RU2010143983A - IMPROVEMENT OF OPERATIONAL CHARACTERISTICS OF THE EVAPORATIVE COOLER BY RECOVERABLE COOLING - Google Patents

IMPROVEMENT OF OPERATIONAL CHARACTERISTICS OF THE EVAPORATIVE COOLER BY RECOVERABLE COOLING Download PDF

Info

Publication number
RU2010143983A
RU2010143983A RU2010143983/06A RU2010143983A RU2010143983A RU 2010143983 A RU2010143983 A RU 2010143983A RU 2010143983/06 A RU2010143983/06 A RU 2010143983/06A RU 2010143983 A RU2010143983 A RU 2010143983A RU 2010143983 A RU2010143983 A RU 2010143983A
Authority
RU
Russia
Prior art keywords
stream
heat
water
air
heat exchange
Prior art date
Application number
RU2010143983/06A
Other languages
Russian (ru)
Inventor
Джаррелл УЕНГЕР (US)
Джаррелл УЕНГЕР
Original Assignee
Джаррелл УЕНГЕР (US)
Джаррелл УЕНГЕР
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Джаррелл УЕНГЕР (US), Джаррелл УЕНГЕР filed Critical Джаррелл УЕНГЕР (US)
Publication of RU2010143983A publication Critical patent/RU2010143983A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/06Direct-contact trickle coolers, e.g. cooling towers with both counter-current and cross-current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/14Direct-contact trickle coolers, e.g. cooling towers comprising also a non-direct contact heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

1. Способ усовершенствования испарительной градирни, которая содержит поток воды, впуск для приема струи входящего окружающего воздуха, так что указанный поток воды охлаждают путем его подвергания воздействию струи входящего окружающего воздуха и частичного испарения, и выпуск для струи выходящего воздуха и испаренной части потока воды, переносимой струей выходящего воздуха, причем указанный способ включает: ! a) использование замкнутой теплообменной системы, которая имеет участок сброса тепла и теплопоглощающий участок, ! b) подвергание указанного участка сброса тепла воздействию струи выходящего воздуха и указанной испаренной части воды, ! c) подвергание указанного теплопоглощающего участка воздействию струи входящего окружающего воздуха, в результате чего происходит передача тепла к струе выходящего воздуха и охлаждение потока входящего окружающего воздуха при помощи указанной замкнутой теплообменной системы со снижением его температуры по смоченному термометру и повышением способности градирни охлаждать указанный поток воды. ! 2. Способ по п.1, в котором замкнутую теплообменную систему выбирают из группы теплообменных систем, в которую входят термосифон, тепловая труба, контур с нагнетаемой текучей средой, теплообменник с параллельными пластинами и вращающийся теплообменник. ! 3. Способ по п.1, в котором замкнутая теплообменная система представляет собой тепловую трубу. ! 4. Способ по п.1, в котором вода может быть охлаждена до температуры ниже температуры по смоченному термометру окружающего воздуха на впуске. ! 5. Способ по п.1, в котором вода может быть охлаждена до температуры, приближающейся к � 1. A method of improving an evaporative cooling tower, which comprises a water flow, an inlet for receiving a stream of incoming ambient air such that said water stream is cooled by subjecting it to a stream of incoming ambient air and partial evaporation, and an outlet for a stream of outgoing air and the evaporated portion of the water stream, carried by a stream of outgoing air, and the specified method includes:! a) the use of a closed heat exchange system, which has a heat release section and a heat absorbing section,! b) expose the specified heat release area to the jet of exhaust air and the specified evaporated portion of the water,! c) subjecting said heat-absorbing portion to a stream of incoming ambient air, thereby transferring heat to the stream of outgoing air and cooling the stream of incoming ambient air using said closed heat exchange system to lower its wet-bulb temperature and increase the cooling tower's ability to cool said stream of water. ! 2. The method of claim 1, wherein the closed heat exchange system is selected from the group of heat exchange systems comprising a thermosyphon, a heat pipe, a pumped fluid circuit, a parallel plate heat exchanger, and a rotary heat exchanger. ! 3. The method of claim 1, wherein the closed-loop heat exchange system is a heat pipe. ! 4. The method of claim 1, wherein the water can be cooled to a temperature below the ambient inlet wet bulb temperature. ! 5. The method according to claim 1, in which the water can be cooled to a temperature approaching �

