wave parameter determination |
US3984805A (en) | 1973-10-18 | 1976-10-05 | Daniel Silverman | Parallel operation of seismic vibrators without phase control |
US4168485A (en) | 1974-08-12 | 1979-09-18 | Continental Oil Company | Simultaneous use of pseudo-random control signals in vibrational exploration methods |
US4545039A (en) | 1982-09-09 | 1985-10-01 | Western Geophysical Co. Of America | Methods for seismic exploration |
US4675851A (en) | 1982-09-09 | 1987-06-23 | Western Geophysical Co. | Method for seismic exploration |
US4575830A (en) | 1982-10-15 | 1986-03-11 | Schlumberger Technology Corporation | Indirect shearwave determination |
US4562540A (en) | 1982-11-12 | 1985-12-31 | Schlumberger Technology Corporation | Diffraction tomography system and methods |
US4594662A (en) | 1982-11-12 | 1986-06-10 | Schlumberger Technology Corporation | Diffraction tomography systems and methods with fixed detector arrays |
FR2543306B1 (fr) | 1983-03-23 | 1985-07-26 | Elf Aquitaine | Procede et dispositif pour l'optimisation des donnees sismiques |
US4924390A (en) | 1985-03-04 | 1990-05-08 | Conoco, Inc. | Method for determination of earth stratum elastic parameters using seismic energy |
US4715020A (en) | 1986-10-29 | 1987-12-22 | Western Atlas International, Inc. | Simultaneous performance of multiple seismic vibratory surveys |
FR2589587B1 (fr) | 1985-10-30 | 1988-02-05 | Inst Francais Du Petrole | Procede de prospection sismique marine utilisant un signal vibratoire code et dispositif pour sa mise en oeuvre |
US4707812A (en) | 1985-12-09 | 1987-11-17 | Atlantic Richfield Company | Method of suppressing vibration seismic signal correlation noise |
US4823326A (en) | 1986-07-21 | 1989-04-18 | The Standard Oil Company | Seismic data acquisition technique having superposed signals |
US4686654A (en) | 1986-07-31 | 1987-08-11 | Western Geophysical Company Of America | Method for generating orthogonal sweep signals |
US4766574A (en) | 1987-03-31 | 1988-08-23 | Amoco Corporation | Method for depth imaging multicomponent seismic data |
US4953657A (en) | 1987-11-30 | 1990-09-04 | Halliburton Geophysical Services, Inc. | Time delay source coding |
US4969129A (en) | 1989-09-20 | 1990-11-06 | Texaco Inc. | Coding seismic sources |
US4982374A (en) | 1989-10-23 | 1991-01-01 | Halliburton Geophysical Services, Inc. | Method of source coding and harmonic cancellation for vibrational geophysical survey sources |
GB9011836D0 (en) | 1990-05-25 | 1990-07-18 | Mason Iain M | Seismic surveying |
US5469062A (en) | 1994-03-11 | 1995-11-21 | Baker Hughes, Inc. | Multiple depths and frequencies for simultaneous inversion of electromagnetic borehole measurements |
GB2322704B (en) | 1994-07-07 | 1998-12-09 | Geco As | Method of Processing seismic data |
US5583825A (en) | 1994-09-02 | 1996-12-10 | Exxon Production Research Company | Method for deriving reservoir lithology and fluid content from pre-stack inversion of seismic data |
US5924049A (en) | 1995-04-18 | 1999-07-13 | Western Atlas International, Inc. | Methods for acquiring and processing seismic data |
CA2188255C (en) | 1995-04-18 | 2003-03-25 | Craig J. Beasley | Method for providing uniform subsurface coverage in the presence of steep dips |
US5719821A (en) | 1995-09-29 | 1998-02-17 | Atlantic Richfield Company | Method and apparatus for source separation of seismic vibratory signals |
US5721710A (en) | 1995-09-29 | 1998-02-24 | Atlantic Richfield Company | High fidelity vibratory source seismic method with source separation |
