RU19628U1 - Система передачи информации на подвижные объекты - Google Patents

Система передачи информации на подвижные объекты Download PDF

Info

Publication number
RU19628U1
RU19628U1 RU2001107543/20U RU2001107543U RU19628U1 RU 19628 U1 RU19628 U1 RU 19628U1 RU 2001107543/20 U RU2001107543/20 U RU 2001107543/20U RU 2001107543 U RU2001107543 U RU 2001107543U RU 19628 U1 RU19628 U1 RU 19628U1
Authority
RU
Russia
Prior art keywords
output
input
base station
base stations
information
Prior art date
Application number
RU2001107543/20U
Other languages
English (en)
Inventor
Я.С. Урецкий
П.В. Купершмидт
Л.П. Барышников
В.В. Замирович
Г.И. Щербаков
Original Assignee
Ипатьев Василий Михайлович
Купершмидт Петр Владимирович
Урецкий Ян Семенович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ипатьев Василий Михайлович, Купершмидт Петр Владимирович, Урецкий Ян Семенович filed Critical Ипатьев Василий Михайлович
Priority to RU2001107543/20U priority Critical patent/RU19628U1/ru
Application granted granted Critical
Publication of RU19628U1 publication Critical patent/RU19628U1/ru

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Система передачи информации на подвижные объекты, содержащая радиопередатчик, входящий в состав базовой станции, являющейся источником передаваемой информации, приемопередатчики, входящие по одному в состав каждой из базовых станций, не являющихся источниками передаваемой информации и размещенных в условных ячейках, представляющих собой равные правильные шестиугольники, плотно расположенные между собой, плотно покрывающие обслуживаемую территорию, радиусы зон действия всех базовых станций равны длине стороны каждого правильного шестиугольника, на каждой из всех базовых станций задана частота передачи этой базовой станции, являющаяся одной из заданных различных частот, радиоприемники, размещенные по одному на каждом из подвижных объектов, находящихся в пределах зон действия всех базовых станций, с заданными частотами приема каждого радиоприемника, отличающаяся тем, что все базовые станции размещены в вершинах указанных правильных шестиугольников, число заданных различных частот, из которых на каждой базовой станции задана одна частота передачи этой базовой станции, равно шести, заданная частота передачи каждой базовой станции, размещенной в вершине правильных шестиугольников, является отличной от заданных частот передачи соседних базовых станций, размещенных в соседних вершинах этих правильных шестиугольников, заданными частотами приема каждого радиоприемника являются пять различных из указанных шести заданных частот, радиопередатчик содержит опорный генератор, первый амплитудный модулятор, первый усилитель мощности, первую передающую антенну, первый блок задания, первый микроконтролле�

