RU2008752C1 - Устройство возбуждения газового лазера - Google Patents

Устройство возбуждения газового лазера Download PDF

Info

Publication number
RU2008752C1
RU2008752C1 SU4868918A RU2008752C1 RU 2008752 C1 RU2008752 C1 RU 2008752C1 SU 4868918 A SU4868918 A SU 4868918A RU 2008752 C1 RU2008752 C1 RU 2008752C1
Authority
RU
Russia
Prior art keywords
reactive
conductors
generator
wire line
common screen
Prior art date
Application number
Other languages
English (en)
Inventor
В.В. Васильев
В.А. Хрусталев
Original Assignee
Новосибирский государственный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Новосибирский государственный технический университет filed Critical Новосибирский государственный технический университет
Priority to SU4868918 priority Critical patent/RU2008752C1/ru
Application granted granted Critical
Publication of RU2008752C1 publication Critical patent/RU2008752C1/ru

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

Сущность изобретения: устройство возбуждения лазера содержит ВЧ - источники питания, задающий ВЧ - генератор, квадратурный делитель мощности, а также четыре реактивных двухполюсника. Вход задающего ВЧ - генератора через квадратурный делитель мощности подключен к входам ВЧ - источников питания, а их выходы - к проводникам резонатора в точках подключения реактивных двухполюсников, два реактивных двухполюсника подключены к проводникам с противоположной стороны. 2 ил.

