RU2013127778A - Воздухоочистительное устройство и способ прогнозирования времени проскока для такого устройства - Google Patents

Воздухоочистительное устройство и способ прогнозирования времени проскока для такого устройства Download PDF

Info

Publication number
RU2013127778A
RU2013127778A RU2013127778/12A RU2013127778A RU2013127778A RU 2013127778 A RU2013127778 A RU 2013127778A RU 2013127778/12 A RU2013127778/12 A RU 2013127778/12A RU 2013127778 A RU2013127778 A RU 2013127778A RU 2013127778 A RU2013127778 A RU 2013127778A
Authority
RU
Russia
Prior art keywords
concentration
breakthrough
time
air
filter part
Prior art date
Application number
RU2013127778/12A
Other languages
English (en)
Other versions
RU2554793C2 (ru
Inventor
Синго ИСИКАВА
Гаку САСАКИ
Хиронобу ТАКЭУТИ
Такеси Хонда
Original Assignee
Кокен Лтд.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кокен Лтд. filed Critical Кокен Лтд.
Publication of RU2013127778A publication Critical patent/RU2013127778A/ru
Application granted granted Critical
Publication of RU2554793C2 publication Critical patent/RU2554793C2/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B7/00Respiratory apparatus
    • A62B7/10Respiratory apparatus with filter elements
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • A62B23/02Filters for breathing-protection purposes for respirators
    • A62B23/025Filters for breathing-protection purposes for respirators the filter having substantially the shape of a mask
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/08Component parts for gas-masks or gas-helmets, e.g. windows, straps, speech transmitters, signal-devices
    • A62B18/088Devices for indicating filter saturation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0084Filters or filtering processes specially modified for separating dispersed particles from gases or vapours provided with safety means
    • B01D46/0086Filter condition indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/442Auxiliary equipment or operation thereof controlling filtration by measuring the concentration of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/444Auxiliary equipment or operation thereof controlling filtration by flow measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/448Auxiliary equipment or operation thereof controlling filtration by temperature measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/46Auxiliary equipment or operation thereof controlling filtration automatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B27/00Methods or devices for testing respiratory or breathing apparatus for high altitudes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4508Gas separation or purification devices adapted for specific applications for cleaning air in buildings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/45Gas separation or purification devices adapted for specific applications
    • B01D2259/4541Gas separation or purification devices adapted for specific applications for portable use, e.g. gas masks

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Pulmonology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Filtering Materials (AREA)
  • Drying Of Gases (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Ventilation (AREA)

Abstract

1. Воздухоочистительное устройство, содержащее фильтровальную часть, обеспечивающую возможность прохождения воздуха, загрязненного токсичным газом, от передней по ходу воздушного потока стороны к задней по ходу воздушного потока стороне для удаления указанного токсичного газа, и выполненное с возможностью прогнозирования времени проскока до достижения проскоковой концентрации токсичного газа на задней по ходу воздушного потока стороне фильтровальной части, которая произвольно установлена в отношении концентрации указанного токсичного газа,причем воздухоочистительное устройство дополнительно содержит блок арифметической обработки, выполненный с возможностью введения данных о концентрации токсичного газа, содержащегося в воздухе на передней по ходу воздушного потока стороне фильтровальной части, расходе воздуха, проходящего через фильтровальную часть, температуре воздуха на передней по ходу воздушного потока стороне и относительной влажности воздуха на передней по ходу воздушного потока стороне, ипри этом формула прогнозирования времени проскока, в которой концентрация токсичного газа, содержащегося в воздухе на передней по ходу воздушного потока стороне фильтровальной части, используемой в воздухоочистительном устройстве, расход, температура и относительная влажность используются в качестве переменных, запрограммирована в блоке арифметической обработки, а время проскока является прогнозируемым с помощью формулы прогнозирования на основании указанных данных.2. Воздухоочистительное устройство по п.1,в котором формула прогнозирования сформирована в блоке арифметической обработки до и

Claims (57)