Claims (11)

1. Способ усовершенствования испарительной градирни, которая содержит поток воды, впуск для приема струи входящего окружающего воздуха, так что указанный поток воды охлаждают путем его подвергания воздействию струи входящего окружающего воздуха и частичного испарения, и выпуск для струи выходящего воздуха и испаренной части потока воды, переносимой струей выходящего воздуха, причем указанный способ включает:1. A method of improving an evaporative cooling tower that contains a stream of water, an inlet for receiving a stream of incoming ambient air, so that said stream of water is cooled by exposing it to a stream of incoming ambient air and partial evaporation, and discharging a stream of outgoing air and an evaporated part of the stream of water, a portable jet of exhaust air, and the specified method includes: a) использование замкнутой теплообменной системы, которая имеет участок сброса тепла и теплопоглощающий участок,a) the use of a closed heat exchange system that has a heat removal section and a heat absorbing section, b) подвергание указанного участка сброса тепла воздействию струи выходящего воздуха и указанной испаренной части воды,b) exposing said heat discharge section to a jet of exhaust air and said evaporated portion of water, c) подвергание указанного теплопоглощающего участка воздействию струи входящего окружающего воздуха, в результате чего происходит передача тепла к струе выходящего воздуха и охлаждение потока входящего окружающего воздуха при помощи указанной замкнутой теплообменной системы со снижением его температуры по смоченному термометру и повышением способности градирни охлаждать указанный поток воды.c) exposing said heat-absorbing portion to a stream of incoming ambient air, which results in heat transfer to the stream of outgoing air and cooling of the incoming ambient air stream using said closed heat exchange system, reducing its temperature through a wet thermometer and increasing the cooling tower's ability to cool said water stream. 2. Способ по п.1, в котором замкнутую теплообменную систему выбирают из группы теплообменных систем, в которую входят термосифон, тепловая труба, контур с нагнетаемой текучей средой, теплообменник с параллельными пластинами и вращающийся теплообменник.2. The method according to claim 1, in which the closed heat exchange system is selected from the group of heat exchange systems, which include a thermosyphon, heat pipe, a circuit with a pumped fluid, a heat exchanger with parallel plates and a rotating heat exchanger. 3. Способ по п.1, в котором замкнутая теплообменная система представляет собой тепловую трубу.3. The method according to claim 1, in which the closed heat exchange system is a heat pipe. 4. Способ по п.1, в котором вода может быть охлаждена до температуры ниже температуры по смоченному термометру окружающего воздуха на впуске.4. The method according to claim 1, in which the water can be cooled to a temperature below the temperature of the wetted ambient air thermometer at the inlet. 5. Способ по п.1, в котором вода может быть охлаждена до температуры, приближающейся к температуре конденсации окружающего воздуха на впуске.5. The method according to claim 1, in which the water can be cooled to a temperature approaching the condensation temperature of the ambient air at the inlet. 6. Способ по п.1, в котором выпуск располагают выше впуска.6. The method according to claim 1, in which the release is located above the inlet. 7. Способ по п.6, в котором замкнутая теплообменная система представляет собой тепловую трубу или термосифон.7. The method according to claim 6, in which the closed heat exchange system is a heat pipe or thermosiphon. 8. Способ по п.1, в котором замкнутая теплообменная система представляет собой вращающийся теплообменник.8. The method according to claim 1, in which the closed heat exchange system is a rotating heat exchanger. 