Description

Изобретение относится к квантовой электронике и может быть использовано при создании газоразрядных лазеров.
Известны устройства возбуждения газового лазера, которые создают в газоразрядной трубке лазера продольный разряд постоянного тока или продольный высокочастотный (ВЧ) разряд (см. Ищенко Е. Ф. , Климков Ю. М. Оптические квантовые генераторы. М. : Советское радио, 1968, с. 26). Однако продольному разряду свойственны паразитные реактивные колебания, ухудшающие спектральные характеристики лазерного излучения. Другим недостатком подобных устройств является необходимость применять поджигающее устройство, а в случае разряда постоянного тока - вводить в газоразрядную трубку анод, катод, использовать высоковольтный источник питания.
Известны также устройства возбуждения газового лазера, которые создают в газоразрядной трубке поперечный ВЧ-разряд. Они содержат ВЧ-источник питания и связанный с его выходом ВЧ-резонатор, в котором расположена газоразрядная трубка (см. Юдин В. И. Исследование гелий-неонового ОКГ с высокочастотным разрядом. - "Квантовая электроника", 1973, N 3, с. 134). Подобные устройства имеют недостаточную эффективность возбуждения рабочей среды лазера, что связано с особенностями распределения ВЧ-электрического поля резонатора вдоль газоразрядной трубки и в ее поперечном сечении.
В устройстве, принятом за прототип, поперечный ВЧ-разряд создается высокочастотным электрическим полем резонатора, который образован отрезком симметричной двухпроводной линии, проводники которой размещены в общем экране и расположены вдоль оси газоразрядной трубки лазера. Несимметричный выход ВЧ-источника питания подключен к середине отрезка двухпроводной линии, при этом один из проводников имеет относительно экрана нулевой ВЧ-потенциал (см. Абрамов В. И. и др. Населенность состояний 3S2, 2P4 неона в плазме Не-Ne ОКГ. Сб. трудов Воронежского политехнического института. Генерирование и усиление колебаний, 1971, вып. 4, с. 309). В отрезке двухпроводной линии ВЧ-источник питания возбуждает стоячую волну с чередующимися вдоль отрезка пучностями и узлами напряженности электрического поля. В поперечном сечении отрезка напряженность электрического поля вблизи проводника с нулевым ВЧ-потенциалом меньше, чем у второго проводника. Таким образом, электрическое поле в устройстве-прототипе существенно неоднородно вдоль оси и в поперечном сечении газоразрядной трубки, что вызывает соответствующую неоднородность интенсивности процессов ионизации и возбуждения газовой среды, ухудшающую спектральные и энергетические характеристики лазерного излучения, т. е. снижение эффективности возбуждения рабочей среды лазера.
Цель изобретения - повышение эффективности возбуждения рабочей среды газового лазера.
Цель достигается тем, что в устройство возбуждения газового лазера, содержащее ВЧ-источник питания и связанный с его выходом высокочастотный резонатор, образованный отрезком симметричной двухпроводной линии, проводники которой размещены в общем экране и расположены вдоль оси газоразрядной трубки лазера, введены дополнительный ВЧ-источник питания, идентичный основному, задающий ВЧ-генератор, квадратурный делитель мощности и четыре реактивных двухполюсника. При этом выход задающего ВЧ-генератора через квадратурный делитель мощности подключен к входам основного и дополнительного ВЧ-источников питания, выходы которых включены между общим экраном и соответственно первым и вторым проводниками с одной стороны отрезка двухпроводной линии, первый и второй реактивные двухполюсники включены между общим экраном и, соответственно, первым и вторым проводниками с противоположной стороны отрезка двухпроводной линии, а третий и четвертый реактивные двухполюсники включены между общим экраном и выходами соответственно основного и дополнительного ВЧ-источников питания. Отрезок двухпроводной линии выполнен с длиной, равной нечетному числу четвертей длины волны задающего ВЧ-генератора, а сопротивления Х1, Х2, Х3, Х4 соответственно первого, второго, третьего и четвертого реактивных двухполюсников удовлетворяют следующим соотношениям:
X1= -X2= jZc, X3= j
Figure 00000001
, X4= -j
Figure 00000002
где Zc, Zп - волновые сопротивления линий, образованных каждым из проводников высокочастотного резонатора и общим экраном соответственно при синфазном и противофазном возбуждении;
ReYг, ImYг - соответственно активная и реактивная составляющие внутренней проводимости генератора, эквивалентного каждому из ВЧ-источников питания;
j - мнимая единица.
На фиг. 1 изображена структурная схема устройства возбуждения газового лазера; на фиг. 2 - эквивалентная схема, поясняющая его работу.
