RU2013102039A - Способ определения пространственного распределения текучей среды, закачанной в подъемные горные формации - Google Patents

Способ определения пространственного распределения текучей среды, закачанной в подъемные горные формации Download PDF

Info

Publication number
RU2013102039A
RU2013102039A RU2013102039/28A RU2013102039A RU2013102039A RU 2013102039 A RU2013102039 A RU 2013102039A RU 2013102039/28 A RU2013102039/28 A RU 2013102039/28A RU 2013102039 A RU2013102039 A RU 2013102039A RU 2013102039 A RU2013102039 A RU 2013102039A
Authority
RU
Russia
Prior art keywords
response
electromagnetic
fluid
spatial distribution
measuring
Prior art date
Application number
RU2013102039/28A
Other languages
English (en)
Inventor
Томас Д. БАРБЕР
Барбара И. АНДЕРСОН
Реза ТАХЕРИАН
Мартин Г. ЛУЛИНГ
Original Assignee
Шлюмбергер Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмбергер Текнолоджи Б.В. filed Critical Шлюмбергер Текнолоджи Б.В.
Publication of RU2013102039A publication Critical patent/RU2013102039A/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/113Locating fluid leaks, intrusions or movements using electrical indications; using light radiations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/20Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with propagation of electric current
    • G01V3/24Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with propagation of electric current using ac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Mining & Mineral Resources (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

1. Способ определения пространственного распределения текучей среды, закачанной в подземную горную формацию, содержащий:закачивание текучей среды в горную формацию, при этом текучая среда включает в себя электрически проводящие твердые частицы, распределенные в электролите;измерение электромагнитного отклика формации; ииспользование измеренного электромагнитного отклика для определения пространственного распределения закачанной текучей среды в горной формации.2. Способ по п. 1, отличающийся тем, что он дополнительно содержит измерение электромагнитного отклика горной формации перед закачиванием текучей среды.3. Способ по п. 1, отличающийся тем, что он дополнительно содержит продолжение закачки текучей среды; и повторение в выбранные моменты времени стадий измерения электромагнитного отклика и определения пространственного распределения закачанной текучей среды.4. Способ по п. 3, отличающийся тем, что он дополнительно содержит генерирование карты пространственного распределения закачанной текучей среды на основе времени.5. Способ по п. 1, отличающийся тем, что электрически проводящие частицы содержат углеродные нанотрубки.6. Способ по п. 5, отличающийся тем, что углеродные нанотрубки солюбилизированы перед включением в закачиваемую текучую среду.7. Способ по п. 1, отличающийся тем, что электрически проводящие частицы содержат металлические частицы.8. Способ по п. 7, отличающийся тем, что металлические частицы солюбилизированы перед включением в закачиваемую текучую среду.9. Способ по п. 1, отличающийся тем, что измерение электромагнитного отклика содержит измерение отклика электромагнитной индукции с ис�

Claims (23)

