RU2001121313A - Nozzle, Inertial Separator and Method for the Supersonic Component Separation - Google Patents

Nozzle, Inertial Separator and Method for the Supersonic Component Separation

Info

Publication number
RU2001121313A
RU2001121313A RU2001121313/12A RU2001121313A RU2001121313A RU 2001121313 A RU2001121313 A RU 2001121313A RU 2001121313/12 A RU2001121313/12 A RU 2001121313/12A RU 2001121313 A RU2001121313 A RU 2001121313A RU 2001121313 A RU2001121313 A RU 2001121313A
Authority
RU
Russia
Prior art keywords
nozzle
inertial separator
gas stream
downstream
component
Prior art date
Application number
RU2001121313/12A
Other languages
Russian (ru)
Other versions
RU2229922C2 (en
Inventor
Виллинк Корнелис Антони Тьенк
Марко Беттинг
ХОЛТЕН Теодор ВАН
ВЕН Йоханнес Мигюэл Хенри Мария ВАН
Original Assignee
Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шелл Интернэшнл Рисерч Маатсхаппий Б.В. filed Critical Шелл Интернэшнл Рисерч Маатсхаппий Б.В.
Publication of RU2001121313A publication Critical patent/RU2001121313A/en
Application granted granted Critical
Publication of RU2229922C2 publication Critical patent/RU2229922C2/en

Links

Claims (13)

1. Сопло сужающейся-расширяющейся формы для создания эмульсионного потока с сверхзвуковой скоростью, содержащее горловину, имеющую характеристический диаметр D*, вход, имеющий характеристический диаметр D1, расположенный на расстоянии L1 по потоку выше горловины сопла, и выход, имеющий характеристический диаметр D2, расположенный на расстоянии L2 по потоку ниже горловины сопла, при этом отношение L2/(D2-D*) больше 50, однако меньше 220.1. The nozzle is a tapering-expanding form for creating an emulsion flow at a supersonic speed, comprising a neck having a characteristic diameter D *, an entrance having a characteristic diameter D1 located at a distance L1 upstream of the mouth of the nozzle, and an outlet having a characteristic diameter D2 located at a distance L2 downstream of the nozzle neck, while the ratio L2 / (D2-D *) is greater than 50, but less than 220. 2. Сопло по п.1, в котором отношение L2/(D2-D*) больше 100, однако меньше 200.2. The nozzle according to claim 1, in which the ratio L2 / (D2-D *) is greater than 100, but less than 200. 3. Сопло по п.2, в котором отношение длины L2 сопла к диаметру D* сопла меньше 300.3. The nozzle according to claim 2, in which the ratio of the length L2 of the nozzle to the diameter D * of the nozzle is less than 300. 4. Инерционный сепаратор для сверхзвукового отделения компонента в основном газового потока, содержащий сопло по любому из пп.1-3, и сепарационную часть по потоку ниже него, имеющую, по меньшей мере, один выход для компонента, который отделен, и, по меньшей мере, один выход для остального газового потока.4. Inertial separator for supersonic separation of a component of the main gas stream, comprising a nozzle according to any one of claims 1 to 3, and a separation part downstream of it, having at least one outlet for the component that is separated, and at least at least one outlet for the rest of the gas stream. 5. Инерционный сепаратор по п.4, имеющий возбудитель вихря по потоку выше сепарационной части и по потоку ниже сопла.5. The inertial separator according to claim 4, having a vortex pathogen upstream of the separation part and downstream of the nozzle. 6. Инерционный сепаратор по п.5, в котором возбудитель вихря содержит один или более дельтаобразных элементов, выступающих радиально внутрь из внутренней стенки инерционного сепаратора, передняя кромка и плоскость которого составляют угол атаки крыла не более 10° с осевой координатой инерционного сепаратора.6. The inertial separator according to claim 5, in which the vortex pathogen contains one or more delta-shaped elements protruding radially inward from the inner wall of the inertial separator, the leading edge and plane of which make the angle of attack of the wing of not more than 10 ° with the axial coordinate of the inertial separator. 7. Инерционный сепаратор по любому из пп.4-6, имеющий генератор ударной волны по потоку ниже сопла.7. The inertial separator according to any one of claims 4 to 6, having a shock wave generator downstream of the nozzle. 8. Инерционный сепаратор по п.7, в котором генератор ударной волны является диффузором (соплом сужающейся/расширяющейся формы), расположенным по потоку выше или ниже сепарационной части.8. The inertial separator according to claim 7, in which the shock wave generator is a diffuser (nozzle tapering / expanding shape) located downstream of the separation part. 9. Способ сверхзвукового отделения компонента, преимущественно, газового потока с использованием инерционного сепаратора по любому из пп.4-8.9. The method of supersonic separation of a component, mainly a gas stream using an inertial separator according to any one of claims 4 to 8. 10. Способ по п.9, в котором, преимущественно, газовый поток содержит смесь метана и более высоких углеводородов и/или водяного пара.10. The method according to claim 9, in which, mainly, the gas stream contains a mixture of methane and higher hydrocarbons and / or water vapor. 11. Способ по п.9, в котором, преимущественно, газовый поток содержит топочный газ и компонент, подлежащий удалению, выбран из группы, состоящей из CO2, N2, NOx и H2S.11. The method according to claim 9, in which, mainly, the gas stream contains flue gas and the component to be removed is selected from the group consisting of CO 2 , N 2 , NO x and H 2 S. 12. Способ по любому из пп.9-11, в котором компонент отделяют в виде капель, имеющих размер частиц от 0,1 мкм до 2,5 мкм, предпочтительно от 0,5 мкм до 1,0 мкм.12. The method according to any one of claims 9 to 11, in which the component is separated in the form of droplets having a particle size of from 0.1 μm to 2.5 μm, preferably from 0.5 μm to 1.0 μm. 13. Способ по любому из пп.9-11, в котором изменение температуры на длине L2 сопла составляет от - 100000°К/с до - 1000°К/с.13. The method according to any one of claims 9 to 11, in which the temperature change over the length L2 of the nozzle is from -100000 ° K / s to -1000 ° K / s.
RU2001121313/15A 1998-12-31 1999-12-29 Nozzle, inertial separator and method of supersonic separation of component RU2229922C2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22388598A 1998-12-31 1998-12-31
US09/223,885 1998-12-31