Description

СИСТЕМА ПЕРЕДАЧИ ИНФОРМАЦИИ НА ПОДВИЖНЫЕ
Техническое решение относится к средствам подвижной радиосвязи, а именно к системам передачи информации на подвижные объекты.
Известна система персонального радиовызова (см., например, Громаков Ю.А. Стандарты и системы подвижной радиосвязи. - М.: ЭкоТрендз, 2000, с. 10-52), содержащая радиопередатчик с заданным радиусом зоны действия, покрывающей обслуживаемую территорию, и радиоприемники, размещенные по одному на каждом из подвижных объектов, находящихся в пределах зоны действия указанного радиопередатчика.
Указанная система позволяет с помощью одного радиопередатчика передавать информацию на все подвижные объекты, находящиеся в пределах обслуживаемой территории. Однако при передаче информации на подвижные объекты, находящиеся в пределах достаточно обширной обслуживаемой территории, в системе необходимо применять радиопередатчик большой мощности, что ухудшает экологические и экономические показатели системы.
Известна система сотовой радиосвязи (см., например, Ратынский М.В. Основы сотовой связи. Под ред. Д.Б. Зимина. - М.: Радио и связь, 2000, с.20-68), содержащая первые приемопередатчики, входящие по одному в состав каждой из базовых станций, размещенных в центрах условных ячеек, представляющих собой равные правильные шестиугольники, плотно расположенные между собой, плотно покрывающие обслуживаемую территорию, с радиусами зон действия базовых станций, равными длине стороны каждого правильного
SSiiSSl
МПК7Н04В7/26
ОБЪЕКТЫ ч шестиугольника, и с заданной на каждой из базовых станций частотой передачи этой базовой станции, являющейся одной из семи заданных различных частот, отличной от частот передачи соседних базовых станций, на каждой базовой станции заданы также частоты приема этой базовой станции, вторые приемопередатчики, размещенные по одному на каждом из подвижных объектов, находящихся в пределах зон действия всех базовых станций, с заданными частотами передачи и частотами приема каждого второго приемопередатчика, причем заданные частоты приема базовых станций совпадают с заданными частотами передачи каждого второго приемопередатчика, которые являются отличными от любой из заданных частот передачи базовых станций, заданными частотами приема каждого второго приемопередатчика являются все семь заданных частот передачи базовых станций, центр коммутации, оптоволоконные линии связи, соединяющие центр коммутации с базовыми станциями. Указанная система позволяет осуществлять радиосвязь между подвижными объектами, находящимися в пределах достаточно обширной обслуживаемой территории, и, в частности, передавать информацию с одной из базовых станций, являющейся источником передаваемой информации, на эти подвижные объекты. При этом в системе могут быть применены сравнительно маломощные первые приемопередатчики и вторые приемопередатчики. Однако для передачи информации с базовой станции, являющейся источником передаваемой информации, на базовые станции, в зонах действия которых находятся указанные подвижные объекты, в системе применены центр коммутации и оптоволоконные линии связи, соединяющие центр коммутации с базовыми станциями, что усложняет систему. При этом радиосвязь между базовыми станциями без применения дополнительных каналов радиосвязи невозможна, так как при заданных
значениях радиусов зон действия базовых станций и параметрах размещения базовых станций на обслуживаемой территории расстояние
между двумя любыми соседними базовыми станциями в /3 раз больше радиусов зон их действия.
Кроме того, поскольку зоны действия соседних базовых станций перекрываются незначительно, в пределах центральных участков зоны действия каждой базовой станции возможен прием радиосигналов лишь этой базовой станции, в связи с чем число заданных частот приема каждого из вторых приемопередатчиков, размещенных на подвижных объектах, не может быть меньше семи, что также усложняет систему.
Решаемой технической задачей является упрощение системы передачи информации на подвижные объекты на основе рационального размещения базовых станций на обслуживаемой территории.
Решение технической задачи в системе передачи информации на подвижные объекты, содержащей радиопередатчик, входящий в состав базовой станции, являющейся источником передаваемой информации, приемопередатчики, входящие по одному в состав каждой из базовых станций, не являющихся источниками передаваемой информации и размещенных в условных ячейках, представляющих собой равные правильные шестиугольники, плотно расположенные между собой, плотно покрывающие обслуживаемую территорию, радиусы зон действия всех базовых станций равны длине стороны каждого правильного шестиугольника, на каждой из всех базовых станций задана частота передачи этой базовой станции, являющаяся одной из заданных различных частот, радиоприемники, размещенные по одному на каждом из подвижных объектов, находящихся в пределах зон действия всех базовых станций, с заданными частотами приема каждого радиоприемника, достигается тем, что все базовые станции размещены в вершинах указанных правильных шестиугольников, число заданных
различных частот, из которых на каждой базовой станции задана одна частота передачи этой базовой станции, равно шести, заданная частота передачи каждой базовой станции, размещенной в вершине правильных шестиугольников, является отличной от заданных частот передачи соседних базовых станций, размещенных в соседних вершинах этих правильных шестиугольников, заданными частотами приема каждого радиоприемника являются пять различных из указанных шести заданных частот, радиопередатчик содержит опорный генератор, первый амплитудный модулятор, первый усилитель мощности, первую передающую антенну, первый блок задания, первый микроконтроллер,
причем выход опорного генератора, настроенного на заданную частоту
передачи этой базовой станции, подключен к высокочастотному входу первого амплитудного модулятора, выход которого подключен к входу первого усилителя мощности, к выходу которого подключена первая передающая антенна, к низкочастотному входу первого амплитудного модулятора подключен выход первого микроконтроллера, к входам которого подключены выходы первого блока задания, приемопередатчик, входящий в состав каждой базовой станции, не являющейся источником передаваемой информации, содержит первую приемную антенну, три канала приема информационных радиосигналов, каждый из которых содержит первый полосовой фильтр, первый малошумящий усилитель, амплитудный ограничитель, первый амплитудный детектор, первый блок возведения в квадрат, первый интегратор, первый аналого-цифровой преобразователь, приемопередатчик содержит также первый электронный коммутатор, второй электронный коммутатор, фазовый детектор, управляемый генератор, первый делитель частоты, второй делитель частоты, второй амплитудный модулятор, второй усилитель мощности, вторую передающую антенну, второй микроконтроллер, второй блок задания, причем выход первой приемной антенны подключен к входам всех первых полосовых фильтров, каждый из которых настроен на заданную частоту передачи одной из соответствующих соседних базовых станций, в каждом канале приема информационных радиосигналов выход первого полосового фильтра подключен к входу первого малошумящего усилителя, выход которого подключен к входу амплитудного ограничителя, выход первого малошумящего усилителя подключен также к входу первого амплитудного детектора, выход которого подключен к входу первого блока возведения в квадрат, выход которого подключен к входу первого интегратора, выход которого соединен с входом первого аналого-цифрового преобразователя, выходы всех первых аналогоцифровых преобразователей подключены к соответствующим входам второго микроконтроллера, выходы всех первых амплитудных детекторов подключены к соответствующим коммутируемым входам первого электронного коммутатора, выходы всех амплитудных ограничителей подключены к соответствующим коммутируемым входам второго электронного коммутатора, выход которого подключен к первому входу фазового детектора, выход фазового детектора подключен к управляющему входу управляемого генератора, выход которого подключен к входу первого делителя частоты и к входу второго делителя частоты, выход первого делителя частоты подключен ко второму входу фазового детектора, выход второго делителя частоты подключен к высокочастотному входу второго амплитудного модулятора, к низкочастотному входу второго амплитудного модулятора подключен выход первого электронного коммутатора, выход второго амплитудного модулятора подключен к входу второго усилителя мощности, к выходу которого подключена вторая передающая антенна, к входам второго микроконтроллера подключены выходы второго блока задания, выходы второго микроконтроллера подключены к управляющим входам первого электронного коммутатора, второго электронного коммутатора, первого
делителя частоты и второго делителя частоты, радиоприемник, размещенный на каждом подвижном объекте, содержит вторую приемную антенну, пять каналов приема информационных радиосигналов, каждый из которых содержит второй полосовой фильтр, второй малошумящий усилитель, второй амплитудный детектор, второй блок возведения в квадрат, второй интегратор, второй аналого-цифровой преобразователь, радиоприемник содержит также третий микроконтроллер, индикатор, причем выход второй приемной антенны подключен к входам всех вторых полосовых фильтров, каждый из которых настроен соответственно на одну из заданных частот приема этого радиоприемника, в каждом канале
приема информационных радиосигналов выход второго полосового
фильтра подключен к входу второго малошумящего усилителя, выход которого подключен к входу второго амплитудного детектора, выход второго малошумящего усилителя подключен также к входу второго блока возведения в квадрат, выход которого подключен к входу второго интегратора, выход которого соединен с входом второго аналогоцифрового преобразователя, выходы всех вторых амплитудных детекторов и выходы всех вторых аналого-цифровых преобразователей подключены к соответствующим входам третьего микроконтроллера, к выходам которого подключены входы индикатора.
Термин «подвижный объект является общепринятым. (См., например, Соловьев Ю.А. Системы спутниковой навигации. - М: Экотрендз, 2000, с. 47.) К подвижным объектам относят, например, различные автотранспортные средства, оснащенные радиоприемной аппаратурой. Под терминами «соседняя базовая станция или «базовая станция, являющаяся соседней по отношению к данной базовой станции понимаем базовые станции, размещаемые на ближайшем расстоянии от данной базовой станции.
На фиг. 1 изображены условно базовые станции, размещенные на обслуживаемой территории, и подвижные объекты, находящиеся в пределах обслуживаемой территории, с условным изображением зон действия базовых станций и указанием заданных рабочих частот информационных радиосигналов, излучаемых с каждой из этих базовых станций, для случая, при котором число базовых станций равно пятидесяти четырем, число подвижных объектов равно пяти.
На фиг. 2 изображена система передачи информации на подвижные объекты для случая, при котором один радиопередатчик входит в состав базовой станции, являющейся источником передаваемой информации, число приемопередатчиков, входящих по одному в состав каждой из базовых станций, не являющихся источниками передаваемой информации, равно одиннадцати, и число радиоприемников, размещенных по одному на каждом из подвижных объектов, равно трем, причем подвижные объекты на фиг. 2 не изображены.
На фиг. 3 изображен радиопередатчик, входящий в состав базовой станции, являющейся источником передаваемой информации, причем базовая станция, являющаяся источником передаваемой информации, на фиг. 3 не изображена.
На фиг. 4 изображен приемопередатчик, входящий в состав каждой из базовых станций, не являющихся источниками передаваемой информации, причем базовая станция, не являющаяся источником передаваемой информации, на фиг. 4 не изображена.
На фиг. 5 изображен радиоприемник, размещенный на каждом из подвижных объектов, причем подвижный объект на фиг. 5 не изображен.
