RU2012103008A - METHOD OF OPERATION OF THE HEAT EXCHANGER UNIT FOR PRE-CRITICAL AND TRANSCRITICAL STATE AND THE HEAT EXCHANGER UNIT - Google Patents

METHOD OF OPERATION OF THE HEAT EXCHANGER UNIT FOR PRE-CRITICAL AND TRANSCRITICAL STATE AND THE HEAT EXCHANGER UNIT Download PDF

Info

Publication number
RU2012103008A
RU2012103008A RU2012103008/06A RU2012103008A RU2012103008A RU 2012103008 A RU2012103008 A RU 2012103008A RU 2012103008/06 A RU2012103008/06 A RU 2012103008/06A RU 2012103008 A RU2012103008 A RU 2012103008A RU 2012103008 A RU2012103008 A RU 2012103008A
Authority
RU
Russia
Prior art keywords
heat exchanger
heat exchangers
heat
channel
parallel
Prior art date
Application number
RU2012103008/06A
Other languages
Russian (ru)
Inventor
Рольф КРИСТЕНСЕН
Original Assignee
Альфа Лаваль Корпорейт Аб
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Альфа Лаваль Корпорейт Аб filed Critical Альфа Лаваль Корпорейт Аб
Publication of RU2012103008A publication Critical patent/RU2012103008A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • External Artificial Organs (AREA)

Abstract

1. Способ эксплуатации узла (1) теплообменников (2) для докритического и транскритического состояний посредством изначального расположения по меньшей мере двух теплообменников (2) параллельно для докритического состояния, отличающийся тем,что располагают по меньшей мере один теплообменник (2) при транскритическом состоянии последовательно с другими теплообменниками и располагают вход (А) и выход (В) у противоположных концов узла (1), и переключают теплообменники (2) между расположением параллельно и расположением последовательно посредством закрывания первого трубопровода (4), соединяющего упомянутый вход (А) с первым каналом (5) каждого теплообменника (2), после первого теплообменника (2) и между каждым вторым теплообменником (2), и второго трубопровода (6), соединяющего упомянутый выход (В) со вторым каналом (7) каждого теплообменника (2), между другими теплообменниками.2. Способ по п.1, в котором обеспечивают упомянутые теплообменники (2) двойным контуром для теплопередачи между двумя, по существу, жидкими средами, такими как хладагент и рассол, отличающийся тем, что переключают каждый контур между расположением параллельно и расположением последовательно.3. Способ по любому из пп.1 или 2, отличающийся тем, что располагают все теплообменники (2) последовательно при транскритическом состоянии.4. Узел (1) теплообменников (2), имеющий вход (А) и выход (В) у противоположных концов узла (1), первый трубопровод (4), присоединенный к упомянутому входу (А) и первому каналу (5) каждого теплообменника (2), и второй трубопровод (6), присоединенный к упомянутому выходу (В) и второму каналу (7) каждого теплообменника (2), отличающийся тем, что клапан (3)1. A method of operating a unit (1) of heat exchangers (2) for subcritical and transcritical states by means of the initial arrangement of at least two heat exchangers (2) in parallel for a subcritical state, characterized in that at least one heat exchanger (2) is arranged in series in a transcritical state with other heat exchangers and have an inlet (A) and an outlet (B) at opposite ends of the unit (1), and switch the heat exchangers (2) between parallel arrangement and sequential arrangement by closing the first pipeline (4) connecting said inlet (A) with the first channel (5) of each heat exchanger (2), after the first heat exchanger (2) and between each second heat exchanger (2), and a second pipeline (6) connecting said outlet (B) with the second channel (7) of each heat exchanger (2), between other heat exchangers. 2. A method according to claim 1, wherein said heat exchangers (2) are provided with a double loop for transferring heat between two substantially liquid media, such as refrigerant and brine, wherein each loop is switched between parallel and sequential. A method according to any one of claims 1 or 2, characterized in that all heat exchangers (2) are arranged in series in a transcritical state. Unit (1) of heat exchangers (2), having an inlet (A) and an outlet (B) at the opposite ends of the unit (1), the first pipeline (4) connected to the said inlet (A) and the first channel (5) of each heat exchanger (2 ), and the second pipeline (6) connected to the said outlet (B) and the second channel (7) of each heat exchanger (2), characterized in that the valve (3)

Claims (4)