US5715213A (en) | 1995-11-13 | 1998-02-03 | Mobil Oil Corporation | High fidelity vibratory source seismic method using a plurality of vibrator sources |
US5822269A (en) | 1995-11-13 | 1998-10-13 | Mobil Oil Corporation | Method for separation of a plurality of vibratory seismic energy source signals |
US5790473A (en) | 1995-11-13 | 1998-08-04 | Mobil Oil Corporation | High fidelity vibratory source seismic method for use in vertical seismic profile data gathering with a plurality of vibratory seismic energy sources |
US5838634A (en) | 1996-04-04 | 1998-11-17 | Exxon Production Research Company | Method of generating 3-D geologic models incorporating geologic and geophysical constraints |
US5798982A (en) | 1996-04-29 | 1998-08-25 | The Trustees Of Columbia University In The City Of New York | Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models |
GB9612471D0 (en) | 1996-06-14 | 1996-08-14 | Geco As | Method and apparatus for multiple seismic vibratory surveys |
US5878372A (en) | 1997-03-04 | 1999-03-02 | Western Atlas International, Inc. | Method for simultaneous inversion processing of well log data using a plurality of earth models |
US6014342A (en) | 1997-03-21 | 2000-01-11 | Tomo Seis, Inc. | Method of evaluating a subsurface region using gather sensitive data discrimination |
US5999489A (en) | 1997-03-21 | 1999-12-07 | Tomoseis Inc. | High vertical resolution crosswell seismic imaging |
US5920828A (en) | 1997-06-02 | 1999-07-06 | Baker Hughes Incorporated | Quality control seismic data processing system |
FR2765692B1 (fr) | 1997-07-04 | 1999-09-10 | Inst Francais Du Petrole | Methode pour modeliser en 3d l'impedance d'un milieu heterogene |
GB2329043B (en) | 1997-09-05 | 2000-04-26 | Geco As | Method of determining the response caused by model alterations in seismic simulations |
US5999488A (en) | 1998-04-27 | 1999-12-07 | Phillips Petroleum Company | Method and apparatus for migration by finite differences |
US6219621B1 (en) | 1998-06-30 | 2001-04-17 | Exxonmobil Upstream Research Co. | Sparse hyperbolic inversion of seismic data |
US6388947B1 (en) | 1998-09-14 | 2002-05-14 | Tomoseis, Inc. | Multi-crosswell profile 3D imaging and method |
FR2784195B1 (fr) | 1998-10-01 | 2000-11-17 | Inst Francais Du Petrole | Methode pour realiser en 3d avant sommation, une migration de donnees sismiques |
US6574564B2 (en) | 1998-10-01 | 2003-06-03 | Institut Francais Du Petrole | 3D prestack seismic data migration method |
US6225803B1 (en) | 1998-10-29 | 2001-05-01 | Baker Hughes Incorporated | NMR log processing using wavelet filter and iterative inversion |
US6021094A (en) | 1998-12-03 | 2000-02-01 | Sandia Corporation | Method of migrating seismic records |
US6754588B2 (en) | 1999-01-29 | 2004-06-22 | Platte River Associates, Inc. | Method of predicting three-dimensional stratigraphy using inverse optimization techniques |
US6549854B1 (en) * | 1999-02-12 | 2003-04-15 | Schlumberger Technology Corporation | Uncertainty constrained subsurface modeling |
US6058073A (en) | 1999-03-30 | 2000-05-02 | Atlantic Richfield Company | Elastic impedance estimation for inversion of far offset seismic sections |
FR2792419B1 (fr) | 1999-04-16 | 2001-09-07 | Inst Francais Du Petrole | Methode pour obtenir un modele optimal d'une caracteristique physique dans un milieu heterogene, tel que le sous-sol |
GB9927395D0 (en) | 1999-05-19 | 2000-01-19 | Schlumberger Holdings | Improved seismic data acquisition method |
US6327537B1 (en) | 1999-07-19 | 2001-12-04 | Luc T. Ikelle | Multi-shooting approach to seismic modeling and acquisition |