В настоящем описании применены следующие обозначения.
1„ - базовая станция 1 с номером п, где п 1,2,...,N положительные целые числа; 2т - подвижный объект 2 с номером т, где т 1,2,...,М - положительные целые числа; 3„ - зона 3 действия базовой
Ј 24/toWj
станции 1„; fq - рабочая частота информационных радиосигналов, излучаемых с базовой станции 1, где q 1,2,...,Q - положительные целые числа. В тех случаях, когда это не приводит к неверному толкованию, индексы в приведенных обозначениях опущены. Сущность технического решения заключается в следующем. На обслуживаемой территории в вершинах условных ячеек, представляющих собой равные правильные шестиугольники, плотно покрывающие обслуживаемую территорию, размещают, как показано на фиг. 1, базовые станции 1 (базовые станции 1 - 154) с радиусами зон 3 действия, равными длине стороны каждого правильного шестиугольника. При таком размещении базовых станций 1 на обслуживаемой территории соседними по отношению к каждой базовой станции 1 являются не более трех базовых станций 1. При таком размещении базовых станций 1 на обслуживаемой территории соседними по отношению к каждой базовой станции 1 являются не более шести базовых станций 1. Под зоной 3 действия каждой базовой станции 1 понимаем равные между собой зону 3 действия при излучении радиосигналов с этой базовой станции 1 и зону 3 действия при приеме радиосигналов на этой базовой станции 1. При этом под зоной 3 действия при излучении радиосигналов с каждой базовой станции 1 понимаем часть территории, в пределах которой при ненаправленном излучении с этой базовой станции 1 радиосигналов мощности Pqma на рабочей частоте fq мощность этих радиосигналов при их ненаправленном приеме на других базовых станциях 1 и на подвижных объектах 2, не меньше некоторой пороговой величины лРпр.мин, характеризующей чувствительность каналов приема
понимаем часть территории, в пределах которой при ненаправленном излучении с других базовых станций 1 радиосигналов той же мощности Pqmn на той же рабочей частоте fq мощность этих радиосигналов при
ненаправленном приеме на этой базовой станции 1, не меньше той же величины РПР.НИН.
В связи с этим, принимая допущение о том, что распространение радиоволн происходит в свободном пространстве, а обслуживаемая территория является плоскостью, зона 3 действия каждой базовой станции 1 при ненаправленном излучении с базовых станций 1 и ненаправленном приеме радиосигналов на базовых станциях 1 и на подвижных объектах 2 представляет собой круг с центром в точке размещения этой базовой станции 1 и радиусом, определяемым по формуле (см., например, Теоретические основы радиолокации. Под ред. В.Е. Дулевича. - М.: Советское радио, 1978, с.402)
9 2№no :Sl{3 ,«л л Г -1 J Wq КПР.МШ где с - скорость света в вакууме. Под радиусом зоны 3 действия каждой базовой станции 1 понимаем радиус указанного круга. При размещении базовых станций 1 в вершинах условных ячеек, представляющих собой равные правильные шестиугольники, плотно покрывающие обслуживаемую территорию, с радиусами зон 3 действия базовых станций 1, равными длине стороны каждого правильного шестиугольника, граница зоны 3 действия каждой базовой станции 1 проходит через точки размещения соседних базовых станций 1. На фиг. 1 границы зон 3 действия базовых станций 1 изображены условно окружностями.
faW (№/Ј В настоящем описании под термином «мощность сигнала понимаем среднюю мощность Р сигнала s(f)y определяемую в интервале времени ta t tb по формуле (см., например, А.М. Трахтман. Введение в обобщенную спектральную теорию сигналов. - М.: Советское радио, 1972, с.14) Р s2(t)dt.(2) fft-fe,e Задают и стабилизируют шесть различных рабочих частот (Q 6) информационных радиосигналов, излучаемых со всех базовых станций 1. Из шести задаваемых рабочих частот на каждой базовой станции 1 задают, как показано на фиг. 1, одну рабочую частоту информационных радиосигналов, излучаемых с этой базовой станции 1, отличную от задаваемых рабочих частот информационных радиосигналов, излучаемых с соседних базовых станций 1. Таким образом, на базовых станциях 1, не являющихся соседними, задают повторяющиеся рабочие частоты информационных радиосигналов, излучаемых с этих базовых станций 1. Под термином «рабочая частота понимаем значение частоты несущего колебания, центральное или какое-либо другое характерное значение частоты полосы частот информационных радиосигналов. При этом полосы частот информационных радиосигналов, соответствующие различным рабочим частотам, являются не перекрывающимися. Информационные сигналы, соответствующие информации, передаваемой на подвижные объекты 2, находящиеся в пределах обслуживаемой территории, передают с одной из базовых станций 1, являющейся источником передаваемой информации, на базовые станции 1, в зонах 3 действия которых находятся подвижные объекты 2. С этих базовых станций 1 осуществляют излучение информационных радиосигналов, соответствующих передаваемой информации. При этом информационными сигналами, соответствующими информации,
передаваемой на Подвижные объекты 2, находящиеся в пределах обслуживаемой территории, являются соответствующие информационные радиосигналы.
Передача информационных радиосигналов с базовой станции 1, являющейся источником передаваемой информации, на базовые станции 1, в зонах 3 действия которых находятся подвижные объекты 2, состоит в следующем. С базовой станции 1, являющейся источником передаваемой информации, осуществляют излучение информационных радиосигналов на задаваемой рабочей частоте. При этом на всех базовых станциях 1, являющихся соседними по отношению к базовой станции 1, являющейся
источником передаваемой информации, осуществляют одновременно
прием излучаемых с последней базовой станции 1 информационных радиосигналов и их излучение на соответствующих задаваемых рабочих частотах. Затем на всех других базовых станциях 1, являющихся соседними по отношению к указанным базовым станциям 1, осуществляют одновременно прием излучаемых с указанных базовых станций 1 информационных радиосигналов и их излучение на соответствующих задаваемых рабочих частотах. Затем таким же образом последовательно, по всем направлениям от базовой станции 1, являющейся источником передаваемой информации, к границам обслуживаемой территории на всех других последующих базовых станциях 1, являющихся соседними по отношению к предыдущим базовым станциям 1, осуществляют одновременно прием излучаемых с предыдущих базовых станций 1 информационных радиосигналов и их излучение на соответствующих задаваемых рабочих частотах.
Для обеспечения передачи информационных радиосигналов с базовой станции 1, являющейся источником передаваемой информации, на базовые станции 1, в зонах 3 действия которых находятся подвижные объекты 2, а, следовательно, и на все другие базовые станции 1, без
Јfz/3
«зацикливания на каждой базовой станции 1, кроме базовой станции 1, являющейся источником передаваемой информации, задают рабочие частоты информационных радиосигналов, принимаемых на этой базовой станции 1, при которых с этой базовой станции 1 осуществляют излучение информационных радиосигналов на задаваемой рабочей частоте.
При указанных параметрах размещения на обслуживаемой территории базовых станций 1 с заданными радиусами зон 3 действия в каждой точке обслуживаемой территории перекрываются не менее двух зон 3 действия соседних базовых станций 1. Поскольку излучение информационных радиосигналов с соседних базовых станций 1
осуществляют на различных рабочих частотах, в каждую точку приема
поступают информационные радиосигналы не менее двух различных задаваемых рабочих частот. Поэтому для обеспечения гарантированного приема информационных радиосигналов на подвижных объектах 2 при их перемещении в пределах обслуживаемой территории прием информационных радиосигналов на каждом подвижном объекте 2 достаточно осуществлять лишь на пяти различных из шести задаваемых рабочих частот.
На подвижных объектах 2 осуществляют прием информационных радиосигналов, излучаемых с базовых станций 1, в зонах 3 действия которых находятся эти подвижные объекты 2. При этом прием информационных радиосигналов на подвижных объектах 2 осуществляют на задаваемых рабочих частотах, которыми на каждом подвижном объекте 2 являются пять различных из шести задаваемых рабочих частот.
Для обеспечения работоспособности системы размещение базовых станций 1 вблизи границ обслуживаемой территории необходимо осуществлять так, чтобы в каждой точке обслуживаемой территории происходило перекрытие не менее двух зон 3 действия соседних базовых станций 1. Так, например, границей обслуживаемой территории,
представленной на фиг. 1, может являться замкнутая ломаная, проходящая через все крайние базовые станции 1 (базовые станции 1Ь 15, Ъ, 1б, Ь, Ь,
lib Il6, bb Ь, Ьз, Ьв, 143, U Ьь 154, Ьо, Ьз, U9, Ь2, Us, 144, 1з9, 1з4, Ьв, 122, Il7, Il2, Ь, U)На каждой базовой станции 1, кроме базовой станции 1, являющейся источником передаваемой информации, стабилизацию задаваемой рабочей частоты излучаемых информационных радиосигналов осуществляют по рабочей частоте одного из информационных радиосигналов, принимаемых на этой базовой станции 1, при которой с этой базовой станции 1 осуществляют излучение информационных радиосигналов на задаваемой рабочей частоте. Задаваемые на каждой базовой станции 1, кроме базовой станции 1, являющейся источником передаваемой информации, рабочие частоты информационных радиосигналов, принимаемых на этой базовой станции 1, при которых с этой базовой станции 1 осуществляют излучение информационных радиосигналов на задаваемой рабочей частоте, позволяют обеспечить передачу информационных радиосигналов с базовой станции 1, являющейся источником передаваемой информации, на базовые станции 1, в зонах 3 действия которых находятся подвижные объекты 2, а, следовательно, и на все другие базовые станции 1, без «зацикливания. Поэтому стабилизацию рабочей частоты информационных радиосигналов, излучаемых с каждой базовой станции 1, кроме базовой станции 1, являющейся источником передаваемой информации, осуществляют в результате по рабочей частоте информационных радиосигналов, излучаемых с базовой станции 1, являющейся источником передаваемой информации. Стабилизацию рабочей частоты информационных радиосигналов, излучаемых с базовой станции 1, являющейся источником передаваемой информации, осуществляют, например, по частоте опорных высокостабильных колебаний, формируемых на этой базовой станции 1.
«a AJWVJ
Система передачи информации на подвижные объекты 2 представлена на фиг. 2. Система содержит радиопередатчик 4, входящий в состав базовой станции 1, являющейся источником передаваемой информации, приемопередатчики 5, входящие по одному в состав каждой из базовых станций 1, не являющихся источниками передаваемой информации, радиоприемники 6, размещенные по одному на каждом из подвижных объектов 2, находящихся в пределах обслуживаемой территории. На фиг. 2 в качестве примера изображена система, содержащая один радиопередатчик 4, одиннадцать приемопередатчиков 5 и три радиоприемника 6. При этом описание системы и работы этой системы приведено для произвольного числа приемопередатчиков 5,
входящих по одному в состав каждой из базовых станций 1, не являющихся источниками передаваемой информации, и радиоприемников 6, размещенных по одному на каждом из подвижных объектов 2, находящихся в пределах обслуживаемой территории.
Все базовые станции 1 размещены в вершинах условных ячеек, представляющих собой равные правильные шестиугольники, плотно расположенные между собой, плотно покрывающие обслуживаемую территорию. Радиус зоны 3 действия каждой базовой станции 1 задан равным длине стороны каждого правильного шестиугольника. В каждой точке обслуживаемой территории перекрываются не менее двух зон 3 действия соседних базовых станций 1.
Частотой передачи базовой станции 1 является соответствующая рабочая частота информационных радиосигналов, излучаемых с этой базовой станции 1. Частотой приема радиоприемника 6 является соответствующая рабочая частота информационных радиосигналов, принимаемых на соответствующем подвижном объекте 2.