1. Способ определения пространственного распределения текучей среды, закачанной в подземную горную формацию, содержащий:
закачивание текучей среды в горную формацию, при этом текучая среда включает в себя электрически проводящие твердые частицы, распределенные в электролите;
измерение электромагнитного отклика формации; и
использование измеренного электромагнитного отклика для определения пространственного распределения закачанной текучей среды в горной формации.
2. Способ по п. 1, отличающийся тем, что он дополнительно содержит измерение электромагнитного отклика горной формации перед закачиванием текучей среды.
3. Способ по п. 1, отличающийся тем, что он дополнительно содержит продолжение закачки текучей среды; и повторение в выбранные моменты времени стадий измерения электромагнитного отклика и определения пространственного распределения закачанной текучей среды.
4. Способ по п. 3, отличающийся тем, что он дополнительно содержит генерирование карты пространственного распределения закачанной текучей среды на основе времени.
5. Способ по п. 1, отличающийся тем, что электрически проводящие частицы содержат углеродные нанотрубки.
6. Способ по п. 5, отличающийся тем, что углеродные нанотрубки солюбилизированы перед включением в закачиваемую текучую среду.
7. Способ по п. 1, отличающийся тем, что электрически проводящие частицы содержат металлические частицы.
8. Способ по п. 7, отличающийся тем, что металлические частицы солюбилизированы перед включением в закачиваемую текучую среду.
9. Способ по п. 1, отличающийся тем, что измерение электромагнитного отклика содержит измерение отклика электромагнитной индукции с использованием прибора, расположенного в скважине, которая проникает в горную формацию.
10. Способ по п. 9, отличающийся тем, что он дополнительно содержит перемещение прибора вдоль скважины для получения измерений индукции в скважине относительно глубины.
11. Способ по п. 9, отличающийся тем, что измерение отклика электромагнитной индукции содержит детектирование индуцированной поляризации в результате присутствия проводящих частиц в электролите.
12. Способ по п. 1, отличающийся тем, что измерение отклика электромагнитной индукции содержит возбуждение электромагнитного поля вблизи поверхности Земли и детектирование отклика подземных формаций, включая горную формацию, на возбужденное электромагнитное поле.
13. Способ по п. 12, отличающийся тем, что возбуждение электромагнитного поля содержит прохождение электрического тока через пару разнесенных заземленных дипольных передатчиков.
14. Способ по п. 12, отличающийся тем, что детектирование отклика содержит измерение напряжения через заземленный квадрупольный приемник, расположенный в значительной степени в центральной точке между передатчиками.
15. Способ по п. 12, отличающийся тем, что электрический ток содержит один из переменного или переключаемого постоянного токов.
16. Способ по п. 15, отличающийся тем, что переключаемый постоянный ток содержит по меньшей мере одно из включения тока, выключения тока, обращения полярности тока и переключения в выбранной последовательности.
17. Способ по п. 12, отличающийся тем, что возбуждение электромагнитного поля содержит прохождение электрического тока через пару разнесенных катушек проводов.
18. Способ по п. 1, отличающийся тем, что измерение электромагнитного отклика содержит как измерение отклика электромагнитной индукции с использованием прибора, расположенного в скважине, которая проникает в горную формацию, так и возбуждение электромагнитного поля вблизи поверхности Земли и детектирование отклика подземных формаций, включая горную формацию, на возбужденное электромагнитное поле.
19. Способ по п. 1, отличающийся тем, что определение пространственного распределения содержит обращение измерений для получения решения уравнений Максвелла.
20. Способ по п. 1, отличающийся тем, что измерение электромагнитного отклика содержит измерение электромагнитного отклика с использованием приборов, расположенных в каждой из по меньшей мере двух отдельных скважин.
21. Способ по п. 1, отличающийся тем, что измерение электромагнитного отклика содержит измерение электромагнитного отклика с использованием прибора, расположенного в скважине, и прибора, расположенного на поверхности.
22. Способ по п. 1, отличающийся тем, что для измерения электромагнитного отклика используется индукционный прибор.
23. Способ по п. 1, отличающийся тем, что для измерения электромагнитного отклика используется прибор распространения.
RU2013102039/28A 2010-06-17 2011-06-06 Способ определения пространственного распределения текучей среды, закачанной в подъемные горные формации RU2013102039A (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/817,930 US8638104B2 (en) 2010-06-17 2010-06-17 Method for determining spatial distribution of fluid injected into subsurface rock formations
US12/817,930 2010-06-17
PCT/US2011/039258 WO2011159509A2 (en) 2010-06-17 2011-06-06 Method for determining spatial distribution of fluid injected into subsurface rock formations

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2015114429/28A Division RU2015114429A (ru) 2010-06-17 2011-06-06 Способ определения пространственного распределения текучей среды, закачанной в подъемные горные формации

Publications (1)

Publication Number Publication Date
RU2013102039A true RU2013102039A (ru) 2014-07-27

Family

ID=45328078

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2013102039/28A RU2013102039A (ru) 2010-06-17 2011-06-06 Способ определения пространственного распределения текучей среды, закачанной в подъемные горные формации
RU2015114429/28A RU2015114429A (ru) 2010-06-17 2011-06-06 Способ определения пространственного распределения текучей среды, закачанной в подъемные горные формации

