RU2012120569A - GEOTHERMAL PROBE FOR THE GEOTHERMAL HEAT PUMP - Google Patents

GEOTHERMAL PROBE FOR THE GEOTHERMAL HEAT PUMP Download PDF

Info

Publication number
RU2012120569A
RU2012120569A RU2012120569/06A RU2012120569A RU2012120569A RU 2012120569 A RU2012120569 A RU 2012120569A RU 2012120569/06 A RU2012120569/06 A RU 2012120569/06A RU 2012120569 A RU2012120569 A RU 2012120569A RU 2012120569 A RU2012120569 A RU 2012120569A
Authority
RU
Russia
Prior art keywords
probe
range
geothermal
din
iso
Prior art date
Application number
RU2012120569/06A
Other languages
Russian (ru)
Inventor
Маркус ХАРТМАНН
Андреас Дове
Райнер Геринг
Андреас ПАВЛИК
Original Assignee
Эвоник Дегусса Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эвоник Дегусса Гмбх filed Critical Эвоник Дегусса Гмбх
Publication of RU2012120569A publication Critical patent/RU2012120569A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

1. Геотермический зонд, сконструированный как зонд с испарителем непосредственного охлаждения, для получения геотермальной энергии из скважины, отличающийся тем, что внутренняя поверхность трубы зонда характеризуется следующими параметрами шероховатости:a) средним арифметическим отклонением профиля Ra согласно DIN EN ISO 4287 в пределах от 1 до 15 мкм,b) усредненной глубиной неровностей профиля Rz согласно DIN EN ISO 4287 в пределах от 8 до 80 мкм, а такжеc) наибольшей глубиной неровностей профиля Rz1max согласно DIN EN ISO 4287в пределах от 10 до 500 мкм,причем измерение шероховатости проводят согласно DIN EN ISO 4288.2. Геотермальный зонд по пункту 1, отличающийся тем, что Ra находится в пределах от 2 до 12 мкм, Rz в пределах от 10 до 60 мкм, а Rz1max в пределах от 15 до 150 мкм.3. Геотермальный зонд по пункту 1, отличающийся тем, что Ra находится в пределах от 3 до 7 мкм, Rz в пределах от 15 до 40 мкм, а Rz1max в пределах от 25 до 65 мкм.4. Геотермальный зонд по пункту 1, отличающийся тем, что труба зонда состоит из одного или нескольких слоев, каждый из которых состоит из термопластической формовочной массы.5. Геотермальный зонд по пункту 4, отличающийся тем, что труба зонда или самый внутренний слой трубы зонда состоит из формовочной массы, матрица которой состоит из фторополимера, простого полиариленэфиркетона, полиолефина или полиамида.6. Геотермальный зонд по одному из пунктов 4 и 5, отличающийся тем, что труба зонда или самый внутренний слой трубы зонда состоит из формовочной массы, содержащей от 0,1 до 50 масс.-% армирующих волокон и/или наполнителей.7. Геотермальный зонд по одному из пунктов 1-3, отличающийся тем, что труба зонда состоит из металла, причем внутренняя поверхность несе1. A geothermal probe designed as a probe with a direct cooling evaporator to receive geothermal energy from a well, characterized in that the inner surface of the probe pipe has the following roughness parameters: a) arithmetic mean deviation of the Ra profile according to DIN EN ISO 4287 in the range from 1 to 15 μm, b) the average depth of the roughness of the profile Rz according to DIN EN ISO 4287 in the range from 8 to 80 μm, and c) the greatest depth of the roughness of the profile Rz1max according to DIN EN ISO 4287 in the range of 10 to 500 μm, and measured Roughnesses are carried out according to DIN EN ISO 4288.2. The geothermal probe according to paragraph 1, characterized in that Ra is in the range of 2 to 12 μm, Rz is in the range of 10 to 60 μm, and Rz1max is in the range of 15 to 150 μm. 3. The geothermal probe according to paragraph 1, characterized in that Ra is in the range of 3 to 7 μm, Rz is in the range of 15 to 40 μm, and Rz1max is in the range of 25 to 65 μm. 4. The geothermal probe according to paragraph 1, characterized in that the probe tube consists of one or more layers, each of which consists of a thermoplastic molding material. 5. The geothermal probe according to claim 4, characterized in that the probe tube or the innermost layer of the probe tube consists of a molding material, the matrix of which consists of a fluoropolymer, simple polyarylene ether ketone, polyolefin or polyamide. 6. A geothermal probe according to one of paragraphs 4 and 5, characterized in that the probe tube or the innermost layer of the probe tube consists of a molding material containing from 0.1 to 50 wt .-% reinforcing fibers and / or fillers. 7. A geothermal probe according to one of paragraphs 1-3, characterized in that the probe tube consists of metal, and the inner surface carries