MwtoYSKS
14
Стандарты и системы подвижной радиосвязи. - М.: Эко-Трендз, 2000, с.22.)
Из шести заданных различных рабочих частот на каждой базовой станции 1 задана частота передачи этой базовой станции 1, отличная от заданных частот передачи соседних базовых станций 1. Из указанных шести заданных рабочих частот на каждом подвижном объекте 2 заданы пять различных частот приема радиоприемника 6, размещенного на этом подвижном объекте 2.
Все элементы и блоки, входящие в состав системы, являются известными и описанными в литературе.
Радиопередатчик 4, входящий в состав базовой станции 1,
являющейся источником передаваемой информации, представленный на фиг. 3, содержит опорный генератор 7, первый амплитудный модулятор 8, первый усилитель 9 мощности, первую передающую антенну 10, первый блок 11 задания, первый микроконтроллер 12.
Выход опорного генератора 7, предназначенного для формирования опорных высокостабильных колебаний, подключен к высокочастотному входу первого амплитудного модулятора 8. Опорный генератор 7 настроен на заданную частоту передачи этой базовой станции 1. Выход первого амплитудного модулятора 8, предназначенного для формирования высокочастотных амплитудно-модулированных колебаний, подключен к входу первого усилителя 9 мощности, который служит для их усиления по мощности. К выходу первого усилителя 9 мощности подключена первая передающая антенна 10, предназначенная для излучения в пространство информационныхрадиосигналов,представляющихсобой
высокочастотные амплитудно-модулированные электромагнитные колебания соответствующих рабочих частот с коэффициентом модуляции М 0.5. К низкочастотному входу первого амплитудного модулятора 8 подключен выход первого микроконтроллера 12, который служит для
формированиядвоичнойпоследовательностиимпульсов,
соответствующих информации, передаваемой на подвижные объекты 2. К входам первого микроконтроллера 12 подключены выходы первого блока 11 задания, который служит для ввода в первый микроконтроллер 12 информации, предназначенной для передачи на подвижные объекты 2.
Приемопередатчик 5, входящий в состав каждой базовой станции 1, не являющейся источником передаваемой информации, представленный на фиг. 4, содержит первую приемную антенну 13, три канала приема информационных радиосигналов, каждый из которых содержит первый полосовой фильтр 14, первый малошумящий усилитель 15, амплитудный ограничитель 16, первый амплитудный детектор 17, первый блок 18 возведения в квадрат, первый интегратор 19, первый аналого-цифровой преобразователь (АЦП) 20. Приемопередатчик 5 содержит также первый электронный коммутатор 21, второй электронный коммутатор 22, фазовый детектор 23, управляемый генератор 24, первый делитель 25 частоты, второй делитель 26 частоты, второй амплитудный модулятор 27, второй усилитель 28 мощности, вторую передающую антенну 29, второй микроконтроллер 30, второй блок 31 задания.
Выход первой приемной антенны 13, предназначенной для ненаправленного приема информационных радиосигналов, излучаемых с соседних базовых станций 1, подключен к входам всех первых полосовых фильтров 14. Первые полосовые фильтры 14 служат для селекции информационных радиосигналов по частоте. При этом каждый из них настроен на заданную частоту передачи одной из соответствующих соседних базовых станций 1. Ширина полосы пропускания каждого первого полосового фильтра 14 не меньше ширины полосы частот информационных радиосигналов соответствующей рабочей частоты. Полосы пропускания первых полосовых фильтров 14 являются не перекрывающимися. В каждом канале приема информационных
ЈC0f/ffZW3 i6 радиосигналов выход первого полосового фильтра 14 подключен к входу первого малошумящего усилителя 15, предназначенного для усиления принимаемых информационных радиосигналов. Выход первого малошумящего усилителя 15 подключен к входу амплитудного ограничителя 16, предназначенного для выделения несущего колебания амплитудно-модулированного информационных радиосигналов. Выход первого малошумящего усилителя 15 подключен также к входу первого амплитудного детектора 17, который служит для осуществления амплитудного детектирования принимаемых информационных радиосигналов. Выход амплитудного ограничителя 16 подключен к входу первого блока 18 возведения в квадрат, выход которого подключен к входу первого интегратора 19. Последовательно соединенные первый блок 18 возведения в квадрат и первый интегратор 19 служат для формирования сигналов, пропорциональных мощности принимаемых радиосигналов. Выход первого интегратора 19 соединен с входом первого АЦП 20. Выходы всех первых АЦП 20 подключены к соответствующим входам второго микроконтроллера 30, предназначенного для управления первым электронным коммутатором 21, вторым электронным коммутатором 22, первым делителем 25 частоты и вторым делителем 26 частоты. Выходы всех первых амплитудных детекторов 17 подключены к соответствующим коммутируемым входам первого электронного коммутатора 21. Выходы всех амплитудных ограничителей 16 подключены к соответствующим коммутируемым входам второго электронного коммутатора 22, выход которого подключен к первому входу фазового детектора 23. Выход фазового детектора 23 подключен к управляющему входу управляемого генератора 24, выход которого подключен к входу первого делителя 25 частоты и к входу второго делителя 26 частоты. Выход первого делителя 25 частоты подключен ко второму входу фазового детектора 23. Выход второго делителя 26 частоты
подключен к высокочастотному входу второго амплитудного модулятора 27, предназначенного для формирования высокочастотных амплитудномодулированных колебаний, соответствующих передаваемой информации. К низкочастотному входу второго амплитудного модулятора 27 подключен выход первого электронного коммутатора 21. Выход второго амплитудного модулятора 27 подключен к входу второго усилителя 28 мощности, который служит для усиления сигналов по мощности. К выходу второго усилителя 28 мощности подключена вторая передающая антенна 29. К входам второго микроконтроллера 30 подключены выходы второго блока 31 задания, который служит для
задания на каждой базовой станции 1, кроме базовой станции 1,
являющейся источником передаваемой информации, значения рабочей частоты информационных радиосигналов, излучаемой с этой базовой станции 1, а также значений рабочих частот информационных радиосигналов, принимаемых на этой базовой станции 1, при которых с этой базовой станции 1 осуществляют излучение информационных радиосигналов на заданной рабочей частоте. Выходы второго микроконтроллера 30 подключены к управляющим входам первого электронного коммутатора 21, второго электронного коммутатора 22, первого делителя 25 частоты и второго делителя 26 частоты.
Термин «управляемый генератор является общепринятым. (См., например, Теоретические основы радиолокации. Под ред. В.Е. Дулевича. М.: Советское радио, 1978, с. 358). Частота колебаний, формируемых управляемым генератором, определяется напряжением, действующим на его управляющем входе. В этом случае управляемый генератор является генератором, управляемым по напряжению. Генераторы, управляемые по напряжению, являются известными и описанными в литературе устройствами. (См., например, Хоровиц П., Хилл. У. Искусство схемотехники. В 3-х томах: T.I. Пер. с англ. - 4-е изд. перераб. и доп. М.: Мир, 1993, с. 308.) В качестве амплитудных ограничителей 16 могут быть применены, например, узкополосные нелинейные резонансные усилители, настроенные на соответствующие рабочие частоты. (См., например, Гоноровский И.С. Радиотехнические цепи и сигналы. - М.: Радио и связь, 1986, с. 235.) В качестве первого блока 11 задания и второго блока 31 задания могут быть использованы известные и описанные в литературе цифровые устройства ввода данных. (См., например, Шевкопляс Б. В. Микропроцессорные структуры. Инженерные решения. - М.: Радио и связь, 1993, с. 27.) Первый делитель 25 частоты и второй делитель 26 частоты являются известными и описанными в литературе устройствами. (См., например, См., например, Хоровиц П., Хилл. У. Искусство схемотехники. В 3-х томах: Т.2. Пер. с англ. - 4-е изд. перераб. и доп. - М.: Мир, 1993, с. 270.) Все базовые станции 1, не являющиеся источниками передаваемой информации, содержат однотипные приемопередатчики 5, отличающиеся лишь значениями частот, на которые настраивают первые полосовые фильтры 14. Радиоприемник 6, размещенный на каждом подвижном объекте 2, представленный на фиг. 5, содержит вторую приемную антенну 32, пять каналов приема информационных радиосигналов, каждый из которых содержит второй полосовой фильтр 33, второй малошумящий усилитель 34, второй амплитудный детектор 35, второй блок 36 возведения в квадрат, второй интегратор 37, второй АЦП 38. Радиоприемник 6 содержит также третий микроконтроллер 39, индикатор 40.
базовых станций 1, подключен к входам всех вторых полосовых фильтров 33, которые служат для селекции информационных радиосигналов по частоте. Каждый из них настроен соответственно на одну из заданных частот приема этого радиоприемника 6. Ширина полосы пропускания каждого второго полосового фильтра 33 не меньше ширины полосы частот информационных радиосигналов соответствующей рабочей частоты. Полосы пропускания вторых полосовых фильтров 33 являются не перекрывающимися. В каждом канале приема информационных радиосигналов выход второго полосового фильтра 33 подключен к входу второго малошумящего усилителя 34, предназначенного для усиления принимаемых информационных радиосигналов. Выход второго
малошумящего усилителя 34 подключен к входу второго амплитудного детектора 35, который служит для осуществления амплитудного детектирования принимаемых информационных радиосигналов. Выход второго малошумящего усилителя 34 подключен также к входу второго блока 36 возведения в квадрат, выход которого подключен к входу второго интегратора 37. Последовательно соединенные второй блок 36 возведения в квадрат и второй интегратор 37 служат для формирования сигналов, пропорциональных мощности принимаемых радиосигналов. Выход второго интегратора 37 соединен с входом второго АЦП 38. Выходы всех вторых амплитудных детекторов 35 и выходы всех вторых АЦП 38 подключены к соответствующим входам третьего микроконтроллера 39, предназначенного для обработки поступающей с базовых станций 1 информации и отображения ее на индикаторе 40, входы которого подключены к выходам третьего микроконтроллера 39.
На всех подвижных объектах 2 размещены однотипные радиоприемники 6, причем рабочие частоты, на которые настраивают вторые полосовые фильтры 33, могут совпадать на различных подвижных объектах 2. На всех базовых станциях 1, кроме базовой станции 1, являющейся источником передаваемой информации, и на подвижных объектах 2 заданы соответственно такие значения коэффициентов усиления первых малошумящих усилителей 15 и вторых малошумящих усилителей 34, при которых чувствительность каналов приема информационных радиосигналов на базовых станциях 1 и на подвижных объектах 2 равна пр.мин- На базовой станции 1, являющейся источником передаваемой информации, и на других базовых станциях 1 заданы в зависимости от заданных значений рабочих частот fq информационных радиосигналов, излучаемых с этих базовых станций 1, соответственно такие значения коэффициентов усиления по мощности первого усилителя 9 мощности и вторых усилителей 28 мощности, при которых значения мощности информационных радиосигналов, излучаемых с этих базовых станций 1, равны соответственно Pqvasi. При этом значения Р9ЮЛ и значение выбраны исходя из заданного значения радиуса зоны 3 действия каждой базовой станции 1, равного длине стороны каждого из указанных правильных шестиугольников. Информационные радиосигналы являются узкополосными; время распространения радиосигналов от каждой базовой станции 1 до соседних базовых станций 1 и интервал времени измерения мощности принимаемых радиосигналов пренебрежимо малы по сравнению с длительностью любого из импульсов модулирующих двоичных последовательностей импульсов, соответствующих информации, передаваемой на подвижные объекты 2; время распространения сигналов в приемопередающих трактах базовых станций 1 пренебрежимо мало. Принятым допущениям соответствуют, например, следующие параметры системы. Радиус зоны 3 действия каждой базовой станции 1 равен 500 м; рабочие частоты информационных радиосигналов, излучаемых со всех базовых станции 1, соответственно равны 12, 13, 14,