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2015114429/28A RU2015114429A (ru) 2010-06-17 2011-06-06 Способ определения пространственного распределения текучей среды, закачанной в подъемные горные формации

Country Status (8)

Country Link
US (1) US8638104B2 (ru)
BR (1) BR112012032117A2 (ru)
CA (1) CA2802796C (ru)
GB (1) GB2494583B (ru)
MX (1) MX2012014927A (ru)
NO (1) NO20130026A1 (ru)
RU (2) RU2013102039A (ru)
WO (1) WO2011159509A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2668602C1 (ru) * 2015-03-30 2018-10-02 Шлюмберже Текнолоджи Б.В. Определение параметров призабойной части трещины гидроразрыва пласта с использованием электромагнитного каротажа призабойной части трещины, заполненной электропроводящим расклинивающим агентом

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7659722B2 (en) * 1999-01-28 2010-02-09 Halliburton Energy Services, Inc. Method for azimuthal resistivity measurement and bed boundary detection
MX2009000112A (es) 2006-07-11 2009-01-26 Halliburton Energy Serv Inc Conjunto de herramienta de geodireccion modular.
WO2008021868A2 (en) 2006-08-08 2008-02-21 Halliburton Energy Services, Inc. Resistivty logging with reduced dip artifacts
CN101460698B (zh) 2006-12-15 2013-01-02 哈里伯顿能源服务公司 具有旋转天线结构的天线耦合元件测量工具
US9732559B2 (en) 2008-01-18 2017-08-15 Halliburton Energy Services, Inc. EM-guided drilling relative to an existing borehole
WO2009131584A1 (en) * 2008-04-25 2009-10-29 Halliburton Energy Services, Inc. Multimodal geosteering systems and methods
US9133709B2 (en) * 2009-11-17 2015-09-15 Board Of Regents, The University Of Texas System Determination of oil saturation in reservoir rock using paramagnetic nanoparticles and magnetic field
BR112013000526A2 (pt) * 2010-07-09 2016-05-17 Halliburton Energy Services Inc aparelho, método, meio de armazenagem legível por máquina, e, método de analisar um reservatório subterrâneo
AU2010357606B2 (en) 2010-07-16 2014-03-13 Halliburton Energy Services, Inc. Efficient inversion systems and methods for directionally-sensitive resistivity logging tools
AU2013256823B2 (en) * 2012-05-04 2015-09-03 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
WO2013181527A1 (en) * 2012-05-31 2013-12-05 The University Of North Carolina At Chapel Hill Dielectric contrast agents and methods
US10358911B2 (en) 2012-06-25 2019-07-23 Halliburton Energy Services, Inc. Tilted antenna logging systems and methods yielding robust measurement signals
US20130342211A1 (en) * 2012-06-26 2013-12-26 Schlumberger Technology Corporation Impedance Spectroscopy Measurement Device And Methods For Analysis Of Live Reservoir Fluids And Assessment Of In-Situ Corrosion Of Multiple Alloys
US20140182842A1 (en) * 2012-12-27 2014-07-03 Baker Hughes Incorporated Method of injection fluid monitoring
BR112015015733A2 (pt) * 2013-01-04 2017-07-11 Carbo Ceramics Inc partículas de areia revestidas com resina eletricamente condutivas e métodos para detectar, localizar e caracterizar as partículas de areia eletricamente condutivas
CA2843625A1 (en) * 2013-02-21 2014-08-21 Jose Antonio Rivero Use of nanotracers for imaging and/or monitoring fluid flow and improved oil recovery
US20160040514A1 (en) * 2013-03-15 2016-02-11 Board Of Regents, The University Of Texas System Reservoir Characterization and Hydraulic Fracture Evaluation
SG11201603138UA (en) 2013-11-15 2016-05-30 Landmark Graphics Corp Optimizing flow control device properties for accumulated liquid injection