FR2798197B1 (fr) | 1999-09-02 | 2001-10-05 | Inst Francais Du Petrole | Methode pour former un modele d'une formation geologique, contraint par des donnees dynamiques et statiques |
EP1094338B1 (en) | 1999-10-22 | 2006-08-23 | Jason Geosystems B.V. | Method of estimating elastic parameters and rock composition of underground formations using seismic data |
FR2800473B1 (fr) | 1999-10-29 | 2001-11-30 | Inst Francais Du Petrole | Methode pour modeliser en 2d ou 3d un milieu heterogene tel que le sous-sol decrit par plusieurs parametres physiques |
US6480790B1 (en) | 1999-10-29 | 2002-11-12 | Exxonmobil Upstream Research Company | Process for constructing three-dimensional geologic models having adjustable geologic interfaces |
DE60112895D1 (de) | 2000-01-21 | 2005-09-29 | Schlumberger Holdings | System und verfahren seismischer wellenfeldtrennung |
EP1248957A1 (en) | 2000-01-21 | 2002-10-16 | Schlumberger Holdings Limited | System and method for estimating seismic material properties |
US6826486B1 (en) | 2000-02-11 | 2004-11-30 | Schlumberger Technology Corporation | Methods and apparatus for predicting pore and fracture pressures of a subsurface formation |
FR2805051B1 (fr) | 2000-02-14 | 2002-12-06 | Geophysique Cie Gle | Methode de surveillance sismique d'une zone souterraine par utilisation simultanee de plusieurs sources vibrosismiques |
GB2359363B (en) | 2000-02-15 | 2002-04-03 | Geco Prakla | Processing simultaneous vibratory seismic data |
US6687659B1 (en) | 2000-03-24 | 2004-02-03 | Conocophillips Company | Method and apparatus for absorbing boundary conditions in numerical finite-difference acoustic applications |
US6317695B1 (en) | 2000-03-30 | 2001-11-13 | Nutec Sciences, Inc. | Seismic data processing method |
CA2426160A1 (en) | 2000-10-17 | 2002-04-25 | David Lee Nyland | Method of using cascaded sweeps for source coding and harmonic cancellation |
AU2002239619A1 (en) | 2000-12-08 | 2002-06-18 | Peter J. Ortoleva | Methods for modeling multi-dimensional domains using information theory to resolve gaps in data and in theories |
FR2818753B1 (fr) | 2000-12-21 | 2003-03-21 | Inst Francais Du Petrole | Methode et dispositif de prospection sismique par emission simultanee de signaux sismisques obtenus en codant un signal par des sequences pseudo aleatoires |
FR2821677B1 (fr) | 2001-03-05 | 2004-04-30 | Geophysique Cie Gle | Perfectionnements aux procedes d'inversion tomographique d'evenements pointes sur les donnees sismiques migrees |
US6751558B2 (en) | 2001-03-13 | 2004-06-15 | Conoco Inc. | Method and process for prediction of subsurface fluid and rock pressures in the earth |
US6927698B2 (en) | 2001-08-27 | 2005-08-09 | Larry G. Stolarczyk | Shuttle-in receiver for radio-imaging underground geologic structures |
US6545944B2 (en) | 2001-05-30 | 2003-04-08 | Westerngeco L.L.C. | Method for acquiring and processing of data from two or more simultaneously fired sources |
US6882958B2 (en) | 2001-06-28 | 2005-04-19 | National Instruments Corporation | System and method for curve fitting using randomized techniques |
GB2379013B (en) | 2001-08-07 | 2005-04-20 | Abb Offshore Systems Ltd | Microseismic signal processing |
US6593746B2 (en) | 2001-08-27 | 2003-07-15 | Larry G. Stolarczyk | Method and system for radio-imaging underground geologic structures |
US7672824B2 (en) | 2001-12-10 | 2010-03-02 | Westerngeco L.L.C. | Method for shallow water flow detection |
US7069149B2 (en) | 2001-12-14 | 2006-06-27 | Chevron U.S.A. Inc. | Process for interpreting faults from a fault-enhanced 3-dimensional seismic attribute volume |