15, 16 и 17 МГц; длительность любого из импульсов модулирующих двоичных последовательностей импульсов, соответствующих информации, передаваемой на подвижные объекты 2, не менее 10 мс, интервал времени однократного измерения мощности принимаемых радиосигналов не более 0,1 мс.
Рассмотрим работу системы, представленной на фиг. 2.
На базовой станции 1, являющейся источником передаваемой информации, в первый блок 11 задания радиопередатчика 4, представленного на фиг. 3, вводят информацию, предназначенную для передачи на подвижные объекты 2. На каждой базовой станции 1, не
являющейся источником передаваемой информации, во второй блок 31
задания приемопередатчика 5, представленного на фиг. 4, из шести заданных значений рабочих частот вводят заданное значение рабочей частоты информационных радиосигналов, излучаемых с этой базовой станции 1, отличное от заданных значений рабочих частот информационных радиосигналов, излучаемых с соседних базовых станций 1, а также значения рабочих частот информационных радиосигналов, принимаемых на этой базовой станции 1, при которых с этой базовой станции 1 осуществляют излучение информационных радиосигналов на заданной рабочей частоте.
На базовой станции 1, являющейся источником передаваемой информации, первый микроконтроллер 12 считывает из первого блока 11 задания в двоичном коде информацию, предназначенную для передачи на подвижные объекты 2. Затем первый микроконтроллер 12 формирует на низкочастотном входе первого амплитудного модулятора 8 двоичную последовательность импульсов, соответствующую информации, передаваемой на подвижные объекты 2. Одновременно на высокочастотном входе первого амплитудного модулятора 8 действуют опорные высокостабильные колебания одной из шести заданных рабочих частот, формируемые опорным генератором 7. Первый амплитудный модулятор 8 формирует высокочастотный амплитудно-модулированный сигнал с коэффициентом модуляции М 0.5. Этот сигнал поступает на вход первого усилителя 9 мощности, с выхода которого усиленный сигнал поступает на вход первой передающей антенны 10. Первая передающая антенна 10 излучает в пространство сформированный таким образом информационный радиосигнал, соответствующий информации, передаваемой на подвижные объекты 2. Прием информационного радиосигнала, излучаемого с базовой станции 1, являющейся источником передаваемой информации, осуществляют на соседних базовых станциях 1 с помощью содержащихся в них приемопередатчиков 5, представленных на фиг. 4. При этом первая приемная антенна 13, входящая в состав каждого из этих приемопередатчиков 5, принимает информационный радиосигнал, излучаемый с базовой станции 1, являющейся источником передаваемой информации. Принимаемый информационный радиосигнал поступает на входы всех первых полосовых фильтров 14. На каждой базовой станции 1, являющейся соседней по отношению к базовой станции 1, являющейся источником передаваемой информации, на выходе одного из первых полосовых фильтров 14, настроенного на рабочую частоту информационных радиосигналов, излучаемых с базовой станции 1, являющейся источником передаваемой информации, действует соответствующий принимаемому информационному радиосигналу высокочастотный амплитудно-модулированный сигнал с коэффициентом модуляции М 0.5. Этот сигнал поступает на вход первого малошумящего усилителя 15, с выхода которого сигнал поступает на вход амплитудного ограничителя 16, который выделяет несущее колебание принимаемого амплитудно-модулированного информационного радиосигнала, и на вход первого амплитудного детектора 17, который 23&WV74Z.5VJ t осуществляет амплитудное детектирование принимаемого информационного радиосигнала. Сигнал с выхода амплитудного ограничителя 16 поступает на соответствующий коммутируемый вход второго электронного коммутатора 22 и на вход первого блока 18 возведения в квадрат. С выхода первого блока 18 возведения в квадрат сигнал поступает на вход первого интегратора 19, который на входе первого АЦП 20 формирует в соответствии с формулой (2) сигнал, пропорциональный мощности принимаемого информационного радиосигнала. Цифровой код с выходов указанного первого АЦП 20 поступает на входы второго микроконтроллера 30. Второй микроконтроллер 30 определяет по цифровому коду, действующему на выходе указанного первого АЦП 20, и известному значению коэффициента усиления соответствующего канала приема информационных радиосигналов, значение мощности принимаемого информационного радиосигнала Рщ. Второй микроконтроллер 30 осуществляет проверку условия Р Рщ ив случае его выполнения принимает решение о наличии на входе приемопередатчика 5 информационного радиосигнала соответствующей рабочей частоты, в противном случае второй микроконтроллер 30 принимает противоположное решение. Затем второй микроконтроллер 30 считывает из второго блока 31 задания заданное значение рабочей частоты информационных радиосигналов, излучаемых с этой базовой станции 1, а также заданные значения рабочих частот информационных радиосигналов, принимаемых на этой базовой станции 1, при которых с этой базовой станции 1 осуществляют излучение информационных радиосигналов на заданной рабочей частоте, и определяет по этим заданным значениям рабочих частот и значениям сигналов, действующих на выходах соответствующих первых АЦП 20, рабочую частоту информационного радиосигнала максимальной мощности. (На каждой
базовой станции 1, являющейся соседней по отношению к базовой станции 1, являющейся источником передаваемой информации, определяемая таким образом рабочая частота информационного радиосигнала максимальной мощности является рабочей частотой информационных радиосигналов, излучаемых с базовой станции 1, являющейся источником передаваемой информации.) Второй микроконтроллер 30 формирует управляющие сигналы на управляющих входах первого электронного коммутатора 21, который подключает выход первого амплитудного детектора 17, соответствующего рабочей частоте информационного радиосигнала максимальной мощности, к низкочастотному входу второго амплитудного модулятора 27. Второй микроконтроллер 30 формирует также управляющие сигналы на управляющих входах второго электронного коммутатора 22, который подключает выход амплитудного ограничителя 16, соответствующего рабочей частоте информационного радиосигнала максимальной мощности, к первому входу фазового детектора 23.
Одновременно второй микроконтроллер 30 определяет требуемое значение отношения коэффициентов деления первого делителя 25 частоты и второго делителя 26 частоты по формуле
К f
где /макс - рабочая частота информационного радиосигнала максимальной мощности; / - заданная рабочая частота информационных радиосигналов, излучаемых с данной базовой станции 1; К} и К2 коэффициенты деления первого делителя 25 частоты и второго делителя 26 частоты, где К1 и К2 - положительные целые числа.
Формула (3) следует из условия вхождения в синхронизм кольца фазовой автоподстройки частоты, образованного фазовым детектором 23, управляемым генератором 24 и первым делителем 25 частоты. (См.,
К /зад.
(3)
А2 Л
макс. i например, Теоретические основы радиолокации. Под ред. В.Е. Дулевича. М.: Советское радио, 1978, с. 358). Второй микроконтроллер 30 формирует на управляющих входах первого делителя 25 частоты и второго делителя 26 частоты управляющие сигналы, по которым их коэффициенты деления принимают значения Кх и К2, удовлетворяющие полученному по формуле (3) отношению. В результате этого на обоих входах фазового детектора 23 действуют сигналы частоты /макс, управляемый генератор 24 вырабатывает колебания частоты А /макс, второй делитель 26 частоты делит эту частоту в К2 раз и получает колебания заданной рабочей частоты /w, стабильность которой определяется стабильностью рабочей частоты информационных радиосигналов, излучаемых с базовой станции 1, являющейся источником передаваемой информации. Стабильность последней определяется стабильностью частоты высокостабильных колебаний, формируемых на базовой станции 1, являющейся источником передаваемой информации, опорным генератором 7. На различных базовых станциях 1, являющихся соседними по отношению к базовой станции 1, являющейся источником передаваемой информации, получаемые значения отношений коэффициентов деления первого делителя 25 частоты и второго делителя 26 частоты в общем случае различны. Сигнал с выхода второго делителя 26 частоты поступает на высокочастотный вход второго амплитудного модулятора 27, на низкочастотный вход которого поступает двоичная последовательность импульсов, действующая на выходе указанного первого амплитудного детектора 17. Второй амплитудный модулятор 27 формирует высокочастотный амплитудно-модулированный сигнал с коэффициентом модуляции М 0.5. Этот сигнал поступает на вход второго усилителя 28 мощности, с выхода которого усиленный сигнал поступает на вход второй tUWfaTLfb 26AWl (V Ц$ Ч
&Wf70 5V передающей антенны 29. Вторая передающая антенна 29 излучает в пространство сформированный таким образом информационный радиосигнал, соответствующий информации, передаваемой на подвижные объекты 2. Таким образом, на каждой из базовых станций 1, являющихся соседними по отношению к базовой станции 1, являющейся источником передаваемой информации, стабилизацию рабочей частоты излучаемых информационных радиосигналов осуществляют по рабочей частоте одного из информационных радиосигналов, принимаемых на этой базовой станции 1, при которой с этой базовой станции 1 осуществляют излучение информационных радиосигналов на заданной рабочей частоте. На каждой из этих базовых станций 1 указанной рабочей частотой одного из принимаемых информационных радиосигналов является рабочая частота информационных радиосигналов, излучаемых с базовой станции 1, являющейся источником передаваемой информации. Прием информационных радиосигналов, излучаемых с указанных соседних базовых станций 1, осуществляют на всех других соседних базовых станциях 1, являющихся соседними по отношению к указанным соседним базовым станциям 1, с помощью содержащихся в них приемопередатчиков 5, представленных на фиг. 4. При этом первая приемная антенна 13, входящая в состав каждого из этих приемопередатчиков 5, принимает информационные радиосигналы, излучаемые с указанных соседних базовых станций 1. Принимаемые информационные радиосигналы поступают на входы всех первых полосовых фильтров 14, которые осуществляют их селекцию по частоте. На каждой базовой станции 1, являющейся соседней по отношению к указанным соседним базовым станциям 1, на выходе первых полосовых фильтров 14 действуют соответствующие принимаемым информационным радиосигналам высокочастотные амплитудно4 модулированные сигналы с коэффициентом модуляции М 0.5. Эти сигналы поступают на входы первых малошумящих усилителей 15, с выходов которых сигналы поступают на входы амплитудных ограничителей 16, которые выделяют несущие колебания принимаемых амплитудно-модулированных информационных радиосигналов, и на входы первых амплитудных детекторов 17, которые осуществляют амплитудное детектирование принимаемых информационных радиосигналов. Сигналы с выходов амплитудных ограничителей 16 поступают на соответствующие коммутируемые входы второго электронного коммутатора 22 и на входы первых блоков 18 возведения в квадрат. С выходов первых блоков 18 возведения в квадрат сигналы поступают на входы первых интеграторов 19, которые на входах первых АЦП 20 формируют в соответствии с формулой (2) сигналы, пропорциональные значениям мощности принимаемых информационных радиосигналов. Цифровые коды с выходов первых АЦП 20 поступают на входы второго микроконтроллера 30. Второй микроконтроллер 30 определяет по цифровым кодам, действующим на выходах первых АЦП 20, и известным значениям коэффициентов усиления соответствующих каналов приема информационных радиосигналов, значения мощности Рщ принимаемых информационных радиосигналов. Для каждого из каналов приема информационных радиосигналов второй микроконтроллер 30 осуществляет проверку условия Рпр Р мин ив случае его выполнения принимает решение о наличии на входе приемопередатчика 5 информационного радиосигнала соответствующей рабочей частоты, в противном случае второй микроконтроллер 30 принимает противоположное решение. Затем второй микроконтроллер 30 считывает из второго блока 31 задания заданное значение рабочей частоты информационных радиосигналов, излучаемых с этой базовой станции 1, а также заданные значения рабочих частот информационных