9. Способ охлаждения подаваемой воды в ходе технологического процесса при заданной нагрузке и температуре, включающий использование водоиспарительной градирни, которая содержит впуск для окружающего воздуха, предназначенный для приема струи воздуха из атмосферы, выпуск для выхода струи воздуха из градирни, и подаваемую воду, охлаждаемую испарением вследствие прохождения струи воздуха от указанного впуска к выпуску с передачей тепла от холодильной нагрузки к струе выходящего воздуха, использование замкнутой теплообменной системы, которая содержит теплопоглощающий участок и участок сброса тепла, расположение указанного теплопоглощающего участка в струе входящего окружающего воздуха и расположение указанного участка сброса тепла в струе выходящего воздуха, в результате чего температура по сухому термометру струи выходящего воздуха ниже температуры по сухому термометру струи входящего воздуха, так что тепло передается от струи входящего воздуха к струе выходящего воздуха с понижением температуры указанной струи входящего воздуха по сухому и смоченному термометру, вследствие чего поток воздушной струи уменьшается с обеспечением удовлетворения заданных требований по нагрузке и температуре, при этом объем воды, испаряемой из подаваемой воды, уменьшается по сравнению с идентичной градирней, не содержащей замкнутой теплообменной системы.9. A method of cooling the supplied water during the process at a given load and temperature, including the use of a water-vapor cooling tower, which contains an inlet for ambient air, designed to receive a stream of air from the atmosphere, an outlet for the exit of a stream of air from the tower, and the supplied water cooled by evaporation due to the passage of an air stream from the specified inlet to the outlet with heat transfer from the refrigeration load to the exhaust air stream, the use of a closed heat exchange system, cat The hot one contains a heat-absorbing section and a heat-discharge section, the location of the indicated heat-absorbing section in the incoming air stream and the location of the indicated heat-discharge section in the exhaust air stream, as a result of which the temperature of the dry air stream of the exhaust air is lower than the temperature of the dry thermometer of the incoming air stream, so that heat is transferred from the incoming air stream to the exhaust air stream with decreasing temperature of the specified incoming air stream through a dry and moistened thermometer Whereby the air stream flow is reduced to satisfy the predetermined software load and temperature requirements, and the amount of water evaporated from the water supplied is reduced as compared with an identical cooling tower without having a closed heat exchange system. 10. Способ по п.9, в котором холодильная нагрузка представляет собой холодильную систему, конденсатор энергоустановки, производственный процесс или помещение здания.10. The method according to claim 9, in which the refrigeration load is a refrigeration system, a power plant condenser, a manufacturing process or a building premises. 11. Способ по п.9, в котором замкнутая теплообменная система содержит один элемент, выбираемый из группы, в которую входят тепловые трубы, термосифоны, вращающиеся теплообменники, теплообменники с параллельными пластинами и контуры с нагнетаемой текучей средой. 11. The method according to claim 9, in which the closed heat exchange system contains one element selected from the group consisting of heat pipes, thermosyphons, rotary heat exchangers, heat exchangers with parallel plates and circuits with injected fluid.
RU2010143983/06A 2008-04-18 2009-04-18 IMPROVEMENT OF OPERATIONAL CHARACTERISTICS OF THE EVAPORATIVE COOLER BY RECOVERABLE COOLING RU2010143983A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4603608P 2008-04-18 2008-04-18
US61/046,036 2008-04-18

