RU2012113376A - METHOD FOR DETERMINING WATERFILL RATE AND COMPOSITION OF OIL WELL - Google Patents

METHOD FOR DETERMINING WATERFILL RATE AND COMPOSITION OF OIL WELL Download PDF

Info

Publication number
RU2012113376A
RU2012113376A RU2012113376/03A RU2012113376A RU2012113376A RU 2012113376 A RU2012113376 A RU 2012113376A RU 2012113376/03 A RU2012113376/03 A RU 2012113376/03A RU 2012113376 A RU2012113376 A RU 2012113376A RU 2012113376 A RU2012113376 A RU 2012113376A
Authority
RU
Russia
Prior art keywords
coefficient
oil
water
saturation
permeability
Prior art date
Application number
RU2012113376/03A
Other languages
Russian (ru)
Other versions
RU2505676C2 (en
Inventor
Василий Сергеевич Белохин
Георгий Александрович Калмыков
Наталия Леонидовна Кашина
Original Assignee
Общество с ограниченной ответственностью ООО "Сплит"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью ООО "Сплит" filed Critical Общество с ограниченной ответственностью ООО "Сплит"
Priority to RU2012113376/03A priority Critical patent/RU2505676C2/en
Priority to PCT/RU2012/000329 priority patent/WO2013151455A1/en
Publication of RU2012113376A publication Critical patent/RU2012113376A/en
Application granted granted Critical
Publication of RU2505676C2 publication Critical patent/RU2505676C2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/005Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using neutrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/246Earth materials for water content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/0846Investigating permeability, pore-volume, or surface area of porous materials by use of radiation, e.g. transmitted or reflected light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/616Specific applications or type of materials earth materials

Abstract

Способ определения коэффициента обводненности и состава притока нефтяной скважины, включающий проведение геофизических исследований скважины (ГИС) с использованием импульсного нейтрон-гамма спектрометрического каротажа, определение компонентного состава пород, включая пористость и коэффициент текущего нефтенасыщения (К), отличающийся тем, что предварительно подготавливают коллекцию образцов керна из коллекторов, вскрытых опорными скважинами, по результатам исследования которой, определяют: текущую водонасыщенность (К), коэффициенты относительной фазовой проницаемости по нефти и по воде (К'К'), экспоненциальные значения относительной водо- и нефтепроницаемости (nn), коэффициент глинистости (К), коэффициент пористости (К), петрофизические параметры (а, b) связи коэффициента остаточной водонасыщенности и отношения объемной глинистости к пористости, коэффициент остаточной нефтенасыщенность (К), далее рассчитывают коэффициент остаточного водонасыщения К=а·(К/К)+b, после чего вычисляют коэффициент обводненности притока (К) по следующей формуле,где К- коэффициент текущего нефтенасыщения, K- коэффициент остаточного водонасыщения, К- коэффициент остаточной нефтенасыщености, К'- коэффициент относительной фазовой проницаемости по нефти, К'- коэффициент относительной фазовой проницаемости по воде, n- экспоненциальное значение относительной водопроницаемости, n- экспоненциальное значение относительной нефтепроницаемости µ- коэффициент динамической вязкости нефти, µ- коэффициент динамической вязкости воды, далее по полученному коэффициенту обводненности проводят оценку ожидаемого состава притока.A method for determining the water cut coefficient and composition of an oil well inflow, including conducting geophysical well surveys (GIS) using pulsed neutron-gamma spectrometric logging, determining the component composition of rocks, including porosity and current oil saturation coefficient (K), characterized in that a sample collection is preliminarily prepared core from reservoirs uncovered by reference wells, according to the results of the study of which, determine: current water saturation (K), coefficient you are the relative phase permeability of oil and water (K'K '), the exponential values of the relative water and oil permeability (nn), the clay coefficient (K), the porosity coefficient (K), the petrophysical parameters (a, b) of the relationship between the residual water saturation coefficient and the ratio of volumetric clay to porosity, the coefficient of residual oil saturation (K), then calculate the coefficient of residual water saturation K = a · (K / K) + b, and then calculate the coefficient of water cut in the inflow (K) according to the following formula, where K is the coefficient of current n oil saturation, K is the coefficient of residual water saturation, K is the coefficient of residual oil saturation, K'is the coefficient of relative phase permeability to oil, K'is the coefficient of relative phase permeability to water, n is the exponential value of relative water permeability, n is the exponential value of relative oil permeability μ is the coefficient dynamic viscosity of oil, µ is the coefficient of dynamic viscosity of water, then, according to the obtained water cut coefficient, the expected composition of the inflow is estimated.