240//05W6
29 радиосигналов, принимаемых на этой базовой станции 1, при которых с этой базовой станции 1 осуществляют излучение информационных радиосигналов на заданной рабочей частоте, и определяет по этим заданным значениям рабочих частот и значениям сигналов, действующих на выходах всех первых АЦП 20, рабочую частоту информационного радиосигнала максимальной мощности. Второй микроконтроллер 30 формирует управляющие сигналы на управляющих входах первого электронного коммутатора 21, который подключает выход первого амплитудного детектора 17, соответствующего рабочей частоте информационного радиосигнала максимальной мощности, к низкочастотному входу второго амплитудного модулятора 27. Второй микроконтроллер 30 формирует также управляющие сигналы на управляющих входах второго электронного коммутатора 22, который подключает выход амплитудного ограничителя 16, соответствующего рабочей частоте информационного радиосигнала максимальной мощности, к первому входу фазового детектора 23. Одновременно второй микроконтроллер 30 определяет по формуле (3) требуемое значение отношения коэффициентов деления первого делителя 25 частоты и второго делителя 26 частоты. Второй микроконтроллер 30 формирует на управляющих входах первого делителя 25 частоты и второго делителя 26 частоты управляющие сигналы, по которым их коэффициенты деления принимают значения, удовлетворяющие полученному по формуле (3) отношению. В результате этого аналогично описанному выше на выходе второго делителя 26 частоты действуют колебания заданной рабочей частоты /, стабильность которой определяется стабильностью рабочей частоты одного из информационных радиосигналов, излучаемых с базовых станций 1, являющихся соседними по отношению к базовой станции 1, являющейся источником передаваемой информации.
SwottоУ &(3 Сигнал с выхода второго делителя 26 частоты поступает на высокочастотный ЁХОД второго амплитудного модулятора 27, на низкочастотный вход которого поступает двоичная последовательность импульсов, действующая на выходе указанного первого амплитудного детектора 17. Второй амплитудный модулятор 27 формирует высокочастотный амплитудно-модулированный сигнал с коэффициентом модуляции М 0.5. Этот сигнал поступает на вход второго усилителя 28 мощности, с выхода которого усиленный сигнал поступает на вход второй передающей антенны 29. Вторая передающая антенна 29 излучает в пространство сформированный таким образом информационный радиосигнал, соответствующий информации, передаваемой на подвижные объекты 2. Таким образом, на каждой из базовых станций 1, являющихся соседними по отношению к указанным соседним базовым станциям 1, стабилизацию рабочей частоты излучаемых информационных радиосигналов осуществляют по рабочей частоте одного из информационных радиосигналов, принимаемых на этой базовой станции 1, при которой с этой базовой станции 1 осуществляют излучение информационных радиосигналов на заданной рабочей частоте. На каждой из этих базовых станций 1 соответствующей указанной рабочей частотой одного из принимаемых информационных радиосигналов является рабочая частота информационных радиосигналов, излучаемых с одной из соответствующих указанных соседних базовых станции 1. По аналогии с изложенным функционируют все приемопередатчики 5, входящие в состав всех других базовых станций 1. Информационные радиосигналы, излучаемые с каждой базовой станции 1, проникают через первые приемные антенны 13 на входы приемопередатчиков 5, входящих в состав соседних базовых станций 1. Однако это не вызывает «зацикливания работы системы, поскольку
2Јo//0Ј5V5 излучение информационных радиосигналов с каждой базовой станции 1, кроме базовой станции 1, являющейся источником передаваемой информации, осуществляют лишь при приеме на этой базовой станции 1 информационных радиосигналов одной из заданных на этой базовой станции 1 рабочих частот. При этом излучение информационных радиосигналов с базовой станции 1, являющейся источником передаваемой информации, осуществляют независимо от работы соседних базовых станций 1. При достаточно высоком быстродействии описанных элементов и блоков, можно считать, что приемопередатчики 5, входящие в состав базовых станций 1, осуществляют одновременно прием излучаемых с соседних базовых станций 1 информационных радиосигналов и их излучение на соответствующих заданных рабочих частотах. Таким образом, приемопередатчики 5, входящие в состав базовых станций 1, в соответствии с информацией, содержащейся во вторых блоках 31 задания, последовательно, по всем направлениям от базовой станции 1, являющейся источником передаваемой информации, к границам обслуживаемой территории на всех других последующих базовых станциях 1, являющихся соседними по отношению к предыдущим базовым станциям 1, осуществляют одновременно прием излучаемых с предыдущих базовых станций 1 информационных радиосигналов и их излучение на соответствующих заданных рабочих частотах. При этом на каждой базовой станции 1, кроме базовой станции 1, являющейся источником передаваемой информации, стабилизацию заданных рабочих частот излучаемых информационных радиосигналов осуществляют по рабочей частоте одного из информационных радиосигналов, принимаемых на этой базовой станции 1, при которой с этой базовой станции 1 осуществляют излучение информационных радиосигналов на заданной рабочей частоте.
200/70 ОДЗ
32 На каждом подвижном объекте 2, находящемся в пределах обслуживаемой территории, вторая приемная антенна 32, входящая в состав размещенного на нем радиоприемника 6, представленного на фиг. 5, принимает информационные радиосигналы, излучаемые с базовых станций 1, в зонах 3 действия которых находится этот подвижный объект 2. Эти сигналы с выхода второй приемной антенны 32 поступают на входы вторых полосовых фильтров 33, которые осуществляют их селекцию по частоте. Сигналы с выходов вторых полосовых фильтров 33 поступают на входы вторых малошумящих усилителей 34, сигналы с выходов которых поступают на входы вторых амплитудных детекторов 35, которые осуществляют амплитудное детектированиепринимаемых информационных радиосигналов. Двоичные последовательности импульсов, вырабатываемые вторыми амплитудными детекторами 35, поступают на входы третьего микроконтроллера 39. Одновременно сигналы с выходов вторых малошумящих усилителей 34 поступают на входы вторых блоков 36 возведения в квадрат, выходные сигналы которых поступают на входы вторых интеграторов 37, которые на входах вторых АЦП 38 формируют в соответствии с формулой (2) сигналы, пропорциональные мощности принимаемых информационных радиосигналов. Цифровые коды с выходов вторых АЦП 38 поступают на входы третьего микроконтроллера 39. Третий микроконтроллер 39 определяет по цифровым кодам, действующим на выходах вторых АЦП 38, и известным значениям коэффициентов усиления соответствующих каналов приема информационных радиосигналов, значения мощности Р принимаемых информационных радиосигналов. Для каждого из каналов приема информационных радиосигналов третий микроконтроллер 39 осуществляет проверку условия Рщ i P и в случае его выполнения
противном случае третий микроконтроллер 39 принимает противоположное решение. Затем третий микроконтроллер 39 обрабатывает двоичные последовательности импульсов, действующие на выходах соответствующих вторых амплитудных детекторов 35, и формирует на входах индикатора 40 сигналы, по которым индикатор 40 отображает информацию, передаваемую на подвижные объекты 2.
Таким образом, описанное техническое решение позволяет, в отличие от прототипа, осуществлять передачу информации на подвижные объекты 2, находящиеся в пределах обслуживаемой территории, без использования центра коммутации и оптоволоконных линий связи, соединяющих центр коммутации с базовыми станциями 1, что существенно упрощает систему. Кроме того, данное техническое решение позволяет снизить, по сравнению с прототипом, число заданных частот приема каждого из радиоприемников 7, размещенных на подвижных объектах 2, с семи до пяти, что также упрощает систему.
ПРИЛОЖЕНИЕ 1
к заявке на полезную модель
«СИСТЕМА ПЕРЕДАЧИ ИНФОРМАЦИИ НА ПОДВИЖНЫЕ
авторов: Урецкий Я.С., Купершмидт П.В. и др. АЛГОРИТМ РАБОТЫ ПЕРВОГО МИКРОКОНТРОЛЛЕРА 12
Считывание из первого блока 11 задания в двоичном коде информации, предназначенной для передачи на подвижные объекты 2
Формирование на низкочастотном входе первого амплитудного модулятора 8 двоичной последовательности импульсов, соответствующей считанному из первого блока 11 задания двоичному коду
s
ОБЪЕКТЫ
Начало
ПРИЛОЖЕНИЕ 2
к заявке на полезную модель
«СИСТЕМА ПЕРЕДАЧИ ИНФОРМАЦИИ НА ПОДВИЖНЫЕ
авторов: Урецкий Я.С., Купершмидт П.В. и др. АЛГОРИТМ РАБОТЫ ВТОРОГО МИКРОКОНТРОЛЛЕРА 30
Определение для каждого из каналов приема информационных радиосигналов по цифровому коду, действующему на выходах первого АЦП 20, и известному значению коэффициента усиления соответствующего канала приема информационных радиосигналов значения мощности Р принимаемого информационного радиосигнала и сравнение этого значения мощи Р,
ности с величиной
$Ј0t/0 L$l/$
ОБЪЕКТЫ
Начало
пр.мин
хЧ
ч/
Считывание из второго блока 31 задания заданного значение рабочей частоты информационных радиосигналов, излучаемых с этой базовой станции 1, а также заданных значений рабочих частот информационных радиосигналов, принимаемых на этой базовой станции 1, при которых с этой базовой станции 1 осуществляют излучение информационных радиосигналов на заданной рабочей частоте
Чх
&W/ iЈfyj
26 N/
Определение по этим заданным значениям рабочих частот и значениям сигналов, действующих на выходах соответствующих первых АЦП 20, рабочей частоты информационного радиосигнала максимальной мощности
Формирование управляющих сигналов на управляющих входах первого электронного коммутатора 21 для подключения выхода первого амплитудного детектора 17, соответствующего рабочей частоте информационного радиосигнала максимальной мощности, к низкочастотному входу второго амплитудного модулятора 27
Формирование управляющих сигналов на управляющих входах второго электронного коммутатора 22 для подключения выхода амплитудного ограничителя 16, соответствующего рабочей частоте информационного радиосигнала максимальной мощности, к первому входу фазового детектора 23
200/70 CTJ
26
3 Ч/
2a
Определение требуемого значения отношения коэффициентов деления первого делителя 25 частоты и второго делителя 26 частоты
Формирование на управляющих входах первого делителя 25 частоты и второго делителя 26 частоты управляющих сигналов, соответствующих полученным коэффициентам деления К1 и К2
faof(& 3
/
i /
JL - /зад 2 /м макс.
ПРИЛОЖЕНИЕ 3
к заявке на полезную модель
«СИСТЕМА ПЕРЕДАЧИ ИНФОРМАЦИИ НА ПОДВИЖНЫЕ
авторов: Урецкий Я.С., Купершмидт П.В. и др. АЛГОРИТМ РАБОТЫ ТРЕТЬЕГО МИКРОКОНТРОЛЛЕРА 39
Определение для каждого из каналов приема информационных радиосигналов по цифровым кодам, действующим на выходах второго АЦП 38, и известному значению коэффициента усиления соответствующего канала приема информационных радиосигналов, значения мощности Рпр принимаемого информационного
радиосигнала и сравнение этого значения мощности с
величиной R.
пр.мин
towte i$it2
ОБЪЕКТЫ
Начало
la
Считывание с выходов вторых амплитудных детекторов 35 двоичной последовательности импульсов, соответствующей информации, передаваемой на подвижные объекты 2
Формирование на входах индикатора 40 сигналов, соответствующих передаваемой информации
XX
16