Publications (1)

Publication Number Publication Date
RU2010143983A true RU2010143983A (en) 2012-05-27

Family

ID=41199486

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010143983/06A RU2010143983A (en) 2008-04-18 2009-04-18 IMPROVEMENT OF OPERATIONAL CHARACTERISTICS OF THE EVAPORATIVE COOLER BY RECOVERABLE COOLING

Country Status (8)

Country Link
US (1) US20110174003A1 (en)
EP (1) EP2279386A1 (en)
KR (1) KR20110021783A (en)
CN (1) CN102057243A (en)
AU (1) AU2009237550A1 (en)
IL (1) IL208764A0 (en)
RU (1) RU2010143983A (en)
WO (1) WO2009129517A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080898A (en) * 2011-02-22 2011-06-01 王红斌 Lithium bromide absorbing evaporative condensing water chilling unit
KR101250050B1 (en) * 2011-04-27 2013-04-02 주식회사 경동나비엔 Apparatus and method for evaporative cooling of coolant
BR112014000875A2 (en) * 2011-07-15 2017-02-21 Univ Stellenbosch splash grilles and liquid cooling installation
US8899061B2 (en) * 2011-09-23 2014-12-02 R4 Ventures, Llc Advanced multi-purpose, multi-stage evaporative cold water/cold air generating and supply system
CN103376007A (en) * 2012-04-28 2013-10-30 朱杰 Heat pipe negative-pressure cooling tower
EP2848101B1 (en) 2012-05-07 2019-04-10 Phononic Devices, Inc. Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance
US20130291555A1 (en) 2012-05-07 2013-11-07 Phononic Devices, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
US9057564B2 (en) * 2012-12-17 2015-06-16 Baltimore Aircoil Company, Inc. Cooling tower with indirect heat exchanger
RU2522135C1 (en) * 2012-12-26 2014-07-10 Валерий Леонидович ОСТРОВСКИЙ Fan cooling tower
US9255739B2 (en) * 2013-03-15 2016-02-09 Baltimore Aircoil Company, Inc. Cooling tower with indirect heat exchanger
US9279619B2 (en) 2013-03-15 2016-03-08 Baltimore Aircoil Company Inc. Cooling tower with indirect heat exchanger
US9174164B2 (en) 2013-12-30 2015-11-03 Gas Technology Institute Apparatus for dehumidifying gas and methods of use
EP3158271B1 (en) 2014-06-20 2021-09-22 Nortek Air Solutions Canada, Inc. Systems and methods for managing conditions in enclosed space
SG11201608831YA (en) * 2014-06-26 2017-01-27 Exxonmobil Upstream Res Co Pre-cooler for air-cooled heat exchangers
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
US9593871B2 (en) 2014-07-21 2017-03-14 Phononic Devices, Inc. Systems and methods for operating a thermoelectric module to increase efficiency
CN104596182A (en) * 2015-02-05 2015-05-06 福建德兴节能科技有限公司 Low-energy-consumption circulating water cooling system and method
AU2016265882A1 (en) 2015-05-15 2018-01-18 Nortek Air Solutions Canada, Inc. Using liquid to air membrane energy exchanger for liquid cooling
JP2018526611A (en) * 2015-09-10 2018-09-13 マンターズ コーポレイションMunters Corporation Method and apparatus for minimizing water using an evaporative cooling device
US9976810B2 (en) * 2015-10-01 2018-05-22 Pacific Airwell Corp. Water recovery from cooling tower exhaust
US10834855B2 (en) 2016-01-08 2020-11-10 Nortek Air Solutions Canada, Inc. Integrated make-up air system in 100% air recirculation system
US10287037B2 (en) * 2016-03-31 2019-05-14 Oceaneering International, Inc. Membrane microgravity air conditoner
AU2017262640B2 (en) 2016-05-09 2022-09-15 Munters Corporation Direct evaporative cooling system with precise temperature control
CN107166582B (en) * 2017-05-11 2019-05-24 珠海格力电器股份有限公司 Air conditioning cooling water system, air-conditioning system and air conditioning cooling water system control method
CN108800980A (en) * 2018-06-05 2018-11-13 上海伏波环保设备有限公司 A kind of power plant's humidification type double-curve cooling column
CN109163576B (en) * 2018-07-23 2020-05-29 华信咨询设计研究院有限公司 Anti-freezing energy-saving heat pipe cooling system and control method thereof
US11300372B2 (en) 2018-08-09 2022-04-12 Multi-Chem Group, Llc System for hydrogen detection in cooling towers
CN109764435A (en) * 2018-12-20 2019-05-17 陕西优斯达环境科技有限公司 A kind of cooling water cooler cooling system of the evaporation with cold recovery
US11585576B2 (en) 2019-05-17 2023-02-21 Gas Technology Institute Cooling system
KR102286561B1 (en) * 2021-02-02 2021-08-06 (주)풍천엔지니어링 Counter Flow type Foced draft cooling tower to reduce plume and ice generation
KR102273532B1 (en) * 2021-02-02 2021-07-07 (주)풍천엔지니어링 Counter Flow type induced draft cooling tower to reduce plume and ice generation
CN114573061B (en) * 2022-02-28 2023-08-15 中国水利水电科学研究院 External desulfurization waste liquid treatment system based on natural ventilation wet cooling tower
CN115264561A (en) * 2022-07-29 2022-11-01 湖南东尤水汽能节能有限公司 Atmospheric heat exchange type water vapor energy heat pump air conditioning device