Устройство возбуждения газового лазера (фиг. 1) содержит высокочастотный резонатор, образованный проводниками 1 и 2 отрезка симметричной двухпроводной линии, расположенной вдоль оси газоразрядной трубки 3, основной 4 и дополнительный 5 ВЧ-источники питания, задающий ВЧ-генератор 6, квадратурный делитель 7 мощности и четыре реактивных двухполюсников 8-11. Проводники 1 и 2 размещены в общем экране, который обозначен на фиг. 1 как "корпус". Выход задающего генератора 6 через квадратурный делитель 7 подключен к входам ВЧ-источников 4 и 5. Выходы ВЧ-источников 4 и 5 питания включены между общим экраном и соответственно проводниками 1 и 2 с одной стороны отрезка двухпроводной линии. Первый и второй реактивные двухполюсники 8 и 9 включены между общим экраном и соответственно проводниками 1 и 2 с противоположной стороны отрезка двухпроводной линии. Третий и четвертый реактивные двухполюсники 10 и 11 включены между общим экраном и соответственно выходами основного и дополнительного ВЧ-источников 4 и 5 питания.
Отрезок двухпроводной линии имеет длину, равную нечетному числу четвертей длины волны задающего генератора. ВЧ-источники 4 и 5 могут быть выполнены в виде усилителей мощности или синхронизированных генераторов, квадратурный делитель 7 - в виде шлейфного моста или трехдецибельного направленного ответвителя на связанных линиях, реактивные двухполюсники 8-11 - например, в виде реактивных шлейфов.
Эквивалентная схема устройства возбуждения газового лазера (фиг. 2) содержит П-образный четырехполюсник 12, эквивалентный высокочастотному резонатору, генераторы 13 и 14 тока с внутренними проводимостями 15, эквивалентные соответственно основному 4 и дополнительному 5 ВЧ-источниками питания, и проводимости jY3 = 1/X3 16 и jY4 = 1/X4 17 соответственно третьего и четвертого реактивных двухполюсников. Эквивалентный четырехполюсник 12, входы которого соответствуют выходам ВЧ-источников 4 и 5 на фиг. 1, содержит реактивные проводимости jY1, jY2, jY12 и активные сопротивление R, отображающее выделение активной мощности высокочастотных колебаний в плазме газового разряда. При высокой добротности высокочастотного резонатора R >> Zc, R >> Zп.
Устройство возбуждения газового лазера работает следующим образом. К входам ВЧ-источников 4 и 5 питания от задающего генератора 6 через квадратурный делитель 7 подводятся колебания равной амплитуды, сдвинутые по фазе на угол 90о. Поэтому токи эквивалентных генераторов 13 и 14 находятся в квадратурном соотношении: Iг2 = ± jIг1. Оба ВЧ-источника питания возбуждают в высокочастотном резонаторе стоячую волну, для которой распределения комплексной амплитуды напряжения проводников 1 и 2 относительно общего экрана u1(x) и u2(x) и тока в этих проводниках I1(x) и I2(х) по координате х, отсчитываемой вдоль оси газоразрядной трубки, определяются условиями возбуждения резонатора и граничными условиями на концах проводников 1 и 2. Эти условия, а также длина l проводников 1 и 2 таковы, что разность высокочастотных потенциалов u1(x) - u2(x), т. е. противофазная волна, имеет амплитуду, не зависящую от координаты х, и, следовательно, распределение амплитуды напряженности электрического поля по оси газоразрядной трубки 3 оказывается равномерным. В сравнении с устройством-прототипом повышается равномерность электрического поля и в поперечном сечении газоразрядной трубки, поскольку оба проводника 1 и 2 являются "потенциальными".
Величина проводимости третьего и четвертого реактивных двухполюсников 10 и 11 (jY3 и jY4 на фиг. 4) выбрана из условия комплексно-сопряженного согласования ВЧ-источников 4 и 5 питания с нагрузкой, функцию которой выполняет сопротивление R с учетом взаимодействия между источниками. При этом ВЧ-источники питания "вкладывают" в плазму газового разряда максимальную для заданных токов | Iг1| = = | Iг2 | и внутренней проводимости Yг эквивалентных генераторов высокочастотную мощность, равную удвоенной номинальной мощности каждого из ВЧ-источников в отдельности.
Для подтверждения эффектов постоянства амплитуды противофазной волны вдоль проводников 1 и 2 и комплексно-сопряженного согласования на выходах ВЧ-источников 4 и 5 обратимся к уравнениям для комплексных амплитуд напряжения и тока в связанных линиях без потерь, которыми можно воспользоваться при высокой добротности высокочастотного резонатора (см. Фельдштейн А. Л. , Явич Л. Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М. : Связь, 1971, с. 201-203, 210, 212):
u1(x) = u1(0)cosmx + j ρ I1(0)sinmx + jrI2(0)sinmx,
u2(x) = u2(0)cosmx + j ρ I2(0) x sinmx + jrI1(0)sinmx,
I1(x)= I1(o)cosmx+j
Figure 00000003
sinmx-j
Figure 00000004
sinmx
I2(x)= I2(o)cosmx+j
Figure 00000005
sinmx-j
Figure 00000006
sinmx где m=
Figure 00000007
; λ - длина волны задающего генератора;
ρ, r и W, V - индуктивные и емкостные коэффициенты, связанные с волновыми сопротивлениями Zc и Zп соотношениями:
ρ =
Figure 00000008
, r =
Figure 00000009