Publications (2)

Publication Number Publication Date
RU2001121313A true RU2001121313A (en) 2003-06-27
RU2229922C2 RU2229922C2 (en) 2004-06-10

Family

ID=22838369

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001121313/15A RU2229922C2 (en) 1998-12-31 1999-12-29 Nozzle, inertial separator and method of supersonic separation of component

Country Status (16)

Country Link
US (1) US6513345B1 (en)
EP (1) EP1140363B1 (en)
JP (1) JP4611532B2 (en)
KR (1) KR100730520B1 (en)
CN (1) CN1123395C (en)
AT (1) ATE248025T1 (en)
AU (1) AU2104500A (en)
BR (1) BR9916717A (en)
CZ (1) CZ299842B6 (en)
DE (1) DE69910829T2 (en)
GC (1) GC0000091A (en)
IL (1) IL144004A (en)
RU (1) RU2229922C2 (en)
TW (1) TW495388B (en)
WO (1) WO2000040338A1 (en)
ZA (1) ZA200105389B (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2817167B1 (en) * 2000-11-24 2003-01-31 Air Liquide PROCESS FOR SEPARATING LIVING PARTICLES FROM A GAS UNDER PRESSURE AND ITS VARIANT, DETERMINING ITS MICROBIOLOGICAL QUALITY, DEVICE SUITABLE FOR IMPLEMENTING THE METHOD AND USE THEREOF
US20030167792A1 (en) * 2002-03-06 2003-09-11 Via Holdings, Llc Refrigeration system with liquid refrigerant injection to the condenser
AU2003233235B2 (en) * 2002-04-29 2008-05-29 Twister B.V. Supersonic fluid separation enhanced by spray injection
NZ536016A (en) * 2002-04-29 2006-03-31 Shell Int Research Cyclonic fluid separator equipped with adjustable vortex finder position
US7314502B2 (en) * 2002-09-25 2008-01-01 Exxonmobil Upstream Research Company Method and system for separating a component from a multi-component gas
DE10244795A1 (en) * 2002-09-26 2004-04-08 Boehringer Ingelheim Pharma Gmbh & Co. Kg powder inhaler
DE10328773B3 (en) * 2003-06-25 2005-02-17 Framatome Anp Gmbh Nuclear facility
DE10328774B3 (en) 2003-06-25 2005-01-13 Framatome Anp Gmbh Nuclear plant with pressure relief
US7984566B2 (en) * 2003-10-27 2011-07-26 Staples Wesley A System and method employing turbofan jet engine for drying bulk materials
RU2272973C1 (en) * 2004-09-24 2006-03-27 Салават Зайнетдинович Имаев Method of low-temperature gas separation
TW200636198A (en) * 2004-12-30 2006-10-16 Twister Bv Throttling valve and method for enlarging liquid droplet sizes in a fluid stream flowing therethrough
RU2415681C2 (en) * 2005-05-13 2011-04-10 Энестетик Гэз Рекламейшн, Ллк Apparatus and method of anaesthetising gas treatment
US7628034B2 (en) * 2005-05-13 2009-12-08 Anesthetic Gas Reclamation, Llc Method of low flow anesthetic gas scavenging and dynamic collection apparatus therefor
US7669438B2 (en) * 2005-05-13 2010-03-02 Anesthetic Gas Reclamation, Llc Method and apparatus for anesthetic gas reclamation with compression stage
EP1892458A1 (en) * 2006-08-22 2008-02-27 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Controlled formation of hydrates
CN101568554B (en) * 2006-10-03 2012-09-26 尤尼威蒂恩技术有限责任公司 Method for preventing catalyst agglomeration based on production rate changes
US20100089180A1 (en) * 2008-04-08 2010-04-15 The Board Of Regents Of The Nevada System Of Higher Education, Sampling device and method and system for its use
FR2940978B1 (en) 2009-01-09 2011-11-11 Fives Stein METHOD AND COOLING SECTION OF A METAL BAND THROUGH A PROJECTION OF A LIQUID