1. Способ эксплуатации узла (1) теплообменников (2) для докритического и транскритического состояний посредством изначального расположения по меньшей мере двух теплообменников (2) параллельно для докритического состояния, отличающийся тем, что располагают по меньшей мере один теплообменник (2) при транскритическом состоянии последовательно с другими теплообменниками и располагают вход (А) и выход (В) у противоположных концов узла (1), и переключают теплообменники (2) между расположением параллельно и расположением последовательно посредством закрывания первого трубопровода (4), соединяющего упомянутый вход (А) с первым каналом (5) каждого теплообменника (2), после первого теплообменника (2) и между каждым вторым теплообменником (2), и второго трубопровода (6), соединяющего упомянутый выход (В) со вторым каналом (7) каждого теплообменника (2), между другими теплообменниками.1. The method of operation of the node (1) of the heat exchangers (2) for subcritical and transcritical states by initially arranging at least two heat exchangers (2) in parallel for the subcritical state, characterized in that at least one heat exchanger (2) is arranged in a transcritical state in series with other heat exchangers and the input (A) and output (B) are located at the opposite ends of the assembly (1), and the heat exchangers (2) are switched between the arrangement in parallel and the arrangement in series by closing the first pipe (4) connecting said inlet (A) with the first channel (5) of each heat exchanger (2), after the first heat exchanger (2) and between each second heat exchanger (2), and the second pipe (6) connecting output (B) with a second channel (7) of each heat exchanger (2), between other heat exchangers. 2. Способ по п.1, в котором обеспечивают упомянутые теплообменники (2) двойным контуром для теплопередачи между двумя, по существу, жидкими средами, такими как хладагент и рассол, отличающийся тем, что переключают каждый контур между расположением параллельно и расположением последовательно.2. The method according to claim 1, wherein said heat exchangers (2) are provided with a double circuit for heat transfer between two essentially liquid media, such as refrigerant and brine, characterized in that each circuit is switched between the arrangement in parallel and the arrangement in series. 3. Способ по любому из пп.1 или 2, отличающийся тем, что располагают все теплообменники (2) последовательно при транскритическом состоянии.3. The method according to any one of claims 1 or 2, characterized in that all the heat exchangers (2) are arranged in series with a transcritical state. 4. Узел (1) теплообменников (2), имеющий вход (А) и выход (В) у противоположных концов узла (1), первый трубопровод (4), присоединенный к упомянутому входу (А) и первому каналу (5) каждого теплообменника (2), и второй трубопровод (6), присоединенный к упомянутому выходу (В) и второму каналу (7) каждого теплообменника (2), отличающийся тем, что клапан (3) расположен в первом трубопроводе (4) после первого теплообменника (2) и между каждым вторым теплообменником (2) и во втором трубопроводе (6) между другими теплообменниками (2), причем теплообменники (2) расположены параллельно, имея все клапаны (3) в открытом положении, и последовательно, имея все клапаны (3) в закрытом положении. 4. The node (1) of the heat exchangers (2) having an input (A) and an output (B) at the opposite ends of the node (1), a first pipe (4) connected to the said input (A) and the first channel (5) of each heat exchanger (2), and a second pipe (6) connected to said outlet (B) and a second channel (7) of each heat exchanger (2), characterized in that the valve (3) is located in the first pipe (4) after the first heat exchanger (2 ) and between each second heat exchanger (2) and in the second pipeline (6) between other heat exchangers (2), moreover, heat exchangers (2) are located in parallel, having all the valves (3) in the open position, and sequentially, having all the valves (3) in the closed position.
RU2012103008/06A 2009-06-30 2010-06-23 METHOD OF OPERATION OF THE HEAT EXCHANGER UNIT FOR PRE-CRITICAL AND TRANSCRITICAL STATE AND THE HEAT EXCHANGER UNIT RU2012103008A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE0950507-4 2009-06-30
SE0950507A SE533859C2 (en) 2009-06-30 2009-06-30 Method for operating a system of heat exchangers for subcritical and transcritical states, as well as a system of heat exchangers
PCT/SE2010/050717 WO2011002401A2 (en) 2009-06-30 2010-06-23 Method of operating an assembly of heat exchangers for subcritical and transcritical conditions, and an assembly of heat exchangers

Publications (1)

Publication Number Publication Date
RU2012103008A true RU2012103008A (en) 2013-08-10

