RU2006136600A - METHOD FOR DETERMINING PRODUCTIVE COLLECTORS AND DETERMINING THEIR POROSITY IN BAZHENOVSKAYA DEPOSITS - Google Patents

METHOD FOR DETERMINING PRODUCTIVE COLLECTORS AND DETERMINING THEIR POROSITY IN BAZHENOVSKAYA DEPOSITS Download PDF

Info

Publication number
RU2006136600A
RU2006136600A RU2006136600/28A RU2006136600A RU2006136600A RU 2006136600 A RU2006136600 A RU 2006136600A RU 2006136600/28 A RU2006136600/28 A RU 2006136600/28A RU 2006136600 A RU2006136600 A RU 2006136600A RU 2006136600 A RU2006136600 A RU 2006136600A
Authority
RU
Russia
Prior art keywords
hydrogen content
logging
uranium
organic matter
content
Prior art date
Application number
RU2006136600/28A
Other languages
Russian (ru)
Other versions
RU2330311C1 (en
Inventor
Георгий Александрович Калмыков (RU)
Георгий Александрович Калмыков
Original Assignee
Георгий Александрович Калмыков (RU)
Георгий Александрович Калмыков
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Георгий Александрович Калмыков (RU), Георгий Александрович Калмыков filed Critical Георгий Александрович Калмыков (RU)
Priority to RU2006136600/28A priority Critical patent/RU2330311C1/en
Publication of RU2006136600A publication Critical patent/RU2006136600A/en
Application granted granted Critical
Publication of RU2330311C1 publication Critical patent/RU2330311C1/en

Links

Claims (1)

Способ выделения продуктивных коллекторов и определения их коэффициента пористости в отложениях баженовской свиты, включающий отбор образцов керна из опорных скважин, исследование образцов для определения содержания глинистой фракции и твердого органического вещества, проведение в каждой исследуемой скважине нейтронного и бокового методов каротажа для определения величины пористости и выделения продуктивных коллекторов, отличающийся тем, что на образцах керна из опорных скважин дополнительно измеряют содержание всех породообразующих минералов, элементный состав, состав органического вещества, распределение атомов урана по шлифам, отобранным по всему стволу каждой опорной скважины, и формируют объемную минерально-компонентную модель отложений баженовской свиты с определением петрофизических характеристик всех составляющих этой модели, при этом в каждой исследуемой скважине проводят дополнительно спектрометрический гамма-каротаж для определения концентраций калия, урана, тория, после чего строится зависимость водородосодержания, определенного по нейтронному каротажу, от содержания урана по спектрометрическому гамма-каротажу:A method for isolating productive reservoirs and determining their porosity coefficient in sediments of the Bazhenov formation, including taking core samples from reference wells, examining samples to determine the clay fraction and solid organic matter, conducting neutron and side logging methods in each well to determine porosity and extraction productive reservoirs, characterized in that the core samples from reference wells additionally measure the content of all rock minerals, elemental composition, composition of organic matter, distribution of uranium atoms over thin sections selected along the entire bore of each reference well, and form a bulk mineral-component model of the Bazhenov formation sediments with the determination of the petrophysical characteristics of all the components of this model, while in each studied well spend optional spectrometric gamma-ray logging to determine the concentrations of potassium, uranium, thorium, after which the dependence of the hydrogen content determined by neutron mu logging, uranium content by gamma spectrometry logging: W=F(URAN),W = F (URAN), где W - водородосодержание, определенное по нейтронному каротажу;where W is the hydrogen content determined by neutron logging; URAN - содержание урана по спектрометрическому гамма-каротажу;URAN - uranium content by spectrometric gamma-ray logging; и выявляется связь между содержанием урана и водородосодержанием в твердом органическом веществе:and the relationship between the uranium content and the hydrogen content in solid organic matter is revealed: Wi=A·URAN+B,Wi = A URAN + B, где Wi - водородосодержание в твердом органическом веществе,where Wi is the hydrogen content in solid organic matter, А и В - коэффициенты зависимости;A and B are the coefficients of dependence; затем строится зависимость между суммарным излучением калия и тория и водородосодержанием по нейтронному каротажу за вычетом водородосодержания в твердом органическом веществе:then, the relationship is built between the total radiation of potassium and thorium and the hydrogen content by neutron logging minus the hydrogen content in solid organic matter: Δ=F(UeKTh),Δ = F (UeKTh), где UeKTh - урановый эквивалент калия и тория,where UeKTh is the uranium equivalent of potassium and thorium, Δ=W-Wi - водородосодержание по нейтронному каротажу за вычетом водородосодержания в твердом органическом веществе,Δ = W-Wi is the hydrogen content by neutron logging minus the hydrogen content in solid organic matter, и выявляется связь между UeKTh и водородосодержанием в глинах (Δi)and the relationship between UeKTh and the hydrogen content in clays (Δi) is revealed Δi=C·UeKTh,Δi = C · UeKTh, где Δi - водородосодержание в глинах;where Δi is the hydrogen content in clays; С - коэффициент зависимости;C is the coefficient of dependence; коэффициент пористости для отложений баженовской свиты определяют по формуле:the porosity coefficient for deposits of the Bazhenov formation is determined by the formula: Kпi=(Δ-Δi)/wн,Kпi = (Δ-Δi) / wн где Kпi - коэффициент пористости,where Kпi is the porosity coefficient, wн - водородосодержание в нефти,wн - hydrogen content in oil, при этом продуктивными коллекторами являются отложения баженовской свиты, обладающие пористостью, отличной от нуля.while productive reservoirs are deposits of the Bazhenov formation with porosity other than zero.
RU2006136600/28A 2006-10-18 2006-10-18 Method of detection of productive collectors and determination of porosity thereof in deposits of bazhenov formation RU2330311C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006136600/28A RU2330311C1 (en) 2006-10-18 2006-10-18 Method of detection of productive collectors and determination of porosity thereof in deposits of bazhenov formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006136600/28A RU2330311C1 (en) 2006-10-18 2006-10-18 Method of detection of productive collectors and determination of porosity thereof in deposits of bazhenov formation