US7330799B2 (en) | 2001-12-21 | 2008-02-12 | Société de commercialisation des produits de la recherche appliquée-Socpra Sciences et Génie s.e.c. | Method and algorithm for using surface waves |
US6842701B2 (en) | 2002-02-25 | 2005-01-11 | Westerngeco L.L.C. | Method of noise removal for cascaded sweep data |
GB2387226C (en) | 2002-04-06 | 2008-05-12 | Westerngeco Ltd | A method of seismic surveying |
FR2839368B1 (fr) | 2002-05-06 | 2004-10-01 | Total Fina Elf S A | Methode de decimation de traces sismiques pilotee par le trajet sismique |
US6832159B2 (en) | 2002-07-11 | 2004-12-14 | Schlumberger Technology Corporation | Intelligent diagnosis of environmental influence on well logs with model-based inversion |
FR2843202B1 (fr) | 2002-08-05 | 2004-09-10 | Inst Francais Du Petrole | Methode pour former un modele representatif de la distribution d'une grandeur physique dans une zone souterraine, affranchi de l'effet de bruits correles entachant des donnees d'exploration |
WO2004034088A2 (en) | 2002-10-04 | 2004-04-22 | Paradigm Geophysical Corporation | Method and system for limited frequency seismic imaging |
GB2396448B (en) | 2002-12-21 | 2005-03-02 | Schlumberger Holdings | System and method for representing and processing and modeling subterranean surfaces |
US6735527B1 (en) | 2003-02-26 | 2004-05-11 | Landmark Graphics Corporation | 3-D prestack/poststack multiple prediction |
US6999880B2 (en) | 2003-03-18 | 2006-02-14 | The Regents Of The University Of California | Source-independent full waveform inversion of seismic data |
US7184367B2 (en) | 2003-03-27 | 2007-02-27 | Exxonmobil Upstream Research Company | Method to convert seismic traces into petrophysical property logs |
US7072767B2 (en) | 2003-04-01 | 2006-07-04 | Conocophillips Company | Simultaneous inversion for source wavelet and AVO parameters from prestack seismic data |
US7436734B2 (en) | 2003-04-01 | 2008-10-14 | Exxonmobil Upstream Research Co. | Shaped high frequency vibratory source |
NO322089B1 (no) | 2003-04-09 | 2006-08-14 | Norsar V Daglig Leder | Fremgangsmate for simulering av lokale prestakk dypmigrerte seismiske bilder |
GB2400438B (en) | 2003-04-11 | 2005-06-01 | Westerngeco Ltd | Determination of waveguide parameters |
US6970397B2 (en) | 2003-07-09 | 2005-11-29 | Gas Technology Institute | Determination of fluid properties of earth formations using stochastic inversion |
US6882938B2 (en) | 2003-07-30 | 2005-04-19 | Pgs Americas, Inc. | Method for separating seismic signals from two or more distinct sources |
US6944546B2 (en) | 2003-10-01 | 2005-09-13 | Halliburton Energy Services, Inc. | Method and apparatus for inversion processing of well logging data in a selected pattern space |
US6901333B2 (en) | 2003-10-27 | 2005-05-31 | Fugro N.V. | Method and device for the generation and application of anisotropic elastic parameters |
US7046581B2 (en) | 2003-12-01 | 2006-05-16 | Shell Oil Company | Well-to-well tomography |
US20050128874A1 (en) | 2003-12-15 | 2005-06-16 | Chevron U.S.A. Inc. | Methods for acquiring and processing seismic data from quasi-simultaneously activated translating energy sources |
US8824239B2 (en) * | 2004-03-17 | 2014-09-02 | Westerngeco L.L.C. | Marine seismic survey method and system |
US7791980B2 (en) | 2004-05-21 | 2010-09-07 | Westerngeco L.L.C. | Interpolation and extrapolation method for seismic recordings |
FR2872584B1 (fr) | 2004-06-30 | 2006-08-11 | Inst Francais Du Petrole | Methode pour simuler le depot sedimentaire dans un bassin respectant les epaisseurs des sequences sedimentaires |