Claims (1)

Способ определения коэффициента обводненности и состава притока нефтяной скважины, включающий проведение геофизических исследований скважины (ГИС) с использованием импульсного нейтрон-гамма спектрометрического каротажа, определение компонентного состава пород, включая пористость и коэффициент текущего нефтенасыщения (Кн), отличающийся тем, что предварительно подготавливают коллекцию образцов керна из коллекторов, вскрытых опорными скважинами, по результатам исследования которой, определяют: текущую водонасыщенность (Кв), коэффициенты относительной фазовой проницаемости по нефти и по воде (К'прн К'прв), экспоненциальные значения относительной водо- и нефтепроницаемости (nв nн), коэффициент глинистости (Кгл), коэффициент пористости (Кп), петрофизические параметры (а, b) связи коэффициента остаточной водонасыщенности и отношения объемной глинистости к пористости, коэффициент остаточной нефтенасыщенность (Кно), далее рассчитывают коэффициент остаточного водонасыщения Кво=а·(Кглп)+b, после чего вычисляют коэффициент обводненности притока (Коп) по следующей формулеA method for determining the water cut coefficient and composition of an oil well inflow, including conducting geophysical well surveys (GIS) using pulsed neutron-gamma spectrometric logging, determining the component composition of rocks, including porosity and current oil saturation coefficient (K n ), characterized in that the collection is preliminarily prepared core samples from reservoirs uncovered by reference wells, the results of the study of which determine: current water saturation (K in ), coefficient factors of relative phase permeability for oil and water (K ' pr K K prv ), exponential values of relative water and oil permeability (n to n n ), clay factor (K hl ), porosity coefficient (K p ), petrophysical parameters (а , b) the coupling coefficient of the residual water saturation and the ratio of bulk clay porosity, the ratio of the residual oil saturation (C HO), then calculate the coefficient of the residual water saturation K in = a · (K hl / K n) + b, then calculating the water cut rate of inflow (K op) on the following formula К о п = К п р в ' [ 1 К н К в о 1 К в о К н о ] n в μ н К п р н ' [ К н К н о 1 К в о К н о ] n н μ в + К п р в ' [ 1 К н К в о 1 К в о К н о ] n в μ н
Figure 00000001
,
TO about P = TO P R at '' [ one - TO n - TO at about one - TO at about - TO n about ] n at μ n TO P R n '' [ TO n - TO n about one - TO at about - TO n about ] n n μ at + TO P R at '' [ one - TO n - TO at about one - TO at about - TO n about ] n at μ n
Figure 00000001
,
где Кн - коэффициент текущего нефтенасыщения, Kво - коэффициент остаточного водонасыщения, Кно - коэффициент остаточной нефтенасыщености, К'прн - коэффициент относительной фазовой проницаемости по нефти, К'прв - коэффициент относительной фазовой проницаемости по воде, nв - экспоненциальное значение относительной водопроницаемости, nн - экспоненциальное значение относительной нефтепроницаемости µн - коэффициент динамической вязкости нефти, µв - коэффициент динамической вязкости воды, далее по полученному коэффициенту обводненности проводят оценку ожидаемого состава притока. where K n is the coefficient of current oil saturation, K in is the coefficient of residual water saturation, K but is the coefficient of residual oil saturation, K ' prn is the coefficient of relative phase permeability for oil, K' prv is the coefficient of relative phase permeability for water, n in is the exponential value of the relative permeability, n n - the exponential value of the relative oil permeability µ n is the coefficient of dynamic viscosity of oil, µ in is the coefficient of dynamic viscosity of water, then according to the obtained water cut coefficient p assess the expected composition of the inflow.
RU2012113376/03A 2012-04-06 2012-04-06 Method for determination of water cut factor and composition of oil well influx RU2505676C2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2012113376/03A RU2505676C2 (en) 2012-04-06 2012-04-06 Method for determination of water cut factor and composition of oil well influx
PCT/RU2012/000329 WO2013151455A1 (en) 2012-04-06 2012-04-26 Method for determining the water encroachment factor and the influx composition of an oil well

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012113376/03A RU2505676C2 (en) 2012-04-06 2012-04-06 Method for determination of water cut factor and composition of oil well influx

Publications (2)

Publication Number Publication Date
RU2012113376A true RU2012113376A (en) 2013-10-20
RU2505676C2 RU2505676C2 (en) 2014-01-27

Family

ID=49300825

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012113376/03A RU2505676C2 (en) 2012-04-06 2012-04-06 Method for determination of water cut factor and composition of oil well influx

Country Status (2)

Country Link
RU (1) RU2505676C2 (en)
WO (1) WO2013151455A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109944575A (en) * 2019-03-29 2019-06-28 中国石油大学(华东) A kind of oilfields in high water cut period injection water quality decision-making technique based on water quality sensibility
CN113552036A (en) * 2020-04-26 2021-10-26 中国石油天然气股份有限公司 Method and device for determining oil-water relative permeability of medium-low pore permeability reservoir