1. Воздухоочистительное устройство, содержащее фильтровальную часть, обеспечивающую возможность прохождения воздуха, загрязненного токсичным газом, от передней по ходу воздушного потока стороны к задней по ходу воздушного потока стороне для удаления указанного токсичного газа, и выполненное с возможностью прогнозирования времени проскока до достижения проскоковой концентрации токсичного газа на задней по ходу воздушного потока стороне фильтровальной части, которая произвольно установлена в отношении концентрации указанного токсичного газа,
причем воздухоочистительное устройство дополнительно содержит блок арифметической обработки, выполненный с возможностью введения данных о концентрации токсичного газа, содержащегося в воздухе на передней по ходу воздушного потока стороне фильтровальной части, расходе воздуха, проходящего через фильтровальную часть, температуре воздуха на передней по ходу воздушного потока стороне и относительной влажности воздуха на передней по ходу воздушного потока стороне, и
при этом формула прогнозирования времени проскока, в которой концентрация токсичного газа, содержащегося в воздухе на передней по ходу воздушного потока стороне фильтровальной части, используемой в воздухоочистительном устройстве, расход, температура и относительная влажность используются в качестве переменных, запрограммирована в блоке арифметической обработки, а время проскока является прогнозируемым с помощью формулы прогнозирования на основании указанных данных.
2. Воздухоочистительное устройство по п.1,
в котором формула прогнозирования сформирована в блоке арифметической обработки до использования воздухоочистительного устройства на основании эталонного условия, которое образовано из концентрации токсичного газа, содержащегося в воздухе на передней по ходу воздушного потока стороне, расхода, температуры, относительной влажности и проскоковой концентрации, и на основании времени проскока, измеренном при указанном эталонном условии.
3. Воздухоочистительное устройство по п.2,
в котором блок арифметической обработки корректирует время проскока эталонного условия для фильтровальной части на основании температуры и относительной влажности.
4. Воздухоочистительное устройство по любому из пп.1-3, дополнительно содержащее по меньшей мере один из детектора концентрации токсичного газа, детектора расхода, детектора температуры и детектора относительной влажности.
5. Воздухоочистительное устройство по п.4,
в котором детектор любого элемента данных из данных о концентрации токсичного газа в воздухе на передней по ходу воздушного потока стороне фильтровальной части, расхода, температуры и относительной влажности не используется, если указанный элемент имеет постоянное значение во время использования воздухоочистительного устройства.
6. Воздухоочистительное устройство по любому из пп.1-3,
в котором блок арифметической обработки используется в беспроводном режиме.
7. Воздухоочистительное устройство по любому из пп.1-3,
в котором по меньшей мере один элемент данных из данных о концентрации токсичного газа в воздухе на передней по ходу воздушного потока стороне фильтровальной части, расхода, температуры и относительной влажности введен в блок арифметической обработки посредством радиосигнала.
8. Воздухоочистительное устройство по любому из пп.1-3,
в котором токсичным газом является эталонный газ, представленный в качестве произвольно выбираемого токсичного газа,
причем концентрация указанного эталонного газа на передней по ходу воздушного потока стороне представлена как Co (частей на миллион), расход представлен как Q (л/мин), проскоковая концентрация представлена как S (частей на миллион), а время, в течение которого концентрация указанного эталонного газа на задней по ходу воздушного потока стороне достигает концентрации S (частей на миллион), является временем проскока, и
при этом формула прогнозирования выглядит как:
время проскока = эталонное время проскока × коэффициент изменения концентрации × коэффициент изменения расхода × коэффициент изменения температуры × коэффициент изменение влажности × коэффициент изменения проскоковой концентрации;
где эталонное время проскока представляет собой период времени, в течение которого концентрация на задней по ходу воздушного потока стороне фильтровальной части достигает значения A%, которое меньше 100% и произвольно задано в качестве проскоковой концентрации относительно концентрации Co, в случае, если концентрация Co, расход Q, температура T и относительная влажность RH поддерживаются постоянными;
коэффициент изменения концентрации представляет собой поправочный коэффициент, соответствующий изменению концентрации, вычисленный путем получения значений эталонного времени проскока для концентрации Co по меньшей мере на двух уровнях, в то время как расход, температура и влажность поддерживаются постоянными;
коэффициент изменения расхода представляет собой поправочный коэффициент, соответствующий изменению расхода, вычисленный путем получения значений эталонного времени проскока для расхода Q по меньшей мере на двух уровнях, в то время как концентрация, температура и влажность поддерживаются постоянными;
коэффициент изменения температуры представляет собой поправочный коэффициент, соответствующий изменению температуры, вычисленный путем получения значений эталонного времени проскока для температуры T по меньшей мере на двух уровнях, в то время как концентрация, расход и относительная влажность поддерживаются постоянными;
коэффициент изменения влажности представляет собой поправочный коэффициент, соответствующий изменению влажности, вычисленный путем получения значений эталонного времени проскока по меньшей мере для двух уровней, включая один уровень, на котором уровень относительной влажности RH равен или выше 50%, в то время как концентрация, расход и температура поддерживаются постоянными;
коэффициент изменения проскоковой концентрации представляет собой - поправочный коэффициент, соответствующий изменению проскоковой концентрации, вычисленный путем получения A% времени проскока, соответствующего A% проскоковой концентрации, полученной для значений расхода Q по меньшей мере на трех уровнях, и B% времени проскока, соответствующего проскоковой концентрации B%, которая отличается от проскоковой концентрации A% на одном уровне расхода Q, в то время как концентрация, температура и влажность поддерживаются постоянными.