Publications (2)

Publication Number Publication Date
RU2006136600A true RU2006136600A (en) 2008-04-27
RU2330311C1 RU2330311C1 (en) 2008-07-27

Family

ID=39452570

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006136600/28A RU2330311C1 (en) 2006-10-18 2006-10-18 Method of detection of productive collectors and determination of porosity thereof in deposits of bazhenov formation

Country Status (1)

Country Link
RU (1) RU2330311C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108412488A (en) * 2018-03-13 2018-08-17 中石化石油工程技术服务有限公司 Quickly determine the logging method of shale gas reservoir organic porosity
CN114578443A (en) * 2022-05-07 2022-06-03 核工业航测遥感中心 Uranium ore verification device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2348337B1 (en) * 2010-01-14 2014-04-16 Services Pétroliers Schlumberger Corrected porosity measurements of underground formations
RU2537521C2 (en) * 2011-02-28 2015-01-10 Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования "Уральский государственный горный университет" Method of selecting gas hydrate-saturated reservoirs in well logs
RU2451177C1 (en) * 2011-04-15 2012-05-20 ООО "РН-УфаНИПИнефть" Control method of formation development
RU2487239C1 (en) * 2012-09-19 2013-07-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Method for determination of oil-filled formations
RU2517730C1 (en) * 2013-04-16 2014-05-27 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Method for determination of oil-saturated formations
RU2541721C1 (en) * 2013-09-19 2015-02-20 Федеральное государственное унитарное предприятие "Всероссийский нефтяной научно-исследовательский геологоразведочный институт" ФГУП "ВНИГРИ" Method for determination of hydrocarbon kitchens in domanicoid and shale-bearing deposits in sections of deep wells
RU2572223C2 (en) * 2014-03-19 2015-12-27 Общество с ограниченной ответственностью "Газпром георесурс" Method to detect component composition of rocks of chemogenic deposits
RU2567581C1 (en) * 2015-02-05 2015-11-10 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Method for determination of formation intervals with viscous or highly viscous oil
RU2752306C1 (en) * 2021-01-11 2021-07-26 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" (Сколковский институт науки и технологий) Method and device for profiling properties of rock samples of oil shale thickness