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1943116A (en) * 1932-03-14 1934-01-09 Henry O Forrest Refrigerating system
US2214880A (en) * 1933-01-25 1940-09-17 Robert B P Crawford Regenerative cooling system
US4023949A (en) * 1975-08-04 1977-05-17 Schlom Leslie A Evaporative refrigeration system
SE420764B (en) * 1977-09-22 1981-10-26 Munters Ab Carl DEVICE FOR AN EVAPORATIVE COOLER
US4380910A (en) * 1981-08-13 1983-04-26 Aztech International, Ltd. Multi-stage indirect-direct evaporative cooling process and apparatus
US4476065A (en) * 1983-04-20 1984-10-09 Niagara Blower Co. Increased capacity wet surface air cooling system
US4713943A (en) * 1983-11-09 1987-12-22 Wainwright Christopher E Evaporative cooler including an air-to-air counter-flow heat exchanger having a reverse temperature profile
US4660390A (en) * 1986-03-25 1987-04-28 Worthington Mark N Air conditioner with three stages of indirect regeneration
US4938035A (en) * 1987-10-20 1990-07-03 Khanh Dinh Regenerative fresh-air air conditioning system and method
US4827733A (en) * 1987-10-20 1989-05-09 Dinh Company Inc. Indirect evaporative cooling system
US4857090A (en) * 1988-02-23 1989-08-15 Pneumafil Corporation Energy conservation system for cooling and conditioning air
US4928657A (en) * 1989-03-02 1990-05-29 Walbro Corporation In-tank fuel reservoir with fuel level sensor
US4926657A (en) * 1989-06-30 1990-05-22 Bomar Elmer B Heat pipe assisted evaporative cooler
US5349829A (en) * 1992-05-21 1994-09-27 Aoc, Inc. Method and apparatus for evaporatively cooling gases and/or fluids
FI96797C (en) * 1993-08-10 1999-01-19 Abb Installaatiot Oy System for cooling the supply air in an air conditioner
US7231967B2 (en) * 1994-01-31 2007-06-19 Building Performance Equipment, Inc. Ventilator system and method
AUPM755094A0 (en) * 1994-08-18 1994-09-08 F F Seeley Nominees Pty Ltd Intensification of evaporation and heat transfer
US5921315A (en) * 1995-06-07 1999-07-13 Heat Pipe Technology, Inc. Three-dimensional heat pipe
US5727394A (en) * 1996-02-12 1998-03-17 Laroche Industries, Inc. Air conditioning system having improved indirect evaporative cooler
IT1295160B1 (en) * 1997-07-02 1999-04-30 Enrico Medessi UNIVERSAL EQUIPMENT FOR THE RECOVERY OF THE COOLANT IN HEAT EXCHANGE CIRCUITS
US6394174B1 (en) * 1999-01-29 2002-05-28 Taiwan Semiconductor Manufacturing Company, Ltd System for reclaiming process water
US6434963B1 (en) * 1999-10-26 2002-08-20 John Francis Urch Air cooling/heating apparatus
DE60135308D1 (en) * 2000-02-23 2008-09-25 Schlom Leslie HEAT EXCHANGER FOR COOLING AND USE IN THE PRE-COOLER OF TURBINE AIR PREPARATION
DE50005090D1 (en) * 2000-06-28 2004-02-26 Balcke Duerr Gmbh cooling tower
US7197887B2 (en) * 2000-09-27 2007-04-03 Idalex Technologies, Inc. Method and plate apparatus for dew point evaporative cooler
KR100409265B1 (en) * 2001-01-17 2003-12-18 한국과학기술연구원 Regenerative evaporative cooler
US6779784B2 (en) * 2001-11-02 2004-08-24 Marley Cooling Technologies, Inc. Cooling tower method and apparatus
US6845629B1 (en) * 2003-07-23 2005-01-25 Davis Energy Group, Inc. Vertical counterflow evaporative cooler
US7322205B2 (en) * 2003-09-12 2008-01-29 Davis Energy Group, Inc. Hydronic rooftop cooling systems
KR100607204B1 (en) * 2004-06-18 2006-08-01 (주) 위젠글로벌 Method for evaporative cooling of coolant and apparatus thereof
US7698906B2 (en) * 2005-12-30 2010-04-20 Nexajoule, Inc. Sub-wet bulb evaporative chiller with pre-cooling of incoming air flow
US7510174B2 (en) * 2006-04-14 2009-03-31 Kammerzell Larry L Dew point cooling tower, adhesive bonded heat exchanger, and other heat transfer apparatus
DK2032907T3 (en) * 2006-06-01 2018-07-02 Google Llc Hot cooling for electronics
US20080173032A1 (en) * 2007-01-18 2008-07-24 Az Evap, Llc Evaporative Cooler With Dual Water Inflow
BRPI0810346A2 (en) * 2007-05-09 2014-10-14 Mcnnnac Energy Services Inc "COOLING SYSTEM"