WO2015073032A1 (en) * 2013-11-15 2015-05-21 Landmark Graphics Corporation Optimizing flow control device properties on a producer well in coupled injector-producer liquid flooding systems
MX2016010828A (es) * 2014-03-19 2017-04-13 Halliburton Energy Services Inc Mejora de evaluacion de la formacion usando herramientas de induccion de arreglo y dielectrica de alta frecuencia.
TWI629456B (zh) * 2014-12-01 2018-07-11 財團法人國家實驗研究院 環境監測系統與震動感測裝置
WO2016160770A1 (en) * 2015-03-30 2016-10-06 Saudi Arabian Oil Company Monitoring hydrocarbon reservoirs using induced polarization effect
WO2016201427A1 (en) 2015-06-11 2016-12-15 Board Of Regents, The University Of Texas System Proppant additives for hydraulic fracturing
US10344202B2 (en) 2015-07-13 2019-07-09 Saudi Arabian Oil Company Stabilized nanoparticle compositions comprising ions
CN109072056B (zh) 2015-07-13 2021-02-05 沙特阿拉伯石油公司 包含离子的多糖包覆纳米粒子组合物
US10317558B2 (en) 2017-03-14 2019-06-11 Saudi Arabian Oil Company EMU impulse antenna
US10365393B2 (en) 2017-11-07 2019-07-30 Saudi Arabian Oil Company Giant dielectric nanoparticles as high contrast agents for electromagnetic (EM) fluids imaging in an oil reservoir
EP4335544A3 (en) 2019-05-29 2024-06-12 Saudi Arabian Oil Company Flow synthesis of polymer nanoparticles
US11566165B2 (en) 2019-05-30 2023-01-31 Saudi Arabian Oil Company Polymers and nanoparticles for flooding
WO2021026432A1 (en) 2019-08-07 2021-02-11 Saudi Arabian Oil Company Determination of geologic permeability correlative with magnetic permeability measured in-situ
US11248455B2 (en) 2020-04-02 2022-02-15 Saudi Arabian Oil Company Acoustic geosteering in directional drilling
US12000277B2 (en) 2020-05-26 2024-06-04 Saudi Arabian Oil Company Water detection for geosteering in directional drilling
EP4158144A1 (en) 2020-05-26 2023-04-05 Saudi Arabian Oil Company Geosteering in directional drilling
WO2021240195A1 (en) 2020-05-26 2021-12-02 Saudi Arabian Oil Company Instrumented mandrel for coiled tubing drilling
WO2022051628A1 (en) 2020-09-03 2022-03-10 Saudi Arabian Oil Company Injecting multiple tracer tag fluids into a wellbore
US11660595B2 (en) 2021-01-04 2023-05-30 Saudi Arabian Oil Company Microfluidic chip with multiple porosity regions for reservoir modeling
US11534759B2 (en) 2021-01-22 2022-12-27 Saudi Arabian Oil Company Microfluidic chip with mixed porosities for reservoir modeling
US11879328B2 (en) 2021-08-05 2024-01-23 Saudi Arabian Oil Company Semi-permanent downhole sensor tool
CN114000827B (zh) * 2021-11-05 2023-07-14 中国矿业大学 一种基于压力渗流原理及电磁响应特征的陷落柱探查方法
US11796517B2 (en) 2021-11-09 2023-10-24 Saudi Arabian Oil Company Multifunctional magnetic tags for mud logging
US11999855B2 (en) 2021-12-13 2024-06-04 Saudi Arabian Oil Company Fluorescent dye molecules having hydrophilicity and hydrophobicity for tracer applications
US11725139B2 (en) 2021-12-13 2023-08-15 Saudi Arabian Oil Company Manipulating hydrophilicity of conventional dye molecules for water tracer applications
US11860077B2 (en) 2021-12-14 2024-01-02 Saudi Arabian Oil Company Fluid flow sensor using driver and reference electromechanical resonators
US12000278B2 (en) 2021-12-16 2024-06-04 Saudi Arabian Oil Company Determining oil and water production rates in multiple production zones from a single production well
US11867049B1 (en) 2022-07-19 2024-01-09 Saudi Arabian Oil Company Downhole logging tool
US11913329B1 (en) 2022-09-21 2024-02-27 Saudi Arabian Oil Company Untethered logging devices and related methods of logging a wellbore