9. Воздухоочистительное устройство по п.4,
в котором токсичным газом является эталонный газ, представленный в качестве произвольно выбираемого токсичного газа,
причем концентрация указанного эталонного газа на передней по ходу воздушного потока стороне представлена как Co (частей на миллион), расход представлен как Q (л/мин), проскоковая концентрация представлена как S (частей на миллион), а время, в течение которого концентрация указанного эталонного газа на задней по ходу воздушного потока стороне достигает концентрации S (частей на миллион), является временем проскока, и
при этом формула прогнозирования выглядит как:
время проскока = эталонное время проскока × коэффициент изменения концентрации × коэффициент изменения расхода × коэффициент изменения температуры × коэффициент изменение влажности × коэффициент изменения проскоковой концентрации;
где эталонное время проскока представляет собой период времени, в течение которого концентрация на задней по ходу воздушного потока стороне фильтровальной части достигает значения A%, которое меньше 100% и произвольно задано в качестве проскоковой концентрации относительно концентрации Co, в случае, если концентрация Co, расход Q, температура T и относительная влажность RH поддерживаются постоянными;
коэффициент изменения концентрации представляет собой поправочный коэффициент, соответствующий изменению концентрации, вычисленный путем получения значений эталонного времени проскока для концентрации Co по меньшей мере на двух уровнях, в то время как расход, температура и влажность поддерживаются постоянными;
коэффициент изменения расхода представляет собой поправочный коэффициент, соответствующий изменению расхода, вычисленный путем получения значений эталонного времени проскока для расхода Q по меньшей мере на двух уровнях, в то время как концентрация, температура и влажность поддерживаются постоянными;
коэффициент изменения температуры представляет собой поправочный коэффициент, соответствующий изменению температуры, вычисленный путем получения значений эталонного времени проскока для температуры T по меньшей мере на двух уровнях, в то время как концентрация, расход и относительная влажность поддерживаются постоянными;
коэффициент изменения влажности представляет собой поправочный коэффициент, соответствующий изменению влажности, вычисленный путем получения значений эталонного времени проскока по меньшей мере для двух уровней, включая один уровень, на котором уровень относительной влажности RH равен или выше 50%, в то время как концентрация, расход и температура поддерживаются постоянными;
коэффициент изменения проскоковой концентрации представляет собой поправочный коэффициент, соответствующий изменению проскоковой концентрации, вычисленный путем получения A% времени проскока, соответствующего A% проскоковой концентрации, полученной для значений расхода Q по меньшей мере на трех уровнях, и B% времени проскока, соответствующего проскоковой концентрации B%, которая отличается от проскоковой концентрации A% на одном уровне расхода Q, в то время как концентрация, температура и влажность поддерживаются постоянными.
10. Воздухоочистительное устройство по п.8,
в котором формула по п.8 представлена формулами (1) и (2), описанными ниже:
(1) в случае, если относительная влажность RH≥50%:
время проскока = 1/ эталонное  время  проскока ( C o a 10 b ) ( c 1/Q + d ) ( i EXP j Q L n ( S / C o 100 ) + 1 ) ( e RH + f ) ( g T + h )  
Figure 00000001
;
(2) в случае, если относительная влажность RH<50%:
время проскока = 1/ эталонное  время  проскока ( C o a 10 b ) ( c 1/Q + d ) ( i EXP j Q L n ( S / C o 100 ) + 1 ) ( g T + h )
Figure 00000002
; и
в формулах (1) и (2), описанных выше:
эталонное время проскока - период времени, в течение которого концентрация на задней по ходу воздушного потока стороне достигает значения A%, которое меньше 100% и произвольно задано относительно концентрации Co в случае, если концентрация Co, расход Q, температура T и относительная влажность RH поддерживаются постоянными;
T - температура (°C);
RH - относительная влажность (%);
a, b - константы, полученные на основании концентрации Co по меньшей мере для двух уровней и времени проскока, в течение которого концентрация токсичного газа на задней по ходу воздушного потока стороне фильтровальной части достигает A% от концентрации Co для каждой концентрации Co, в то время как расход Q, температура T и относительная влажность RH поддерживаются постоянными;
c, d - константы, полученные на основании значений расхода Q по меньшей мере для двух уровней и времени проскока, в течение которого концентрация токсичного газа на задней по ходу воздушного потока стороне фильтровальной части достигает A% от концентрации Co для каждого расхода Q, в то время как концентрация Co, температура T и относительная влажность RH поддерживаются постоянными;
e, f - константы, полученные на основании по меньшей мере двух уровней, включая один уровень, на котором относительная влажность RH равна или выше 50%, и времени проскока, в течение которого концентрация токсичного газа на задней по ходу воздушного потока стороне фильтровальной части достигает A% от концентрации Co для каждой относительной влажности RH, в то время как концентрация Co, расход Q и температура T поддерживаются постоянными;
g, h - константы, полученные на основании температур по меньшей мере на двух уровнях и времени проскока, в течение которого концентрация токсичного газа на задней по ходу воздушного потока стороне фильтровальной части достигает A% от концентрации Co для каждой температуры T, в то время как концентрация Co, расход Q и относительная влажность RH поддерживаются постоянными;
i, j - константы, полученные на основании значений A% времени проскока и значений расхода Q в случае, если расход Q изменяется по меньшей мере на трех уровнях, и B% времени проскока путем использования одного уровня из трех уровней расхода Q, на котором получено A% время проскока, в то время как концентрация Co, температура T и относительная влажность RH поддерживаются постоянными.
11. Воздухоочистительное устройство по п.9,
в котором формула по п.8 представлена формулами (1) и (2), описанными ниже:
(1) в случае, если относительная влажность RH≥50%:
время проскока = 1/ эталонное  время  проскока ( C o a 10 b ) ( c 1/Q + d ) ( i EXP j Q L n ( S / C o 100 ) + 1 ) ( e RH + f ) ( g T + h )  
Figure 00000003
;
(2) в случае, если относительная влажность RH<50%:
время проскока = 1/ эталонное  время  проскока ( C o a 10 b ) ( c 1/Q + d ) ( i EXP j Q L n ( S / C o 100 ) + 1 ) ( g T + h )
Figure 00000004
; и
в формулах (1) и (2), описанных выше:
эталонное время проскока - период времени, в течение которого концентрация на задней по ходу воздушного потока стороне достигает значения A%, которое меньше 100% и произвольно задано относительно концентрации Co в случае, если концентрация Co, расход Q, температура T и относительная влажность RH поддерживаются постоянными;
T - температура (°C);
RH - относительная влажность (%);
a, b - константы, полученные на основании концентрации Co по меньшей мере для двух уровней и времени проскока, в течение которого концентрация токсичного газа на задней по ходу воздушного потока стороне фильтровальной части достигает А% от концентрации Co для каждой концентрации Co, в то время как расход Q, температура T и относительная влажность RH поддерживаются постоянными;
c, d - константы, полученные на основании значений расхода Q по меньшей мере для двух уровней и времени проскока, в течение которого концентрация токсичного газа на задней по ходу воздушного потока стороне фильтровальной части достигает A% от концентрации Co для каждого расхода Q, в то время как концентрация Co, температура T и относительная влажность RH поддерживаются постоянными;
e, f - константы, полученные на основании по меньшей мере двух уровней, включая один уровень, на котором относительная влажность RH равна или выше 50%, и времени проскока, в течение которого концентрация токсичного газа на задней по ходу воздушного потока стороне фильтровальной части достигает A% от концентрации Co для каждой относительной влажности RH, в то время как концентрация Co, расход Q и температура T поддерживаются постоянными;
g, h - константы, полученные на основании температур по меньшей мере на двух уровнях и времени проскока, в течение которого концентрация токсичного газа на задней по ходу воздушного потока стороне фильтровальной части достигает A% от концентрации Co для каждой температуры T, в то время как концентрация Co, расход Q и относительная влажность RH поддерживаются постоянными;
i, j - константы, полученные на основании значений A% времени проскока и значений расхода Q в случае, если расход Q изменяется по меньшей мере на трех уровнях, и B% времени проскока путем использования одного уровня из трех уровней расхода Q, на котором получено A% время проскока, в то время как концентрация Co, температура T и относительная влажность RH поддерживаются постоянными.
12. Воздухоочистительное устройство по любому из пп.1-3,
в котором блок арифметической обработки запрограммирован таким способом, что время проскока вычислено путем использования относительного коэффициента проскока в отношении эталонного газа токсичного газа.
13. Воздухоочистительное устройство по п.4,
в котором блок арифметической обработки запрограммирован таким способом, что время проскока вычислено путем использования относительного коэффициента проскока в отношении эталонного газа токсичного газа.
14. Воздухоочистительное устройство по п.8,
в котором блок арифметической обработки запрограммирован таким способом, что время проскока вычислено путем использования относительного коэффициента проскока в отношении эталонного газа токсичного газа.
15. Воздухоочистительное устройство по п.9,
в котором блок арифметической обработки запрограммирован таким способом, что время проскока вычислено путем использования относительного коэффициента проскока в отношении эталонного газа токсичного газа.
16. Воздухоочистительное устройство по п.10,
в котором блок арифметической обработки запрограммирован таким способом, что время проскока вычислено путем использования относительного коэффициента проскока в отношении эталонного газа токсичного газа.
17. Воздухоочистительное устройство по п.11,
в котором блок арифметической обработки запрограммирован таким способом, что время проскока вычислено путем использования относительного коэффициента проскока в отношении эталонного газа токсичного газа.
18. Воздухоочистительное устройство по п.12,
в котором коррекция, основанная на скорости растворении в воде, в случае, если токсичный газ находится в жидком состоянии, выполняется для прогнозирования времени проскока, для которого используется относительный коэффициент проскока.
19. Воздухоочистительное устройство по п.13,
в котором коррекция, основанная на скорости растворении в воде, в случае, если токсичный газ находится в жидком состоянии, выполняется для прогнозирования времени проскока, для которого используется относительный коэффициент проскока.
20. Воздухоочистительное устройство по п.14,
в котором коррекция, основанная на скорости растворении в воде, в случае, если токсичный газ находится в жидком состоянии, выполняется для прогнозирования времени проскока, для которого используется относительный коэффициент проскока.
21. Воздухоочистительное устройство по п.15,
в котором коррекция, основанная на скорости растворении в воде, в случае, если токсичный газ находится в жидком состоянии, выполняется для прогнозирования времени проскока, для которого используется относительный коэффициент проскока.
22. Воздухоочистительное устройство по п.16,
в котором коррекция, основанная на скорости растворении в воде, в случае, если токсичный газ находится в жидком состоянии, выполняется для прогнозирования времени проскока, для которого используется относительный коэффициент проскока.
23. Воздухоочистительное устройство по п.17,
в котором коррекция, основанная на скорости растворении в воде, в случае, если токсичный газ находится в жидком состоянии, выполняется для прогнозирования времени проскока, для которого используется относительный коэффициент проскока.
24. Воздухоочистительное устройство по любому из пп.1-3,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
25. Воздухоочистительное устройство по п.4,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
26. Воздухоочистительное устройство по п.8,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
27. Воздухоочистительное устройство по п.9,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