Also Published As

Publication number Publication date
WO2009129517A1 (en) 2009-10-22
IL208764A0 (en) 2010-12-30
KR20110021783A (en) 2011-03-04
US20110174003A1 (en) 2011-07-21
AU2009237550A1 (en) 2009-10-22
EP2279386A1 (en) 2011-02-02
CN102057243A (en) 2011-05-11

Similar Documents

Publication Publication Date Title
RU2010143983A (en) IMPROVEMENT OF OPERATIONAL CHARACTERISTICS OF THE EVAPORATIVE COOLER BY RECOVERABLE COOLING
EP2863162B1 (en) Air-to-air heat exchanger bypass for wet cooling tower apparatus and method
US8622372B2 (en) Fan cooling tower design and method
BRPI0601582A (en) high temperature fuel cell system with integrated heat exchanger network
EA028070B1 (en) Cooling system with a condensate polishing unit
WO2018000773A1 (en) Air-cooled heat-sink open/close switchable hybrid air-cooled/cold-water cooling tower and manner of operation thereof
CN101776400A (en) Forced-draft direct water film evaporative air-cooling condensor system
CN107388552A (en) A kind of indoor condensing hot air furnace and secondary cooling spray system
WO2016029067A1 (en) Combined hot water and air heating and conditioning system including heat pump
Ma et al. Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants-A review and perspective study
CN105258528A (en) Efficient composite steam condensation system
CN101776401A (en) Air-cooled steam condensing system with natural ventilation and direct water film evaporation
JP4247698B2 (en) Cooling system
WO2018000774A1 (en) Opening and closing switchable air-cooled cool water-type machine cooling tower for air-cooled radiator and operating mode of same
RU2735042C1 (en) Condensation heat recovery unit
CN214470181U (en) Intercooling auxiliary engine circulating water pump system
CN103267426B (en) Water-saving rime fog removal device for evaporative-type cooling condenser
CA2890696C (en) Air-to-air heat exchanger bypass for wet cooling tower apparatus and method
CN203385310U (en) Water-saving rime fog removal device for evaporation condenser
CN201569342U (en) Novel indirect evaporative cooler
RU51715U1 (en) EXHAUST AIR HEAT DISPOSAL DEVICE
KR20160133980A (en) Air-to-air heat exchanger bypass for wet cooling tower apparatus and method
CN207317573U (en) Cooling tower
JPS5765525A (en) Air conditioner
RU2647815C2 (en) Air conditioning system

Legal Events

Date Code Title Description
FA93 Acknowledgement of application withdrawn (no request for examination)

Effective date: 20120419