Claims (8)

1. Геотермический зонд, сконструированный как зонд с испарителем непосредственного охлаждения, для получения геотермальной энергии из скважины, отличающийся тем, что внутренняя поверхность трубы зонда характеризуется следующими параметрами шероховатости:1. A geothermal probe designed as a probe with a direct cooling evaporator to receive geothermal energy from a well, characterized in that the inner surface of the probe tube is characterized by the following roughness parameters: a) средним арифметическим отклонением профиля Ra согласно DIN EN ISO 4287 в пределах от 1 до 15 мкм,a) the arithmetic mean deviation of the profile Ra according to DIN EN ISO 4287 in the range from 1 to 15 microns, b) усредненной глубиной неровностей профиля Rz согласно DIN EN ISO 4287 в пределах от 8 до 80 мкм, а такжеb) the average depth of the roughness of the profile Rz according to DIN EN ISO 4287 in the range from 8 to 80 microns, and c) наибольшей глубиной неровностей профиля Rz1max согласно DIN EN ISO 4287c) the greatest depth of the roughness of the profile Rz1max according to DIN EN ISO 4287 в пределах от 10 до 500 мкм,in the range of 10 to 500 microns, причем измерение шероховатости проводят согласно DIN EN ISO 4288.moreover, the measurement of roughness is carried out according to DIN EN ISO 4288. 2. Геотермальный зонд по пункту 1, отличающийся тем, что Ra находится в пределах от 2 до 12 мкм, Rz в пределах от 10 до 60 мкм, а Rz1max в пределах от 15 до 150 мкм.2. The geothermal probe according to paragraph 1, characterized in that Ra is in the range of 2 to 12 μm, Rz is in the range of 10 to 60 μm, and Rz1max is in the range of 15 to 150 μm. 3. Геотермальный зонд по пункту 1, отличающийся тем, что Ra находится в пределах от 3 до 7 мкм, Rz в пределах от 15 до 40 мкм, а Rz1max в пределах от 25 до 65 мкм.3. The geothermal probe according to paragraph 1, characterized in that Ra is in the range of 3 to 7 μm, Rz is in the range of 15 to 40 μm, and Rz1max is in the range of 25 to 65 μm. 4. Геотермальный зонд по пункту 1, отличающийся тем, что труба зонда состоит из одного или нескольких слоев, каждый из которых состоит из термопластической формовочной массы.4. A geothermal probe according to paragraph 1, characterized in that the probe tube consists of one or more layers, each of which consists of a thermoplastic molding material. 5. Геотермальный зонд по пункту 4, отличающийся тем, что труба зонда или самый внутренний слой трубы зонда состоит из формовочной массы, матрица которой состоит из фторополимера, простого полиариленэфиркетона, полиолефина или полиамида.5. A geothermal probe according to claim 4, characterized in that the probe tube or the innermost layer of the probe tube consists of a molding material, the matrix of which consists of a fluoropolymer, simple polyarylene ether ketone, polyolefin or polyamide. 6. Геотермальный зонд по одному из пунктов 4 и 5, отличающийся тем, что труба зонда или самый внутренний слой трубы зонда состоит из формовочной массы, содержащей от 0,1 до 50 масс.-% армирующих волокон и/или наполнителей.6. Geothermal probe according to one of paragraphs 4 and 5, characterized in that the probe tube or the innermost layer of the probe tube consists of a molding material containing from 0.1 to 50 wt .-% reinforcing fibers and / or fillers. 7. Геотермальный зонд по одному из пунктов 1-3, отличающийся тем, что труба зонда состоит из металла, причем внутренняя поверхность несет шероховатое покрытие.7. Geothermal probe according to one of paragraphs 1-3, characterized in that the probe tube consists of metal, and the inner surface carries a rough coating. 8. Применение геотермального зонда по одному из пунктов 1-7 для получения геотермальной энергии из скважины, причем8. The use of a geothermal probe according to one of paragraphs 1-7 to obtain geothermal energy from the well, - применяют пригодный к испарению хладагент,- use a suitable refrigerant for evaporation, - восходящие пары хладагента сжимаются и сжижаются в компрессоре, а теплоту конденсации отводят как полезное тепло, и- the ascending refrigerant vapor is compressed and liquefied in the compressor, and the heat of condensation is removed as useful heat, and - охлажденный жидкий хладагент снова подается в зонд и направляется вниз в виде падающей пленки. - the cooled liquid refrigerant is again supplied to the probe and sent down in the form of a falling film.
RU2012120569/06A 2009-10-21 2010-10-11 GEOTHERMAL PROBE FOR THE GEOTHERMAL HEAT PUMP RU2012120569A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102009045882.4 2009-10-21
DE102009045882A DE102009045882A1 (en) 2009-10-21 2009-10-21 Geothermal probe for a geothermal heat pump
PCT/EP2010/065162 WO2011047979A1 (en) 2009-10-21 2010-10-11 Downhole heat exchanger for a geothermal heat pump