28. Воздухоочистительное устройство по п.10,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
29. Воздухоочистительное устройство по п.11,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
30. Воздухоочистительное устройство по п.12,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
31. Воздухоочистительное устройство по п.13,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
32. Воздухоочистительное устройство по п.14,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
33. Воздухоочистительное устройство по п.15,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
34. Воздухоочистительное устройство по п.16,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
35. Воздухоочистительное устройство по п.17,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
36. Воздухоочистительное устройство по п.18,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
37. Воздухоочистительное устройство по п.19,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
38. Воздухоочистительное устройство по п.20,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
39. Воздухоочистительное устройство по п.21,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
40. Воздухоочистительное устройство по п.22,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
41. Воздухоочистительное устройство по п.23,
в котором блок арифметической обработки выполнен с возможностью получения степени развития проскока в единицу времени в отношении фильтровальной части и вычисления времени проскока для указанной фильтровальной части путем умножения на указанную степень развития проскока.
42. Воздухоочистительное устройство по п.24,
в котором в качестве единицы времени используется период времени в диапазоне от 1/6000 до 5/600 мин.
43. Воздухоочистительное устройство по любому из пп.1-3,
в котором блок арифметической обработки выполнен с возможностью вычисления по меньшей мере одного из остаточного времени проскока и коэффициента остаточного использования в отношении фильтровальной части.
44. Воздухоочистительное устройство по любому из пп.1-3,
в котором воздухоочистительное устройство образовано любым из респиратора и локального вытяжного устройства.
45. Воздухоочистительное устройство по п.44,
в котором детектор расхода расположен в респираторе на любой из передней по ходу воздушного потока стороне и задней по ходу воздушного потока стороне фильтровальной части.
46. Воздухоочистительное устройство по п.44,
в котором детектор расхода расположен в локальном вытяжном устройстве на любой из передней по ходу воздушного потока стороне и задней по ходу воздушного потока стороне фильтровальной части.
47. Способ прогнозирования времени проскока для воздухоочистительного устройства, согласно которому в случае, если воздух, загрязненный токсичным газом, проходит через фильтровальную часть воздухоочистительного устройства от передней по ходу воздушного потока стороны к задней по ходу воздушного потока стороне, для прогнозирования времени проскока до достижения концентрации токсичного газа на задней по ходу воздушного потока стороне фильтровальной части значения проскоковой концентрации, которое произвольно установлено в отношении концентрации токсичного газа,
согласно которому в воздухоочистительном устройстве данные о концентрации токсичного газа, содержащегося в воздухе на передней по ходу воздушного потока стороне фильтровальной части, расходе воздуха, проходящего через фильтровальную часть, температуре воздуха на передней по ходу воздушного потока стороне и относительной влажности воздуха на передней по ходу воздушного потока стороне вводят в блок арифметической обработки, и
причем в указанном блоке арифметической обработки время проскока вычислено на основании указанных данных и с использованием формулы прогнозирования времени проскока, запрограммированной в блоке арифметической обработки, при этом концентрация токсичного газа, содержащегося в воздухе на передней по ходу воздушного потока стороне, расход, температура и относительная влажность используются в качестве переменных.
48. Способ по п.47,
согласно которому составляют формулу прогнозирования времени проскока в блоке арифметической обработки до использования воздухоочистительного устройства на основании эталонного условия, сформированного параметрами, такими как концентрация токсичного газа, содержащегося в воздухе на передней по ходу воздушного потока стороне, расход, температура, относительная влажность и проскоковая концентрация, и на времени проскока, измеренном при указанном эталонном условии.
49. Способ по п.48,
согласно которому корректируют посредством блока арифметической обработки время проскока при эталонном условии для фильтровальной части на основании температуры и относительной влажности.
50. Способ по любому из пп.47-49,
согласно которому токсичным газом является эталонный газ, представленный в качестве произвольно выбираемого токсичного газа,
причем концентрация указанного эталонного газа на передней по ходу воздушного потока стороне представлена как Co (частей на миллион), расход представлен как Q (л/мин), проскоковая концентрация представлена как S (частей на миллион), а время, в течение которого концентрация указанного эталонного газа на задней по ходу воздушного потока стороне достигает концентрации S (частей на миллион), является временем проскока, и
при этом формула прогнозирования представлена ниже:
время проскока = эталонное время проскока × коэффициент изменения концентрации × коэффициент изменения расхода × коэффициент изменения температуры × коэффициент изменения влажности × коэффициент изменения проскоковой концентрации;
где эталонное время проскока представляет собой период времени, в течение которого концентрация на задней по ходу воздушного потока стороне фильтровальной части достигает значения A%, которое меньше 100% и произвольно задано в качестве проскоковой концентрации относительно концентрации Co, в случае, если концентрация Co, расход Q, температура T и относительная влажность RH поддерживаются постоянными;
коэффициент изменения концентрации представляет собой поправочный коэффициент, соответствующий изменению концентрации, вычисленный путем получения значений эталонного времени проскока для концентрации Co по меньшей мере на двух уровнях, в то время как расход, температура и влажность поддерживаются постоянными;