US7646924B2 (en) | 2004-08-09 | 2010-01-12 | David Leigh Donoho | Method and apparatus for compressed sensing |
US7480206B2 (en) | 2004-09-13 | 2009-01-20 | Chevron U.S.A. Inc. | Methods for earth modeling and seismic imaging using interactive and selective updating |
GB2422433B (en) | 2004-12-21 | 2008-03-19 | Sondex Wireline Ltd | Method and apparatus for determining the permeability of earth formations |
US7373251B2 (en) | 2004-12-22 | 2008-05-13 | Marathon Oil Company | Method for predicting quantitative values of a rock or fluid property in a reservoir using seismic data |
US7230879B2 (en) | 2005-02-12 | 2007-06-12 | Chevron U.S.A. Inc. | Method and apparatus for true relative amplitude correction of seismic data for normal moveout stretch effects |
WO2006090374A2 (en) | 2005-02-22 | 2006-08-31 | Paradigm Geophysical Ltd. | Multiple suppression in angle domain time and depth migration |
US7840625B2 (en) | 2005-04-07 | 2010-11-23 | California Institute Of Technology | Methods for performing fast discrete curvelet transforms of data |
US7271747B2 (en) | 2005-05-10 | 2007-09-18 | Rice University | Method and apparatus for distributed compressed sensing |
MX2007016586A (es) * | 2005-07-27 | 2008-03-04 | Exxonmobil Upstream Res Co | Modelaje de pozo asociado con extraccion de hidrocarburos a partir de yacimientos subterraneos. |
US7405997B2 (en) | 2005-08-11 | 2008-07-29 | Conocophillips Company | Method of accounting for wavelet stretch in seismic data |
RU2440604C2 (ru) | 2005-10-18 | 2012-01-20 | Синвент Ас | Визуализация данных отклика геологической среды с использованием потоковых процессоров |
AU2006235820B2 (en) | 2005-11-04 | 2008-10-23 | Westerngeco Seismic Holdings Limited | 3D pre-stack full waveform inversion |
FR2895091B1 (fr) | 2005-12-21 | 2008-02-22 | Inst Francais Du Petrole | Methode pour mettre a jour un modele geologique par des donnees sismiques |
GB2436626B (en) | 2006-03-28 | 2008-08-06 | Westerngeco Seismic Holdings | Method of evaluating the interaction between a wavefield and a solid body |
US7620534B2 (en) | 2006-04-28 | 2009-11-17 | Saudi Aramco | Sound enabling computerized system for real time reservoir model calibration using field surveillance data |
US20070274155A1 (en) * | 2006-05-25 | 2007-11-29 | Ikelle Luc T | Coding and Decoding: Seismic Data Modeling, Acquisition and Processing |
US7725266B2 (en) | 2006-05-31 | 2010-05-25 | Bp Corporation North America Inc. | System and method for 3D frequency domain waveform inversion based on 3D time-domain forward modeling |
US7599798B2 (en) | 2006-09-11 | 2009-10-06 | Westerngeco L.L.C. | Migrating composite seismic response data to produce a representation of a seismic volume |
CA2663662C (en) | 2006-09-13 | 2016-07-05 | Exxonmobil Upstream Research Company | Rapid inversion of electromagnetic reconnaissance survey data |
AU2007302695B2 (en) | 2006-09-28 | 2011-05-26 | Exxonmobil Upstream Research Company | Iterative inversion of data from simultaneous geophysical sources |
ATE543109T1 (de) | 2007-01-20 | 2012-02-15 | Spectraseis Ag | Zeitumkehr-reservoir-lokalisierung |
US7636275B2 (en) * | 2007-02-06 | 2009-12-22 | Conocophillips Company | Direct time lapse inversion of seismic data |
JP2009063942A (ja) | 2007-09-10 | 2009-03-26 | Sumitomo Electric Ind Ltd | 遠赤外線カメラ用レンズ、レンズユニット及び撮像装置 |
US20090070042A1 (en) | 2007-09-11 | 2009-03-12 | Richard Birchwood | Joint inversion of borehole acoustic radial profiles for in situ stresses as well as third-order nonlinear dynamic moduli, linear dynamic elastic moduli, and static elastic moduli in an isotropically stressed reference state |