Claims (1)

  1. Система передачи информации на подвижные объекты, содержащая радиопередатчик, входящий в состав базовой станции, являющейся источником передаваемой информации, приемопередатчики, входящие по одному в состав каждой из базовых станций, не являющихся источниками передаваемой информации и размещенных в условных ячейках, представляющих собой равные правильные шестиугольники, плотно расположенные между собой, плотно покрывающие обслуживаемую территорию, радиусы зон действия всех базовых станций равны длине стороны каждого правильного шестиугольника, на каждой из всех базовых станций задана частота передачи этой базовой станции, являющаяся одной из заданных различных частот, радиоприемники, размещенные по одному на каждом из подвижных объектов, находящихся в пределах зон действия всех базовых станций, с заданными частотами приема каждого радиоприемника, отличающаяся тем, что все базовые станции размещены в вершинах указанных правильных шестиугольников, число заданных различных частот, из которых на каждой базовой станции задана одна частота передачи этой базовой станции, равно шести, заданная частота передачи каждой базовой станции, размещенной в вершине правильных шестиугольников, является отличной от заданных частот передачи соседних базовых станций, размещенных в соседних вершинах этих правильных шестиугольников, заданными частотами приема каждого радиоприемника являются пять различных из указанных шести заданных частот, радиопередатчик содержит опорный генератор, первый амплитудный модулятор, первый усилитель мощности, первую передающую антенну, первый блок задания, первый микроконтроллер, причем выход опорного генератора, настроенного на заданную частоту передачи этой базовой станции, подключен к высокочастотному входу первого амплитудного модулятора, выход которого подключен к входу первого усилителя мощности, к выходу которого подключена первая передающая антенна, к низкочастотному входу первого амплитудного модулятора подключен выход первого микроконтроллера, к входам которого подключены выходы первого блока задания, приемопередатчик, входящий в состав каждой базовой станции, не являющейся источником передаваемой информации, содержит первую приемную антенну, три канала приема информационных радиосигналов, каждый из которых содержит первый полосовой фильтр, первый малошумящий усилитель, амплитудный ограничитель, первый амплитудный детектор, первый блок возведения в квадрат, первый интегратор, первый аналого-цифровой преобразователь, приемопередатчик содержит также первый электронный коммутатор, второй электронный коммутатор, фазовый детектор, управляемый генератор, первый делитель частоты, второй делитель частоты, второй амплитудный модулятор, второй усилитель мощности, вторую передающую антенну, второй микроконтроллер, второй блок задания, причем выход первой приемной антенны подключен к входам всех первых полосовых фильтров, каждый из которых настроен на заданную частоту передачи одной из соответствующих соседних базовых станций, в каждом канале приема информационных радиосигналов выход первого полосового фильтра подключен к входу первого малошумящего усилителя, выход которого подключен к входу амплитудного ограничителя, выход первого малошумящего усилителя подключен также к входу первого амплитудного детектора, выход которого подключен к входу первого блока возведения в квадрат, выход которого подключен к входу первого интегратора, выход которого соединен с входом первого аналого-цифрового преобразователя, выходы всех первых аналого-цифровых преобразователей подключены к соответствующим входам второго микроконтроллера, выходы всех первых амплитудных детекторов подключены к соответствующим коммутируемым входам первого электронного коммутатора, выходы всех амплитудных ограничителей подключены к соответствующим коммутируемым входам второго электронного коммутатора, выход которого подключен к первому входу фазового детектора, выход фазового детектора подключен к управляющему входу управляемого генератора, выход которого подключен к входу первого делителя частоты и к входу второго делителя частоты, выход первого делителя частоты подключен ко второму входу фазового детектора, выход второго делителя частоты подключен к высокочастотному входу второго амплитудного модулятора, к низкочастотному входу второго амплитудного модулятора подключен выход первого электронного коммутатора, выход второго амплитудного модулятора подключен к входу второго усилителя мощности, к выходу которого подключена вторая передающая антенна, к входам второго микроконтроллера подключены выходы второго блока задания, выходы второго микроконтроллера подключены к управляющим входам первого электронного коммутатора, второго электронного коммутатора, первого делителя частоты и второго делителя частоты, радиоприемник, размещенный на каждом подвижном объекте, содержит вторую приемную антенну, пять каналов приема информационных радиосигналов, каждый из которых содержит второй полосовой фильтр, второй малошумящий усилитель, второй амплитудный детектор, второй блок возведения в квадрат, второй интегратор, второй аналого-цифровой преобразователь, радиоприемник содержит также третий микроконтроллер, индикатор, причем выход второй приемной антенны подключен к входам всех вторых полосовых фильтров, каждый из которых настроен соответственно на одну из заданных частот приема этот радиоприемника, в каждом канале приема информационных радиосигналов выход второго полосового фильтра подключен к входу второго малошумящего усилителя, выход которого подключен к входу второго амплитудного детектора, выход второго малошумящего усилителя подключен также к входу второго блока возведения в квадрат, выход которого подключен к входу второго интегратора, выход которого соединен с входом второго аналого-цифрового преобразователя, выходы всех вторых амплитудных детекторов и выходы всех вторых аналого-цифровых преобразователей подключены к соответствующим входам третьего микроконтроллера, к выходам которого подключены входы индикатора.
    Figure 00000001
RU2001107543/20U 2001-03-23 2001-03-23 Система передачи информации на подвижные объекты RU19628U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001107543/20U RU19628U1 (ru) 2001-03-23 2001-03-23 Система передачи информации на подвижные объекты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001107543/20U RU19628U1 (ru) 2001-03-23 2001-03-23 Система передачи информации на подвижные объекты