коэффициент изменения расхода представляет собой поправочный коэффициент, соответствующий изменению расхода, вычисленный путем получения значений эталонного времени проскока для расхода Q по меньшей мере на двух уровнях, в то время как концентрация, температура и влажность поддерживаются постоянными;
коэффициент изменения температуры представляет собой поправочный коэффициент, соответствующий изменению температуры, вычисленный путем получения значений эталонного времени проскока для температуры T по меньшей мере на двух уровнях, в то время как концентрация, расход и относительная влажность поддерживаются постоянными;
коэффициент изменения влажности представляет собой поправочный коэффициент, соответствующий изменению влажности, вычисленный путем получения значений эталонного времени проскока по меньшей мере для двух уровней, включая один уровень, на котором уровень относительной влажности RH равен или выше 50%, в то время как концентрация, расход и температура поддерживаются постоянными;
коэффициент изменения проскоковой концентрации представляет собой поправочный коэффициент, соответствующий изменению проскоковой концентрации, вычисленный путем получения A% времени проскока, соответствующего проскоковой концентрации A%, полученной для значений расхода Q по меньшей мере на трех уровнях, и времени проскока (B%), соответствующего проскоковой концентрации B%, которая отличается от проскоковой концентрации A% на одном уровне расхода Q, в то время как концентрация, температура и влажность поддерживаются постоянными.
51. Способ по п.50, согласно которому формула по п.50 представлена следующими формулами (1) и (2):
(1) в случае, если относительная влажность RH≥50%:
время проскока = 1/ эталонное  время  проскока ( C o a 10 b ) ( c 1/Q + d ) ( i EXP j Q L n ( S / C o 100 ) + 1 ) ( e RH + f ) ( g T + h )  
Figure 00000005
;
(2) в случае, если относительная влажность RH<50%:
время проскока = 1/ эталонное  время  проскока ( C o a 10 b ) ( c 1/Q + d ) ( i EXP j Q L n ( S / C o 100 ) + 1 ) ( g T + h )
Figure 00000006
; и
в формулах (1) и (2), описанных выше:
эталонное время проскока - период времени, в течение которого концентрация на задней по ходу воздушного потока стороне достигает значения A%, которое меньше 100% и произвольно задано относительно концентрации Co в случае, если концентрация Co, расход Q, температура T и относительная влажность RH поддерживаются постоянными;
T - температура (°C);
RH - относительная влажность (%);
a, b - константы, полученные на основании концентрации Co по меньшей мере для двух уровней и времени проскока, в течение которого концентрация токсичного газа на задней по ходу воздушного потока стороне фильтровальной части достигает A% от концентрации Co для каждой концентрации Co, в то время как расход Q, температура T и относительная влажность RH поддерживаются постоянными;
c, d - константы, полученные на основании значений расхода Q по меньшей мере для двух уровней и времени проскока, в течение которого концентрация токсичного газа на задней по ходу воздушного потока стороне фильтровальной части достигает A% от концентрации Co для каждого расхода Q, в то время как концентрация Co, температура T и относительная влажность RH поддерживаются постоянными;
e, f - константы, полученные на основании по меньшей мере двух уровней, включая один уровень, на котором относительная влажность RH равна или выше 50%, и времени проскока, в течение которого концентрация токсичного газа на задней по ходу воздушного потока стороне фильтровальной части достигает A% от концентрации Co для каждой относительной влажности RH, в то время как концентрация Co, расход Q и температура T поддерживаются постоянными;
g, h - константы, полученные на основании температур по меньшей мере на двух уровнях и времени проскока, в течение которого концентрация токсичного газа на задней по ходу воздушного потока стороне фильтровальной части достигает A% от концентрации Co для каждой температуры T, в то время как концентрация Co, расход Q и относительная влажность RH поддерживаются постоянными;
i, j - константы, полученные на основании значений A% времени проскока и значений расхода Q в случае, если расход Q изменяется по меньшей мере на трех уровнях, и B% времени проскока путем использования одного уровня из трех уровней расхода Q, на котором получено A% время проскока, в то время как концентрация Co, температура T и относительная влажность RH поддерживаются постоянными.
52. Способ по любому из пп.47-49,
согласно которому блок арифметической обработки запрограммирован таким способом, что время проскока вычисляют путем использования относительного коэффициента проскока газа для токсичного газа в качестве эталонного.
53. Способ по п.50,
согласно которому блок арифметической обработки запрограммирован таким способом, что время проскока вычисляют путем использования относительного коэффициента проскока газа для токсичного газа в качестве эталонного.
54. Способ по п.51,
согласно которому блок арифметической обработки запрограммирован таким способом, что время проскока вычисляют путем использования относительного коэффициента проскока газа для токсичного газа в качестве эталонного.
55. Способ по п.52,
согласно которому коррекцию, основанную на скорости растворении в воде, в случае, если токсичный газ находится в жидком состоянии, выполняют для вычисления времени проскока, для которого используют относительный коэффициент проскока.
56. Способ по п.53,
согласно которому коррекцию, основанную на скорости растворении в воде, в случае, если токсичный газ находится в жидком состоянии, выполняют для вычисления времени проскока, для которого используют относительный коэффициент проскока.
57. Способ по п.54,
согласно которому коррекцию, основанную на скорости растворении в воде, в случае, если токсичный газ находится в жидком состоянии, выполняют для вычисления времени проскока, для которого используют относительный коэффициент проскока.
RU2013127778/12A 2011-02-28 2012-02-27 Воздухоочистительное устройство и способ прогнозирования времени проскока для такого устройства RU2554793C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011042385 2011-02-28
JP2011-042385 2011-02-28
PCT/JP2012/054842 WO2012118043A1 (ja) 2011-02-28 2012-02-27 空気浄化装置およびそのための破過時間を予測する方法