US20090083006A1 (en) | 2007-09-20 | 2009-03-26 | Randall Mackie | Methods and apparatus for three-dimensional inversion of electromagnetic data |
US20090164186A1 (en) | 2007-12-20 | 2009-06-25 | Bhp Billiton Innovation Pty Ltd. | Method for determining improved estimates of properties of a model |
CN101910871A (zh) | 2008-01-08 | 2010-12-08 | 埃克森美孚上游研究公司 | 地震数据的频谱整形反演和偏移 |
US8577660B2 (en) | 2008-01-23 | 2013-11-05 | Schlumberger Technology Corporation | Three-dimensional mechanical earth modeling |
ES2651923T3 (es) * | 2008-03-21 | 2018-01-30 | Exxonmobil Upstream Research Company | Un método eficiente para la inversión de datos geofísicos |
WO2009120401A1 (en) | 2008-03-28 | 2009-10-01 | Exxonmobil Upstream Research Company | Characterizing spatial variablility of surface waves in seismic processing |
EP2105765A1 (en) | 2008-03-28 | 2009-09-30 | Schlumberger Holdings Limited | Simultaneous inversion of induction data for dielectric permittivity and electric conductivity |
US8275592B2 (en) | 2008-04-07 | 2012-09-25 | Westerngeco L.L.C. | Joint inversion of time domain controlled source electromagnetic (TD-CSEM) data and further data |
US8494777B2 (en) | 2008-04-09 | 2013-07-23 | Schlumberger Technology Corporation | Continuous microseismic mapping for real-time 3D event detection and location |
US8345510B2 (en) | 2008-06-02 | 2013-01-01 | Pgs Geophysical As | Method for aquiring and processing marine seismic data to extract and constructively use the up-going and down-going wave-fields emitted by the source(s) |
US20120095690A1 (en) * | 2008-08-01 | 2012-04-19 | Higginbotham Joseph H | Methods and computer-readable medium to implement inversion of angle gathers for rock physics reflectivity attributes |
US8559270B2 (en) | 2008-08-15 | 2013-10-15 | Bp Corporation North America Inc. | Method for separating independent simultaneous sources |
CN102124374B (zh) | 2008-08-15 | 2013-07-17 | Bp北美公司 | 用于分离单独的同时震源的方法 |
US20100054082A1 (en) | 2008-08-29 | 2010-03-04 | Acceleware Corp. | Reverse-time depth migration with reduced memory requirements |
US8296069B2 (en) | 2008-10-06 | 2012-10-23 | Bp Corporation North America Inc. | Pseudo-analytical method for the solution of wave equations |
US7616523B1 (en) | 2008-10-22 | 2009-11-10 | Pgs Geophysical As | Method for combining pressure and motion seismic signals from streamers where sensors are not at a common depth |
US9213119B2 (en) | 2008-10-29 | 2015-12-15 | Conocophillips Company | Marine seismic acquisition |
US20100118651A1 (en) | 2008-11-10 | 2010-05-13 | Chevron U.S.A. Inc. | Method for generation of images related to a subsurface region of interest |
US20100142316A1 (en) | 2008-12-07 | 2010-06-10 | Henk Keers | Using waveform inversion to determine properties of a subsurface medium |
US8095345B2 (en) | 2009-01-20 | 2012-01-10 | Chevron U.S.A. Inc | Stochastic inversion of geophysical data for estimating earth model parameters |
US9052410B2 (en) | 2009-02-12 | 2015-06-09 | Conocophillips Company | Multiple seismic signal inversion |
US8352190B2 (en) | 2009-02-20 | 2013-01-08 | Exxonmobil Upstream Research Company | Method for analyzing multiple geophysical data sets |
US9075163B2 (en) | 2009-04-17 | 2015-07-07 | Westerngeco L.L.C. | Interferometric seismic data processing |
-
2011
- 2011-09-01 CN CN201180058068.XA patent/CN103238158B/zh not_active Expired - Fee Related