Publications (1)

Publication Number Publication Date
RU2012120569A true RU2012120569A (en) 2013-11-27

Family

ID=43763568

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012120569/06A RU2012120569A (en) 2009-10-21 2010-10-11 GEOTHERMAL PROBE FOR THE GEOTHERMAL HEAT PUMP

Country Status (13)

Country Link
US (1) US20120199317A1 (en)
EP (1) EP2491316A1 (en)
JP (1) JP2013508658A (en)
KR (1) KR20120099015A (en)
CN (1) CN102713458A (en)
AU (1) AU2010309960A1 (en)
CA (1) CA2777344A1 (en)
CO (1) CO6531462A2 (en)
DE (1) DE102009045882A1 (en)
MX (1) MX2012004571A (en)
RU (1) RU2012120569A (en)
WO (1) WO2011047979A1 (en)
ZA (1) ZA201202872B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008044224A1 (en) * 2008-12-01 2010-06-02 Evonik Degussa Gmbh Use of a composition for contact with supercritical media
PL2374942T3 (en) * 2010-04-01 2015-06-30 SPS Energy GmbH Device and method for generating heat from the environment
DE102010003916A1 (en) 2010-04-13 2011-10-13 Evonik Degussa Gmbh Flexible tube and method for its production
DE102010003909A1 (en) 2010-04-13 2011-10-13 Evonik Degussa Gmbh Flexible tube with multilayer construction
DE102010003920A1 (en) 2010-04-13 2011-10-13 Evonik Degussa Gmbh Flexible tube with higher temperature resistance
CN103459969A (en) * 2011-04-13 2013-12-18 日本电气株式会社 Piping structure of cooling device, manufacturing method thereof, and pipe coupling method
DE102011017811A1 (en) 2011-04-29 2012-10-31 Evonik Degussa Gmbh Temperable pipeline for offshore applications
DE102011075383A1 (en) 2011-05-06 2012-11-08 Evonik Degussa Gmbh Temperable pipeline for offshore applications
ITCO20110023A1 (en) * 2011-07-08 2013-01-09 Sergio Bonfiglio METHOD OF PREPARATION OF GEOTHERMAL FIELDS
DE102013205616A1 (en) 2013-03-28 2014-10-02 Evonik Industries Ag Multilayer pipe with polyamide layer
DE102013205614A1 (en) 2013-03-28 2014-10-02 Evonik Industries Ag Method for producing a pipe lined with an inliner
MX2018013251A (en) 2016-07-07 2019-02-21 Bull Moose Tube Company Steel coated metal structures and methods of fabricating the same.
EP3477176A1 (en) 2017-10-25 2019-05-01 Evonik Degussa GmbH Method for manufacturing a tube clad with an inner liner

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114158A (en) * 1976-03-22 1977-09-24 Agency Of Ind Science & Technol Manufacturing of terrestrial heat power generation heat transfer pipe
US4579170A (en) * 1983-04-18 1986-04-01 The Dow Chemical Company Container for thermal energy storage materials
DE4211576A1 (en) 1991-07-06 1993-01-07 Poehlmann Anwendungstechnik Gm Heating system using heat pump and ground probe - uses heat provided by probe transferred to refrigeration medium via evaporator heat exchanger
DE4310884A1 (en) 1993-04-02 1994-10-06 Huels Chemische Werke Ag Multi-layer plastic tube
DE4326130A1 (en) 1993-08-04 1995-02-09 Huels Chemische Werke Ag Thermoplastic multilayer composites
US5509462A (en) * 1994-05-16 1996-04-23 Ground Air, Inc. Ground source cooling system
EP0992518B1 (en) 1997-06-23 2004-09-01 Daikin Industries, Limited Tetrafluoroethylene copolymer and use thereof
DE29824676U1 (en) 1998-12-24 2002-05-02 Fkw Hannover Forschungszentrum Heat exchanger
DE50000891D1 (en) 1999-07-09 2003-01-16 Klett Ingenieur Gmbh DEVICE FOR THE USE OF GROWTH AND METHOD FOR THE OPERATION THEREOF
DE10064333A1 (en) 2000-12-21 2002-06-27 Degussa Multi-layer composite with an EVOH layer
DE10253457B3 (en) * 2002-11-16 2004-07-22 Stiebel Eltron Gmbh & Co. Kg A heat transfer partition with a structured layer with peaks and valleys especially useful for electric heaters for water heating containers or heat exchangers
JP4138527B2 (en) 2003-02-20 2008-08-27 矢崎総業株式会社 Manufacturing method of non-contact type liquid level sensor
JP2004309124A (en) * 2003-03-25 2004-11-04 Mitsui Eng & Shipbuild Co Ltd Underground heat exchanger
US6955219B2 (en) * 2003-07-03 2005-10-18 Enlink Geoenergy Services, Inc. Earth loop installation with sonic drilling
JP4393854B2 (en) * 2003-09-01 2010-01-06 臼井国際産業株式会社 Heat transfer tube with fin member
DE202004018559U1 (en) 2004-12-01 2005-03-10 Dietz, Erwin An underground probe for a heat pump system evaporator has an outer tube and an inner tube into which a perforated spiral tube releases the fluid for recirculation through a heat exchanger
US7347059B2 (en) * 2005-03-09 2008-03-25 Kelix Heat Transfer Systems, Llc Coaxial-flow heat transfer system employing a coaxial-flow heat transfer structure having a helically-arranged fin structure disposed along an outer flow channel for constantly rotating an aqueous-based heat transfer fluid flowing therewithin so as to improve heat transfer with geological environments
US20070036926A1 (en) * 2005-08-12 2007-02-15 Fish Robert B Jr Multilayered pipes
FR2892172B1 (en) * 2005-10-13 2007-12-14 Arkema Sa MULTILAYER TUBE BASED ON MODIFIED FLUORINATED POLYMER
DE102007005270B4 (en) 2007-01-26 2008-10-30 Blz Geotechnik Gmbh geothermal probe
DE202007004346U1 (en) 2007-03-21 2007-10-31 Rehau Ag + Co pipe arrangement
DE202007016938U1 (en) * 2007-12-03 2009-04-09 Moser Patente Gmbh Plant for geothermal energy production