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4491796A (en) 1982-03-18 1985-01-01 Shell Oil Company Borehole fracture detection using magnetic powder
JPH0726512B2 (ja) 1989-12-29 1995-03-22 地熱技術開発株式会社 人工磁場を利用した地殻内亀裂形状、賦存状熊三次元検知システム
EP1797281B1 (en) 2004-10-04 2013-12-11 Momentive Specialty Chemicals Research Belgium Method of estimating fracture geometry, compositions and articles used for the same
EA022413B1 (ru) 2008-05-20 2015-12-30 Оксан Материалз, Инк. Способ использования функционального проппанта для определения геометрии подземной трещины
US8869888B2 (en) * 2008-12-12 2014-10-28 Conocophillips Company Controlled source fracture monitoring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2668602C1 (ru) * 2015-03-30 2018-10-02 Шлюмберже Текнолоджи Б.В. Определение параметров призабойной части трещины гидроразрыва пласта с использованием электромагнитного каротажа призабойной части трещины, заполненной электропроводящим расклинивающим агентом

Also Published As

Publication number Publication date
CA2802796A1 (en) 2011-12-22
GB2494583A (en) 2013-03-13
US20110309835A1 (en) 2011-12-22
GB201222687D0 (en) 2013-01-30
US8638104B2 (en) 2014-01-28
GB2494583B (en) 2015-10-28
RU2015114429A (ru) 2015-09-20
BR112012032117A2 (pt) 2016-11-16
CA2802796C (en) 2017-11-07
MX2012014927A (es) 2013-03-12
NO20130026A1 (no) 2013-01-07
WO2011159509A3 (en) 2012-05-18
WO2011159509A2 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
RU2013102039A (ru) Способ определения пространственного распределения текучей среды, закачанной в подъемные горные формации
US8030934B2 (en) Method for hydrocarbon reservoir mapping and apparatus for use when performing the method
CN105044792B (zh) 地-井时频电磁勘探数据采集装置及方法
CN101520517B (zh) 一种能准确评价碎屑岩盆地含油气目标的方法
CN104614779B (zh) 一种多参数电磁法动态监测系统及其方法
EA200400761A1 (ru) Способ определения анизотропного электрического удельного сопротивления и угла падения пласта в геологической формации
CN106291722B (zh) 一种地-井激发极化测量方法及相关设备
CN104360399A (zh) 长导线接地源地下瞬变电磁探测方法及装置
RU2012132301A (ru) Прибор для каротажных измерений микросопротивления анизотропной среды с применением монополярного инжектирующего токового электрода
CN104375194B (zh) 深部开采矿井富水区电性源瞬变电磁探查方法
GB2502906A (en) Apparatus and method for formation resistivity measurements inoil-based mud using a floating reference signal
RU2069878C1 (ru) Способ электромагнитного каротажа скважин
Sajeena et al. Identification of groundwater prospective zones using geoelectrical and electromagnetic surveys
CN103499838A (zh) 异常体方位识别的瞬变电磁测量装置及其识别方法
RU2352963C1 (ru) Способ определения расстояния до кабеля, расположенного в земле, и глубины его залегания
RU2526520C2 (ru) Способ и устройство для измерения кажущегося электрического сопротивления пород в условиях обсаженных скважин
RU2229735C1 (ru) Способ электрического каротажа обсаженных скважин
RU2466430C2 (ru) Способ электроразведки
US9459127B2 (en) Method for operating a magnetic-inductive flow meter with a measuring apparatus for determining measured values which reproduce the field intensity of the electrical field which has been induced by the magnetic field in the flowing medium
RU2427007C2 (ru) Способ совмещения трехэлектродного, вертикального и однополярного электрических зондирований
Jackson et al. Rapid non-contacting resistivity logging of core
RU2478223C1 (ru) Способ оценки удельного электрического сопротивления пласта при проведении исследований скважин, обсаженных металлической колонной
JP2011133301A (ja) 地中埋設基礎構造物の底面深度の調査方法
RU2384867C1 (ru) Способ электрического каротажа обсаженных скважин
RU2668650C1 (ru) Способ импульсного индукционного каротажа из обсаженных скважин