- 2011-09-01 WO PCT/US2011/050209 patent/WO2012074592A1/en active Application Filing
- 2011-09-01 US US13/224,005 patent/US8688381B2/en active Active
- 2011-09-01 CA CA2815054A patent/CA2815054C/en not_active Expired - Fee Related
- 2011-09-01 AU AU2011337143A patent/AU2011337143B2/en not_active Ceased
- 2011-09-01 RU RU2013129772/28A patent/RU2587498C2/ru not_active IP Right Cessation
- 2011-09-01 EP EP11844803.4A patent/EP2646944A4/en not_active Withdrawn
- 2011-09-01 SG SG2013026075A patent/SG189850A1/en unknown
- 2011-09-01 KR KR1020137016748A patent/KR101797451B1/ko active IP Right Grant
- 2011-09-01 MY MYPI2013001250A patent/MY160148A/en unknown
- 2011-09-01 BR BR112013008503A patent/BR112013008503A2/pt not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
AU2011337143A1 (en) | 2013-06-20 |
KR20130121895A (ko) | 2013-11-06 |
CA2815054A1 (en) | 2012-06-07 |
EP2646944A4 (en) | 2017-02-22 |
CA2815054C (en) | 2017-05-16 |
CN103238158A (zh) | 2013-08-07 |
EP2646944A1 (en) | 2013-10-09 |
RU2587498C2 (ru) | 2016-06-20 |
CN103238158B (zh) | 2016-08-17 |
BR112013008503A2 (pt) | 2016-08-16 |
AU2011337143B2 (en) | 2016-09-29 |
KR101797451B1 (ko) | 2017-11-14 |
SG189850A1 (en) | 2013-06-28 |
US8688381B2 (en) | 2014-04-01 |
WO2012074592A1 (en) | 2012-06-07 |
MY160148A (en) | 2017-02-28 |
US20120143506A1 (en) | 2012-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2013129772A (ru) | Инверсия одновременных источников для данных сейсмоприемной косы с взаимнокорреляционной целевой функцией | |
RU2009115861A (ru) | Итеративная инверсия данных от одновременных геофизических источников | |
AU2011248989B2 (en) | Artifact reduction in method of iterative inversion of geophysical data | |
CN101952743B (zh) | 地球物理数据反演的有效方法 | |
CN102906728B (zh) | 在仿真期间用于检查指示的方法和系统 | |
CN103713315B (zh) | 一种地震各向异性参数全波形反演方法及装置 | |
RU2014140603A (ru) | Ортогональное кодирование источника и приемника | |
CN105319581A (zh) | 一种高效的时间域全波形反演方法 | |
RU2013119384A (ru) | Кодирование одновременных источников и разделение источников в качестве практического решения по инверсии полного волнового поля | |
RU2013119380A (ru) | Гибридный способ для полноволновой инверсии с использованием способа одновременных и последовательных источников | |
Zhang et al. | Static corrections in mountainous areas using Fresnel-wavepath tomography | |
CN108680968B (zh) | 复杂构造区地震勘探数据采集观测系统评价方法及装置 | |
CN117665932A (zh) | 基于隧道三维地震波数据潜在空间特征的波速反演方法 | |
CN109270590B (zh) | 非均匀椭球地球地震和地表载荷库伦应力计算方法 | |
Song et al. | Shuffled complex evolution approach for effective and efficient surface wave analysis | |
CN104062680B (zh) | 一种计算波阻抗反演目标函数梯度的方法 | |
Serdyukov et al. | Hybrid Kinematic‐Dynamic Approach to Seismic Wave‐Equation Modeling, Imaging, and Tomography | |
Grana et al. | Sequential Bayesian Gaussian mixture linear inversion of seismic data for elastic and reservoir properties estimation | |
Bijani et al. | 2-D tomography of first-arrivals using the genetic algorithm with elitism | |
Targino et al. | A Deep-Learning inversion method for seismic velocity model building | |
Komeazi et al. | When linear inversion fails: neural-network optimization for sparse-ray travel-time tomography of a volcanic edifice | |
Sava et al. | Image-domain wavefield tomography for complex geologic structures | |
CN106291664A (zh) | 盲源地震波场模拟方法及系统 | |
Lisitsa et al. | Use of 3D Multi-scale numerical simulation to study multiple scattering effects of fluid-filled cavernous/fractured reservoirs | |
Komeazi et al. | Artificial Intelligence in Geosciences |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180902 |