W =
Figure 00000010
, V =
Figure 00000011
Граничные условия со стороны первого и второго реактивных двухполюсников 8 и 9 I1(o) =
Figure 00000012
, I2(o) =
Figure 00000013
и принятые значения ml = 0,5 π, 1,5 π, , . . . позволяют выразить u1(x) и u2(x) через напряжения u1 и u2 на выходах эквивалентных генераторов 13 и 14:
u1(x)= ±
Figure 00000014
(ρu1-ru2)cosmx ± u1sinmx,
u2(x)= ±
Figure 00000015
(ru1-ρu2)cosmx ± u2sinmx Разность напряжений
u1(x)-u2(x)= ±(u1+u2)x
x cosmx±(u1-u2)sinmx при квадратурном соотношении между u1 и u2, когда u2 = ± ju1, имеет амплитуду (модуль) u1(x)-u2(x)
Figure 00000016
=
Figure 00000017
± u1(1 ± j)(cosmx-jsinmx)
Figure 00000018
=
Figure 00000019
Figure 00000020
u
Figure 00000021
не зависящую от координаты х. Квадратурное соотношение между u1 и u2, необходимое для достижения этого эффекта, получается при комплексно-сопряженном согласовании в выходных цепях ВЧ-источников питания.
Из уравнений для I1(x) и I2(x) можно получить выражения для токов в проводниках 1 и 2 при х = l:
I1= j
Figure 00000022
, I2= -j
Figure 00000023
откуда следует, что реактивные элементы П-образной схемы замещения высокочастотного резонатора, т. е. четырехполюсника 12 на фиг. 2, равны:
jY1= j
Figure 00000024
, jY2= -j
Figure 00000025
, jY12= 0 Нулевое значение взаимной проводимостей jY12 минимизирует взаимодействие ВЧ-источников питания - связь между эквивалентными генераторами тока 13 и 14 осуществляется только через высокоомное (в сравнении с Zc и Zп) сопротивление R. Для узлов эквивалентной схемы устройства возбуждения (фиг. 2) справедливы уравнения Кирхгофа:
IГ1= (Yг+jY1+jY3+
Figure 00000026
)u1-
Figure 00000027
u2
IГ2= (Yг+jY2+jY4+
Figure 00000028
)u2-
Figure 00000029
u1 которые с учетом величины проводимостей jY1, jY2и jY3 = 1/x3, jY4 = 1/x4сводятся к виду
IГ1= (ReYг ± jReYг+
Figure 00000030
)u1-
Figure 00000031
u2
IГ2= (ReY
Figure 00000032
jReYг+
Figure 00000033
)u2-
Figure 00000034
u1 При квадратурном соотношении между u1 и u2, когда u2 = ±ju1, получаем:
IГ1= (ReYг ± jReYг+
Figure 00000035
Figure 00000036
j
Figure 00000037
)u1
IГ2= (ReYг
Figure 00000038
jReYг+
Figure 00000039
± j
Figure 00000040
)u2 где последнее слагаемое в скобках есть доля проводимости, ощущаемой генератором тока, обусловленная их взаимодействием. Комплексно-сопряженное согласование в выходных цепях эквивалентных генераторов тока достигается при
ReYг=
Figure 00000041
При этом, во-первых,
IГ1= (ReYг+
Figure 00000042
)u1
IГ2= (ReYг+
Figure 00000043
)u2 и, следовательно, сдвиг фазы токов на угол 90о обеспечивает необходимое квадратурное соотношение между напряжениями. Во-вторых, мощность, поглощаемая сопротивлением R, величину которой можно определить как
P =
Figure 00000044
=
Figure 00000045
=
Figure 00000046
достигает максимального значения
Pmax=
Figure 00000047
которое вдвое больше номинальной мощности генератора тока Iг1 с внутренней проводимостью Yг, т. е. мощности каждого из ВЧ-источников питания в отдельности.
Реализация условия ReYг = 1/R является традиционным для высокочастотной техники выбором оптимальной связи ВЧ-источников питания с нагрузочной цепью. При этом компенсирующие реактивные проводимости jY3и jY4, величина которых зависит от ReYг, корректируются в процессе регулировки устройства возбуждения с использованием визуального или аппаратурного контроля за параметрами газового разряда. Критерием регулировки является максимум мощности, выделяющейся в плазме газового разряда и, следовательно, развиваемой ВЧ-источниками питания, при равномерности свечения плазмы по длине газоразрядной трубки.
Таким образом, устройство возбуждения газового лазера позволяет повысить равномерность возбуждающего электрического поля по длине и в поперечном сечении газоразрядной трубки, удвоить мощность возбуждения и тем самым повысить эффективность возбуждения рабочей среды газового лазера. (56) Юдин В. И. Исследование гелий-неонового ОКГ с высокочастотным разрядом. - Квантовая электроника, 1973, N 3, с. 134.
Абрамов В. И. и др. Населенность состояний 3S2, 2P4 неона в плазме Не-Ne ОКГ. Сб. трудов Воронежского политехнического института. Генерирование и усиление колебаний. 1971, в. 4, с. 309.