Publications (1)

Publication Number Publication Date
RU19628U1 true RU19628U1 (ru) 2001-09-10

Family

ID=48278972

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001107543/20U RU19628U1 (ru) 2001-03-23 2001-03-23 Система передачи информации на подвижные объекты

Country Status (1)

Country Link
RU (1) RU19628U1 (ru)

Similar Documents

Publication Publication Date Title
RU19628U1 (ru) Система передачи информации на подвижные объекты
RU19627U1 (ru) Система передачи информации на подвижные объекты
RU2191474C1 (ru) Способ передачи информации на подвижные объекты
RU2193819C1 (ru) Способ передачи информации на подвижные объекты
RU19629U1 (ru) Система передачи информации на подвижные объекты
RU2191476C1 (ru) Способ передачи информации на подвижные объекты
KR20070088069A (ko) 혼돈신호 발생기를 갖는 rf 통신 시스템 및 혼돈신호생성방법
RU2191475C1 (ru) Способ передачи информации на подвижные объекты
RU19621U1 (ru) Система передачи информации на подвижные объекты
RU19672U1 (ru) Система передачи информации на подвижные объекты
RU2193818C1 (ru) Способ передачи информации на подвижные объекты
RU19620U1 (ru) Система передачи информации на подвижные объекты
RU2002132640A (ru) Способ и устройство радиоподавления каналов связи
RU19624U1 (ru) Система передачи информации на подвижные объекты
RU19630U1 (ru) Система передачи информации на подвижные объекты
RU19625U1 (ru) Система передачи информации на подвижные объекты
RU2191473C1 (ru) Способ передачи информации на подвижные объекты
RU2187895C1 (ru) Способ передачи информации на подвижные объекты
RU19626U1 (ru) Система передачи информации на подвижные объекты
RU2194364C1 (ru) Способ передачи информации на подвижные объекты
RU19623U1 (ru) Система передачи информации на подвижные объекты
RU2195775C2 (ru) Способ передачи информации на подвижные объекты
RU2195778C2 (ru) Способ определения местоположения подвижного объекта
RU19622U1 (ru) Система передачи информации на подвижные объекты
RU19591U1 (ru) Система определения местоположения подвижного объекта