Publications (2)

Publication Number Publication Date
RU2013127778A true RU2013127778A (ru) 2014-12-27
RU2554793C2 RU2554793C2 (ru) 2015-06-27

Family

ID=46757975

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013127778/12A RU2554793C2 (ru) 2011-02-28 2012-02-27 Воздухоочистительное устройство и способ прогнозирования времени проскока для такого устройства

Country Status (9)

Country Link
US (1) US9333378B2 (ru)
EP (1) EP2682162B1 (ru)
JP (1) JP5873860B2 (ru)
KR (1) KR101590087B1 (ru)
CN (1) CN103402585B (ru)
IL (1) IL227125B (ru)
PL (1) PL2682162T3 (ru)
RU (1) RU2554793C2 (ru)
WO (1) WO2012118043A1 (ru)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104536473B (zh) * 2014-10-29 2017-04-05 小米科技有限责任公司 净化空气的控制方法及装置
CN105987820B (zh) * 2015-02-12 2019-06-04 苏州宝时得电动工具有限公司 空气净化器净化装置寿命预测方法和系统
KR101733287B1 (ko) * 2015-06-08 2017-05-08 재단법인 다차원 스마트 아이티 융합시스템 연구단 사용자에게 흡입되는 공기 질을 모니터링 가능한 스마트 마스크
WO2017002123A1 (en) * 2015-07-01 2017-01-05 Lotus Clear Air Ltd Computer implemented countdown time method and system for use with wearable air filters and dispensable air filter face masks
RU2600717C1 (ru) * 2015-07-22 2016-10-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет" Вентиляционный комплекс
CN105029770B (zh) 2015-07-31 2016-08-17 小米科技有限责任公司 智能口罩、计算污染物吸附量的方法、智能口罩及装置
CN105077745B (zh) * 2015-08-18 2018-03-23 京东方科技集团股份有限公司 一种口罩及头戴防护设备
KR102409696B1 (ko) * 2015-09-30 2022-06-17 코웨이 주식회사 공기청정기 성능 예측 장치
CN105457177A (zh) * 2016-01-16 2016-04-06 郑辉 一种内置检测装置的智能口罩
TWM523072U (zh) * 2016-01-29 2016-06-01 淨聯科技有限公司 智慧氣體清淨器
PL3426983T3 (pl) 2016-03-08 2020-06-01 Koninklijke Philips N.V. Oczyszczacz powietrza zawierający wskaźnik okresu eksploatacji filtra powietrza oraz sposób określania okresu eksploatacji filtra powietrza
US20170312555A1 (en) * 2016-04-27 2017-11-02 Honeywell International Inc. Radio frequencey powered resistive chemical sensor
DE102016223182B4 (de) * 2016-11-23 2022-12-15 Bayerische Motoren Werke Aktiengesellschaft Maskeneinheit, System und Verfahren zum Verwenden eines Systems
US11191916B2 (en) * 2016-12-22 2021-12-07 Ag Industries Llc Filtration system
US11793422B2 (en) 2017-09-01 2023-10-24 3M Innovative Properties Company Sensing system for respirator
US10958991B2 (en) 2017-09-15 2021-03-23 Mann+Hummel Gmbh Filter element sensor module having processing and wireless communication capabilities
CN109268946B (zh) * 2018-09-06 2020-12-11 广东美的制冷设备有限公司 空气调节器及其控制方法、装置和计算机可读存储介质
US11175210B2 (en) * 2019-06-24 2021-11-16 The Boeing Company System and methods for evaluating an air purification system
IT201900015635A1 (it) * 2019-09-05 2021-03-05 Synecom S R L Sistema per la gestione in sicurezza e la generazione di report di conduzione impianto negli impianti che utilizzano gas fluorati
US11992585B2 (en) 2020-03-13 2024-05-28 Julian HENLEY Electro-ionic devices for improved protection from airborne biopathogens
KR20210130884A (ko) * 2020-04-22 2021-11-02 쓰리엠 이노베이티브 프로퍼티즈 캄파니 마스크
USD954936S1 (en) * 2020-05-29 2022-06-14 Metal Heart Group of Companies Mask
USD961761S1 (en) * 2020-09-24 2022-08-23 University Of Tennessee Research Foundation Nose and mouth face mask
CN113713533A (zh) * 2021-08-04 2021-11-30 三一汽车制造有限公司 空气过滤系统的控制方法和装置、交通工具和存储介质
USD1022183S1 (en) * 2021-11-04 2024-04-09 AirBoss Defense Group LLC Respirator mask
CN117959635A (zh) * 2022-10-20 2024-05-03 霍尼韦尔国际公司 用于呼吸防护装置中的过滤器寿命估计的设备和方法
CN117398817B (zh) * 2023-11-30 2024-04-30 中山市凌宇机械有限公司 一种集约式压缩空气净化系统及方法
CN117732162A (zh) * 2024-01-24 2024-03-22 江苏海洋大学 一种煤矿矿井粉尘的过滤装置及其过滤方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790147B2 (ja) 1990-01-08 1995-10-04 株式会社フジタ フィルター交換時期判別装置
DE19547429C2 (de) * 1994-06-06 1999-01-07 Foerderverein Inst Fuer Medizi Verfahren und Atemgascontroller zur Ermittlung der Resteinsatzzeit von Atemschutzgeräten
JPH0871348A (ja) * 1994-09-05 1996-03-19 Toyota Motor Corp 臭気ガスの吸着処理装置およびその制御方法
AUPN191095A0 (en) * 1995-03-23 1995-04-27 Safety Equipment Australia Pty Ltd Positive air-purifying respirator management system
DE19849900C2 (de) * 1998-10-29 2002-07-11 Draeger Safety Ag & Co Kgaa Vorrichtung und Verfahren zur Anzeige einer Filtererschöpfung
JP4245266B2 (ja) 2000-10-03 2009-03-25 株式会社重松製作所 吸収缶交換時期検知装置を有する防毒マスク
US7442237B1 (en) * 2004-09-16 2008-10-28 The United States Of America As Represented By The Secretary Of The Army Multi-agent end-of-service-life indicator for respirator filters
US20060096911A1 (en) * 2004-11-08 2006-05-11 Brey Larry A Particle-containing fibrous web
JP2006263238A (ja) * 2005-03-24 2006-10-05 Jfe Chemical Corp 呼吸用保護マスク
DE102005015275B3 (de) * 2005-03-25 2006-09-28 Msa Auer Gmbh Verfahren und Anordnung zur Ermittlung der Restkapazität an veratembarer Luft für ein Sauerstoff erzeugendes, im Kreislauf betriebenes Atemschutzgerät
JP4737596B2 (ja) * 2005-03-31 2011-08-03 理研計器株式会社 防毒マスク用破過検出装置
JP4942325B2 (ja) 2005-10-27 2012-05-30 株式会社小松製作所 空気浄化装置
JP2009207757A (ja) * 2008-03-05 2009-09-17 Yoshiharu Nagamatsu 労働安全衛生管理システム
US8328903B2 (en) * 2008-05-30 2012-12-11 Scott Technologies, Inc. Determining effluent concentration profiles and service lives of air purifying respirator cartridges
EP2285451B1 (en) * 2008-05-30 2018-02-21 Scott Technologies, Inc. Determining effluent concentration profiles and service lives of air purifying respirator cartridges
US7860662B2 (en) * 2008-12-17 2010-12-28 Scott Technologies, Inc. Systems and methods for determining filter service lives