DE102009037460A1 (en) 2009-08-13 2011-02-17 Siemens Aktiengesellschaft Method for separating hydrogen sulfide from a gas stream using supersonic cyclone separator, by condensing the gas stream and then conducting through the cyclone separator, in which the hydrogen sulfide is separated from the gas stream
WO2011153148A1 (en) 2010-06-01 2011-12-08 Shell Oil Company Separation of oxygen containing gases
WO2011153146A1 (en) 2010-06-01 2011-12-08 Shell Oil Company Separation of gases produced by combustion
EP2576018A1 (en) 2010-06-01 2013-04-10 Shell Oil Company Low emission power plant
US8858679B2 (en) 2010-06-01 2014-10-14 Shell Oil Company Separation of industrial gases
RU2464084C2 (en) * 2010-12-27 2012-10-20 Общество с ограниченной ответственностью "Собинтел" Adsorbent for compound filter, compound filter (versions) and gas and smoke protective set based thereon
US8790455B2 (en) * 2011-01-19 2014-07-29 Anatoli Borissov Supersonic swirling separator 2 (Sustor2)
US8771401B2 (en) 2011-08-12 2014-07-08 U.S. Department Of Energy Apparatus and process for the separation of gases using supersonic expansion and oblique wave compression
US9283502B2 (en) 2011-08-31 2016-03-15 Orbital Atk, Inc. Inertial extraction system
CN102908801B (en) * 2012-10-18 2014-11-26 东南大学 Device capable of separating CO2 from CO2-containing gas mixture
WO2014081649A1 (en) * 2012-11-21 2014-05-30 Uop Llc Supersonic gas separation and adsorption processes for natural gas dehydration systems
US9168474B2 (en) 2013-06-26 2015-10-27 King Fahd University Of Petroleum And Minerals Inertial particle separator with heat exchange
RU2576738C9 (en) * 2014-11-14 2016-05-20 Общество с ограниченной ответственностью "ЭНГО Инжиниринг" Method of natural gas processing and device to this end
US10413642B2 (en) 2015-04-28 2019-09-17 James Michael Berry System for dynamic control of medical vacuum
GB201516802D0 (en) 2015-09-22 2015-11-04 Nanopharm Ltd Apparatus and method for determination of the dose of a powder inhalation formulation
JP2019507681A (en) 2016-03-06 2019-03-22 ヴィント プルス ゾンネ ゲー・エム・ベー・ハーWind plus Sonne GmbH Method and apparatus for separating and / or cleaning aerosols, solid particles and fibers from gas, and solid particles and fibers from fluid by sonophoresis
US10118696B1 (en) 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
CN107413085A (en) * 2016-05-23 2017-12-01 中石化洛阳工程有限公司 A kind of online desanding device of oil-gas pipeline
US20180111109A1 (en) * 2016-10-24 2018-04-26 Michael W. Rogers Method, apparatus, and computer-readable media for vortex arc reactor
US11090600B2 (en) 2017-01-04 2021-08-17 General Electric Company Particle separator assembly for a turbine engine
RU2639774C1 (en) * 2017-02-27 2017-12-22 Олег Савельевич Кочетов Centrifugal injector
CN107376581A (en) * 2017-08-16 2017-11-24 中国石油大学(华东) A kind of flaring cyclone-type supersonic nozzle
US11712637B1 (en) 2018-03-23 2023-08-01 Steven M. Hoffberg Steerable disk or ball
DE102018008259A1 (en) * 2018-10-18 2020-04-23 Smart Material Printing B.V. Filter systems for suspended particles with particle sizes from 400 pm to ≤500 μm and their use
WO2022248261A1 (en) 2021-05-26 2022-12-01 Basf Se Distillation process with a laval nozzle
US11291939B1 (en) 2021-07-13 2022-04-05 Smart Material Printing B.V. Ultra-fine particle aggregation, neutralization and filtration