Claims (1)

  1. УСТРОЙСТВО ВОЗБУЖДЕНИЯ ГАЗОВОГО ЛАЗЕРА, содержащее ВЧ-источник питания и связанный с его выходом высокочастотный резонатор, образованный отрезком симметричной двухпроводной линии, проводники которой размещены в общем экране и расположены вдоль оси газоразрядной трубки лазера, отличающееся тем, что, с целью повышения эффективности возбуждения рабочей среды лазера, в устройство введены дополнительный ВЧ-источник питания, идентичный основному, задающий ВЧ-Генератор, квадратурный делитель мощности и четыре реактивных двухполюсника, при этом выход задающего ВЧ-генаратора через квадратурный делитель мощности подключен к входам основного и дополнительного ВЧ-источников питания, выходы которых включены между общим экраном и соответственно первым и вторым проводниками с одной стороны отрезка двухпроводной линии первый и второй реактивные двухполюсники включены между общим экраном и соответственно первым и вторым проводниками с противоположной стороны отрезка двухпроводной линии, третий и четвертый реактивные двухполюсники включены между общим экраном и выходами, соответственно, основного и дополнительного ВЧ-источников питания, причем отрезок двухпроводной линии выполнен с длиной равной нечетному числу четвертей длины волны задающего ВЧ-генератора, а сопротивления X1, X2, X3, X4, соответственно первого, второго, третьего и четвертого реактивных двухполюсников удовлетворяют следующим соотношениям:
    X1= -X2= jZc ;
    X3= j
    Figure 00000048

    X4= -j
    Figure 00000049

    где Zc; Zn - волновые сопротивления линий, образованных каждым из проводников высокочастотного резонатора и общим экраном соответственно при синфазном и противофазном возбуждении;
    Re Yг; Jm Yг - соответственно активная и реактивная составляющие внутренней проводимости генератора, эквивалентного каждому из ВЧ-источников питания;
    j - мнимая единица.
SU4868918 1990-09-25 1990-09-25 Устройство возбуждения газового лазера RU2008752C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4868918 RU2008752C1 (ru) 1990-09-25 1990-09-25 Устройство возбуждения газового лазера

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4868918 RU2008752C1 (ru) 1990-09-25 1990-09-25 Устройство возбуждения газового лазера

Publications (1)

Publication Number Publication Date
RU2008752C1 true RU2008752C1 (ru) 1994-02-28

Family

ID=21537569

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4868918 RU2008752C1 (ru) 1990-09-25 1990-09-25 Устройство возбуждения газового лазера

Country Status (1)

Country Link
RU (1) RU2008752C1 (ru)

Similar Documents

Publication Publication Date Title
US4169251A (en) Waveguide gas laser with high frequency transverse discharge excitation
Moisan et al. The theory and characteristics of an efficient surface wave launcher (surfatron) producing long plasma columns
US4455658A (en) Coupling circuit for use with a transversely excited gas laser
US5008894A (en) Drive system for RF-excited gas lasers
JPS63184233A (ja) 誘導励起式イオン源
US6703904B2 (en) High frequency oscillator
RU2008752C1 (ru) Устройство возбуждения газового лазера
Millman et al. The rising sun magnetron
JPH03500946A (ja) 入力ロッキング信号の方向性結合用マイクロ波管
JP4092027B2 (ja) プラズマ生成装置
Borie Review of gyrotron theory
US5506473A (en) Electron gun for providing electrons grouped in short pulses
US6137818A (en) Excitation of gas slab lasers
US2166210A (en) Magnetron discharge tube for frequency multiplication
Chazov et al. Resonance characteristics in oversized slow-wave structure of a multiwave Cherenkov generator with diffraction reflectors in sub-THz frequency range
US2081425A (en) High frequency transmission system
US3646389A (en) Reactively loaded interdigital slow wave circuits having increased interaction impedance and tubes using same
US3571750A (en) Negative resistance avalanche diode oscillator circuits
Samsonov et al. Design of one-octave bandwidth gyro-BWO with zigzag quasi-optical transmission line
Kostadinov et al. High-power CuBr laser systems excited by bipolar electric power supply
Boyd The mitron-an interdigital voltage-tunable magnetron
RU2319284C1 (ru) Многочастотный автогенератор радиочастотного диапазона
RU2089983C1 (ru) Газовый лазер
Asmussen et al. Microwave harmonic generation in a plasma capacitor
Demokan Critical analysis of matching schemes in capacitively coupled discharges