Also Published As

Publication number Publication date
IL227125B (en) 2018-07-31
CN103402585A (zh) 2013-11-20
JP5873860B2 (ja) 2016-03-01
JPWO2012118043A1 (ja) 2014-07-07
EP2682162A4 (en) 2016-07-20
RU2554793C2 (ru) 2015-06-27
US9333378B2 (en) 2016-05-10
US20130327335A1 (en) 2013-12-12
KR20130092610A (ko) 2013-08-20
PL2682162T3 (pl) 2018-04-30
WO2012118043A1 (ja) 2012-09-07
KR101590087B1 (ko) 2016-02-01
CN103402585B (zh) 2016-01-06
EP2682162B1 (en) 2017-11-22
EP2682162A1 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
RU2013127778A (ru) Воздухоочистительное устройство и способ прогнозирования времени проскока для такого устройства
JP6878466B2 (ja) エアフィルターの利用能力を決定するための方法
RU2013114240A (ru) Способ и система очистки выхлопных газов
RU2532801C2 (ru) Определение профиля концентрации выходящего потока и сроков службы патронов воздухоочистительных респираторов
WO2004101101A3 (en) System for purifying and removing contaminants from gaseous fluids
ATE481925T1 (de) Verfahren und vorrichtung zur messung der temperatur von ausatemgas
RU2017125558A (ru) Параллельная фильтрация воздуха
JP2007117859A (ja) 空気浄化装置
CN106403086A (zh) 一种高效过滤器实时监测系统、方法及过滤器
RU2011121582A (ru) Способ и устройство проверки и контроля удаления фторида водорода из технологического газа
CN112129677A (zh) 用来评估空气净化系统的系统和方法
RU2012114490A (ru) Улучшенное улавливание ртути на угольных электростанциях в фильтровальной пылеулавливающей камере с использованием температуры газообразных продуктов сгорания для управления процессом
KR101982565B1 (ko) 공기청정기 및 공기청정기의 필터수명 예측방법
KR20160070789A (ko) 룸의 컨디셔닝 플랜트 및/또는 에어레이션의 클리닝 상태를 평가하는 방법
DE502008002436D1 (de) Vorrichtung und Verfahren zur kontinuierlichen Behandlung von Flüssigkeiten
JP4515903B2 (ja) ガス中水銀の測定装置の自動洗浄
DE60320982D1 (de) Verfahren und vorrichtung zur reinigung von luft
Karimi et al. Revising organic vapour respirator cartridge change schedule: a case study of a paint plant in Iran
KR20170071208A (ko) 공기청정기 및 이의 성능 표시 방법
JP2002282848A (ja) 活性炭充填塔の運転管理システム
EA201690758A1 (ru) Полимеризационная установка с регенерационным устройством для адсорбционного и/или каталитического очистительного устройства, регенерационное устройство и способ регенерации
ATE556759T1 (de) Verfahren und vorrichtung zur reinigung von verbrennungsabgasen
DE60331126D1 (de) Verfahren zum Ermitteln der Innentemperatur eines Partikelfilters, Verfahren zur Steuerung der Regeneration des Partikelfilters, sowie Steuerungssystem und Partikelfilter
DE602004019358D1 (de) Anlage zur Reinigung von Rauchgasen durch Wäsche und Verfahren zum Betreiben desselben
Peterson Top Tips: road TraFFiC’s eFFeCT on respiraTory illness and leukeMia