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3185181A (en) 1962-12-13 1965-05-25 Cottrell Res Inc Diffuser swirl eliminator
US3725271A (en) 1964-01-29 1973-04-03 Giannotti Ass Apparatus and method for separating particles from a flow of fluid
GB1101062A (en) * 1964-01-29 1968-01-31 Giannotti Associates Apparatus and method for separating particles from a flow of fluid
GB1103130A (en) 1965-08-27 1968-02-14 Exxon Production Research Co Separation of components of a predominantly gaseous stream
FR1583714A (en) 1967-04-14 1969-12-05
US3559373A (en) * 1968-05-20 1971-02-02 Exxon Production Research Co Supersonic flow separator
US3544170A (en) 1969-01-24 1970-12-01 Bowles Eng Corp Pure fluid valving of suspended solids
US3626665A (en) 1969-08-29 1971-12-14 Mobil Oil Corp Process for separating uranium isotopes
US3892070A (en) 1970-05-08 1975-07-01 Ranendra K Bose Automobile anti-air pollution device
US3894851A (en) 1972-02-07 1975-07-15 Midwest Research Inst Removal of particulate matter with supersonic droplets
SU593717A1 (en) 1976-02-24 1978-02-25 Shesterenko Nikolaj A Continuous-action aerosol concentrator
DE2850648C2 (en) 1978-11-22 1985-04-11 Kraftwerk Union AG, 4330 Mülheim Device for the separation of uranium isotope compounds
US4292050A (en) 1979-11-15 1981-09-29 Linhardt & Associates, Inc. Curved duct separator for removing particulate matter from a carrier gas
DE3203842A1 (en) 1982-02-01 1983-08-11 Herwig 1000 Berlin Michel-Kim METHOD AND DEVICE FOR SEPARATING SOLID AND / OR LIQUID PARTICLES FROM GASES OR. OF SOLIDS FROM LIQUIDS AND FOR THE SEPARATION OF GASES OR. LIQUIDS OF DIFFERENT DENSITY
SU1172540A1 (en) 1982-11-30 1985-08-15 Новосибирский государственный медицинский институт Method of surgical treatment of habitual dislocations of the lower jaw
JPH0217921A (en) * 1988-07-05 1990-01-22 Mitsubishi Heavy Ind Ltd Separation of gaseous mixture
RU1768242C (en) * 1990-03-01 1992-10-15 Научно-исследовательский институт энергетического машиностроения МГТУ им.Н.Э.Баумана Cyclonic separator
BE1004130A5 (en) 1990-12-07 1992-09-29 Lardinois Jean Paul This process for removing a substance in a fluid gas carrier in the form of solid particle or liquid and system for implementing the method.
EP0496128A1 (en) 1991-01-25 1992-07-29 Stork Product Engineering B.V. Method and device for separating a gas from a gas mixture
US5682759A (en) * 1996-02-27 1997-11-04 Hays; Lance Gregory Two phase nozzle equipped with flow divider
JO2025B1 (en) * 1997-07-02 1999-05-15 شل انترناشونال ريسيرتش ماتستشابيج بي في Removing a gaseous component from a fluid

Similar Documents

Publication Publication Date Title
RU2001121313A (en) Nozzle, Inertial Separator and Method for the Supersonic Component Separation
RU2229922C2 (en) Nozzle, inertial separator and method of supersonic separation of component
US6524368B2 (en) Supersonic separator apparatus and method
AU2002338824B9 (en) Cyclonic fluid separator with vortex generator in inlet section
EP1205251B1 (en) Cyclonic fluid cleaning apparatus
CA2294708C (en) Removing a gaseous component from a fluid
JP2002534248A5 (en)
EA015603B1 (en) Cyclonic separator and method for degassing a fluid mixture
AU2002338824A1 (en) Cyclonic fluid separator with vortex generator in inlet section
BRPI0713294B1 (en) METHOD AND CYCLONIC LIQUID GASIFICATION SEPARATOR TO DEGASTE A FLUID MIXTURE
GB2409990A (en) A system for separating an entrained immiscible liquid from a wet gas stream
SE9503911D0 (en) Aerosol apparatus with turbo separator