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924968A (en) * 2014-05-14 2014-07-16 杜江民 Method for identifying compact oil and gas reservoir sandstones
CN104141490B (en) * 2014-07-17 2016-08-31 中国石油天然气股份有限公司 There are the judgement of Gas Reservoirs individual well water enchroachment (invasion) situation and gas well production yield control method and device
CN104265281B (en) * 2014-10-08 2017-01-11 成都北方石油勘探开发技术有限公司 Method for predicting well yield of sealed, unsaturated oil reservoirs through elastic driving water-flooding extraction
CN104453874B (en) * 2014-10-23 2017-04-12 中国石油天然气集团公司 Glutenite reservoir oil saturation calculation method based on nuclear magnetic resonance
RU2632800C2 (en) * 2016-03-09 2017-10-09 Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" Method for determining actual oil saturation factor in well when developing oil-bearing formation
CN106323835B (en) * 2016-08-04 2019-04-09 中国石油天然气股份有限公司 The method for determining heterogeneous carbonate reservoir cementation factor
RU2671631C1 (en) * 2017-07-27 2018-11-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) Method of determination of water saturation of asphalt concrete
RU2700738C1 (en) * 2018-02-21 2019-09-19 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Method of improving reliability of water cut monitoring of products of oil producing wells equipped with sucker-rod bottom pumps
CN110778312B (en) * 2019-10-09 2022-08-30 东北石油大学 Model for simulating gas reservoir edge and bottom water invasion and method for calculating water invasion coefficient
RU2737453C1 (en) * 2020-06-02 2020-11-30 Общество с ограниченной ответственностью "Тюменский институт нефти и газа" Method for determination of current oil saturation of developed reservoir in working intervals of well with subsequent recovery of field of current oil saturation
CN116072232B (en) * 2021-12-29 2024-03-19 中国石油天然气集团有限公司 Method, device, equipment and storage medium for determining relative permeability curve

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2043495C1 (en) * 1994-03-01 1995-09-10 Добрынин Валерий Макарович Method for determination of rock oil saturation
US6691037B1 (en) * 2002-12-12 2004-02-10 Schlumberger Technology Corporation Log permeability model calibration using reservoir fluid flow measurements
RU2219337C1 (en) * 2003-03-20 2003-12-20 Афанасьев Виталий Сергеевич Method establishing geological properties of terrigenous rock in space near hole by data of geophysical examinations of sections of holes
RU2232409C1 (en) * 2003-03-24 2004-07-10 Общество с ограниченной ответственностью "Союзпромгеофизика" Method and apparatus for determining of current oil and gas saturation of collectors in cased wells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109944575A (en) * 2019-03-29 2019-06-28 中国石油大学(华东) A kind of oilfields in high water cut period injection water quality decision-making technique based on water quality sensibility
CN113552036A (en) * 2020-04-26 2021-10-26 中国石油天然气股份有限公司 Method and device for determining oil-water relative permeability of medium-low pore permeability reservoir

Also Published As

Publication number Publication date
WO2013151455A1 (en) 2013-10-10
RU2505676C2 (en) 2014-01-27

Similar Documents

Publication Publication Date Title
RU2012113376A (en) METHOD FOR DETERMINING WATERFILL RATE AND COMPOSITION OF OIL WELL
CN106814393B (en) A kind of evaluation method of stratum quality factor q
Legiret et al. A high performance microfluidic analyser for phosphate measurements in marine waters using the vanadomolybdate method
CN104453874A (en) Glutenite reservoir oil saturation calculation method based on nuclear magnetic resonance
CN103225500A (en) Novel water flooding layer logging evaluation method applying three parameters self-consistent iterative algorithm
CN101929973A (en) Quantitative calculation method for hydrocarbon saturation of fractured reservoir
CN104806232B (en) A kind of method for determining porosity lower limit of fracture
CN101725344A (en) Method for determining litho-electric parameters
US20170122891A1 (en) Methods for determining oil and water compositions in drilling muds
RU2012134631A (en) UPDATED MEASUREMENTS OF POROSITY OF UNDERGROUND LAYERS
CN104564042A (en) Method for evaluating brittleness of shale reservoir
US10534055B2 (en) NMR method for determining non-oil volume of a rock sample
RU2015102145A (en) SATURATION ASSESSMENT USING mCSEM DATA AND STOCHASTIC PETROPHYSICAL SIMULATION
WO2009120816A3 (en) Determination of irreducible water cut-off using two dimensional nuclear magnetic resonance data
CN105401937A (en) Saturation index prediction method based on pore structure
RU2013145881A (en) MAXIMUM DEPTH OF RESEARCH MEASUREMENTS IN UNDERGROUND FORMATION
Lessenger et al. Subsurface fluid characterization using downhole and core NMR T1T2 maps combined with pore-scale imaging techniques
CN103197348B (en) Method using internal samples at reservoirs to carry out weighting and compile logging crossplot
CN105093340A (en) Method and device for acquiring moveable water volume in coal seam
RU2577865C1 (en) Method of indicating investigation of wells and interwell space
Grant The impact of low frequency models on reservoir property predictions
RU2479714C1 (en) Method for obtaining three-dimensional distribution of formation permeability
CN104675391B (en) The method for calculating stratum oil saturation
CN106837318B (en) Method and device for obtaining rock stratum thick oil content
CN104122182A (en) Method for obtaining effective thickness lower limit of mine reservoir

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150407