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108412488A (en) * 2018-03-13 2018-08-17 中石化石油工程技术服务有限公司 Quickly determine the logging method of shale gas reservoir organic porosity
CN114578443A (en) * 2022-05-07 2022-06-03 核工业航测遥感中心 Uranium ore verification device
CN114578443B (en) * 2022-05-07 2022-07-19 核工业航测遥感中心 Uranium ore verification device

Also Published As

Publication number Publication date
RU2330311C1 (en) 2008-07-27

Similar Documents

Publication Publication Date Title
RU2006136600A (en) METHOD FOR DETERMINING PRODUCTIVE COLLECTORS AND DETERMINING THEIR POROSITY IN BAZHENOVSKAYA DEPOSITS
Hayes et al. Porosity production in weathered rock: Where volumetric strain dominates over chemical mass loss
Lu et al. Multiphase timing of hominin occupations and the paleoenvironment in Luonan Basin, Central China
KR101826132B1 (en) Prediction apparatus and the method of desorbed gas volume of shale using geophysical logging data
Janz et al. Isotopic composition (O, C, Sr, and Nd) and trace element ratios (Sr/Ca, Mg/Ca) of Miocene marine and brackish ostracods from North Alpine Foreland deposits (Germany and Austria) as indicators for palaeoclimate
CN105467465B (en) The method that clay content is calculated using porosity difference
CN109270588B (en) Method for extracting deep mineralization information of granite type uranium ore
Kouchinsky et al. Pre-Tommotian age of the lower Pestrotsvet Formation in the Selinde section on the Siberian platform: carbon isotopic evidence
Simms et al. Revisiting marine isotope stage 3 and 5a (MIS3–5a) sea levels within the northwestern Gulf of Mexico
Föllmi et al. The impact of hydrodynamics, authigenesis, and basin morphology on sediment accumulation in an upwelling environment: The Miocene Monterey Formation at Shell Beach and Mussel Rock (Pismo and Santa Maria basins, Central California, USA)
CN106285623B (en) Determine the method and system of total content of organic carbon
Nakata et al. An evaluation of the long-term stagnancy of porewater in the Neogene sedimentary rocks in northern Japan
Mazurek et al. Geochemical synthesis for the Effingen Member in boreholes at Oftringen, Gösgen and Küttigen
Amorosi et al. Anatomy of a condensed section: the Lower Cenomanian glaucony-rich deposits of Cap Blanc-Nez (Boulonnais, Northern France)
Rosenzweig et al. Evaluation of soil-moisture content for OSL dating using an infiltration model
TONG A discussion on the role of accumulation association in the explorating evaluation
Larsen et al. Lithostratigraphy of the late Saalian to middle Weichselian Skaerumhede Group in Vendsyssel, northern Denmark
Bing Predicting total organic carbon content in marine shale reservoirs with nuclear logging data
Lin et al. Velocity-porosity relationships in hydrate-bearing sediments measured from pressure cores, Shenhu Area, South China Sea
Vernes et al. Towards a physical and chemical characterization of the shallow subsurface of the Netherlands
RU2794165C1 (en) Method for determining porosity coefficient of gas-saturated reservoirs according to well logging data
John et al. Data report: X-ray analyses of bulk sediment in IODP Holes U1320A and U1324B, northern Gulf of Mexico
Nakamura et al. High-resolution carbon isotope and elemental chemostratigraphy of the Greenhorn, Carlile and Niobrara formations, Denver Basin, CO
Kundu et al. Elemental concentration of U, Th and K in tectonically active regions of Khari River basin, Kachchh, Western India
Lawrie et al. USING BOREHOLE NUCLEAR MAGNETIC RESONANCE (NMR) AS PART OF AN INTEGRATED APPROACH TO DETERMINE THE HYDRAULIC CONDUCTIVITY AND WATER CONTENTS OF NEAR-SURFACE (< 100M) AQUIFERS AND AQUITARDS.

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20101019