Family

ID=43411645

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012103008/06A RU2012103008A (en) 2009-06-30 2010-06-23 METHOD OF OPERATION OF THE HEAT EXCHANGER UNIT FOR PRE-CRITICAL AND TRANSCRITICAL STATE AND THE HEAT EXCHANGER UNIT

Country Status (9)

Country Link
US (1) US20120132399A1 (en)
EP (1) EP2449330A2 (en)
JP (1) JP2012532303A (en)
KR (1) KR20120036899A (en)
CN (1) CN102472588A (en)
CA (1) CA2765853A1 (en)
RU (1) RU2012103008A (en)
SE (1) SE533859C2 (en)
WO (1) WO2011002401A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013160929A1 (en) * 2012-04-23 2013-10-31 三菱電機株式会社 Refrigeration cycle system
CN107631512A (en) * 2017-09-04 2018-01-26 广东美的暖通设备有限公司 Multiple on-line system
CN111336707B (en) * 2020-02-29 2021-09-03 同济大学 Carbon dioxide heat pump heating system with topologic homoembryo circulation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170081A (en) * 1996-12-11 1998-06-26 Toshiba Corp Air conditioner
JPH10267494A (en) * 1997-03-25 1998-10-09 Mitsubishi Electric Corp Cooler
JP2006097978A (en) * 2004-09-29 2006-04-13 Denso Corp Refrigerating cycle
EP1859208A1 (en) * 2005-03-14 2007-11-28 York International Corporation Hvac system with powered subcooler
KR100865093B1 (en) * 2007-07-23 2008-10-24 엘지전자 주식회사 Air conditioning system

Also Published As

Publication number Publication date
JP2012532303A (en) 2012-12-13
WO2011002401A2 (en) 2011-01-06
EP2449330A2 (en) 2012-05-09
KR20120036899A (en) 2012-04-18
WO2011002401A3 (en) 2011-06-09
CA2765853A1 (en) 2011-01-06
SE0950507A1 (en) 2010-12-31
CN102472588A (en) 2012-05-23
SE533859C2 (en) 2011-02-08
US20120132399A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
CN101529169B (en) Heat source unit for refrigerating apparatus, and refrigerating apparatus
CN101395435B (en) Refrigerating apparatus
CN107429577B (en) Supercritical carbon dioxide power generation Brayton Cycle system and method
CN107477824B (en) Mode converter, heat recovery multi-split air conditioning system and control method
RU2012103008A (en) METHOD OF OPERATION OF THE HEAT EXCHANGER UNIT FOR PRE-CRITICAL AND TRANSCRITICAL STATE AND THE HEAT EXCHANGER UNIT
CN110023697B (en) Hybrid thermal device
CN202792787U (en) Refrigerating circuit of refrigerator with heating function
RU2016116778A (en) IMPROVED CONTROL CONCEPT FOR A CLOSED CIRCUIT WITH A BRIGHTON CYCLE
US9581359B2 (en) Regenerative air-conditioning apparatus
US20110000225A1 (en) Double inlet type pulse tube refrigerator
JP2015102311A (en) Air conditioner
EP3228954A3 (en) Cooling apparatus
WO2019093420A1 (en) Heat pump
KR101461519B1 (en) Duality Cold Cycle Heat pump system of Control method
WO2020239020A1 (en) Thermal heat pump hydraulic system
CN211233445U (en) Direct-current variable-frequency carbon dioxide heat pump cold and hot unit
CN104121721B (en) Single-and-double-stage switchable heat pump
CN210425634U (en) Intelligent low-temperature enhanced vapor injection air source heat pump
JP2012127520A (en) Refrigeration cycle device
RU2015116267A (en) COIL HEAT EXCHANGER WITH MANY ENTRIES AND METHOD FOR HARMONIZING THE HEATING EXCHANGE SURFACE
CN108317762B (en) Visual comprehensive experiment table of multifunctional direct contact condensation refrigerating system
RU2007130585A (en) ECONOMIZER REFRIGERATOR (OPTIONS)
JP4075072B2 (en) Heat pump circuit for air conditioning
CN110645736A (en) Direct-current variable-frequency carbon dioxide heat pump cold and hot unit
JP2014224644A (en) Heat pump device

Legal Events

Date Code Title Description
FA94 Acknowledgement of application withdrawn (non-payment of fees)

Effective date: 20140114