Also Published As

Publication number Publication date
CA2777344A1 (en) 2011-04-28
WO2011047979A1 (en) 2011-04-28
CN102713458A (en) 2012-10-03
AU2010309960A1 (en) 2012-06-07
EP2491316A1 (en) 2012-08-29
DE102009045882A1 (en) 2011-04-28
JP2013508658A (en) 2013-03-07
CO6531462A2 (en) 2012-09-28
KR20120099015A (en) 2012-09-06
ZA201202872B (en) 2012-12-27
US20120199317A1 (en) 2012-08-09
MX2012004571A (en) 2012-06-08

Similar Documents

Publication Publication Date Title
RU2012120569A (en) GEOTHERMAL PROBE FOR THE GEOTHERMAL HEAT PUMP
He et al. Hierarchically structured porous aluminum surfaces for high-efficient removal of condensed water
Peng et al. The performance of the novel vapor chamber based on the leaf vein system
Cui et al. The verification of icephobic performance on biomimetic superhydrophobic surfaces and the effect of wettability and surface energy
Lee et al. Heat transfer measurement during dropwise condensation using micro/nano-scale porous surface
Lim et al. Anomalously enhanced light-emitting diode cooling via nucleate boiling using graphene-nanoplatelets coatings
Lee et al. A dropwise condensation model using a nano-scale, pin structured surface
Chen et al. Durable anti-icing coatings based on self-sustainable lubricating layer
Fang et al. Understanding the anti-icing behavior of superhydrophobic surfaces
WO2015100452A3 (en) Self-powered logo cup
BR112012024875A2 (en) laminate, antireflective article, water repellent article, monitor, automotive element and method for manufacturing said laminate
Ji et al. Nucleate pool boiling and filmwise condensation heat transfer of R134a on the same horizontal tubes
MX341749B (en) Refrigeration circuit.
AR085045A1 (en) HEATING PRODUCTION THROUGH THE USE OF OPERATING FLUIDS THAT INCLUDE Z-1,1,1,4,4,4-HEXAFLUORO-2-BUTENO
Zhu et al. Biomimetic modification of freezing facility surfaces to prevent icing and frosting during freezing for the food industry
De Koninck et al. Passive anti-frosting cables
WO2012068250A8 (en) Thin film evaporator
ATE526152T1 (en) ALUMINUM ALLOY MATERIAL AND PLATE HEAT EXCHANGER WITH INCREASED CORROSION RESISTANCE
Bock et al. Pool boiling of refrigerants over nanostructured and roughened tubes
Rahimi et al. The effect of surface modification on initial ice formation on aluminum surfaces
Gao et al. Reversed vapor generation with Janus fabric evaporator and comprehensive thermal management for efficient interfacial solar distillation
RU2012147335A (en) REFRIGERATOR AND EVAPORATOR FOR HIM
ES2543187T3 (en) Pressure tank for the collection and storage of cryogenic fluids, especially cryogenic liquids, and procedure for their manufacture and use
JP6600809B2 (en) Base material and equipment using the base material
KR20140012265A (en) Heat exchanger materials to prevent corrosion

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20150305