RU19621U1 - Система передачи информации на подвижные объекты - Google Patents

Система передачи информации на подвижные объекты Download PDF

Info

Publication number
RU19621U1
RU19621U1 RU2001107531/20U RU2001107531U RU19621U1 RU 19621 U1 RU19621 U1 RU 19621U1 RU 2001107531/20 U RU2001107531/20 U RU 2001107531/20U RU 2001107531 U RU2001107531 U RU 2001107531U RU 19621 U1 RU19621 U1 RU 19621U1
Authority
RU
Russia
Prior art keywords
base station
output
base stations
input
frequencies
Prior art date
Application number
RU2001107531/20U
Other languages
English (en)
Inventor
Я.С. Урецкий
П.В. Купершмидт
Л.М. Воронина
В.Л. Трофимов
Л.С. Царев
Original Assignee
Ипатьев Василий Михайлович
Купершмидт Петр Владимирович
Урецкий Ян Семенович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ипатьев Василий Михайлович, Купершмидт Петр Владимирович, Урецкий Ян Семенович filed Critical Ипатьев Василий Михайлович
Priority to RU2001107531/20U priority Critical patent/RU19621U1/ru
Application granted granted Critical
Publication of RU19621U1 publication Critical patent/RU19621U1/ru

Links

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Система передачи информации на подвижные объекты, содержащая приемопередатчики, входящие по одному в состав каждой из базовых станций, размещенных в условных ячейках, представляющих собой равные правильные шестиугольники, плотно расположенные между собой, плотно покрывающие обслуживаемую территорию с радиусами зон действия базовых станций, равными длине стороны каждого правильного шестиугольника, и с заданной на каждой базовой станции частотой передачи этой базовой станции, являющейся одной из заданных различных частот, радиоприемники, размещенные по одному на каждом из подвижных объектов, находящихся в пределах зон действия всех базовых станций, с заданными частотами приема каждого радиоприемника, отличающаяся тем, что базовые станции размещены в вершинах указанных правильных шестиугольников, число заданных различных частот, из которых на каждой базовой станции задана одна частота передачи этой базовой станции, равно шести, заданная частота передачи каждой базовой станции, размещенной в вершине правильных шестиугольников, является отличной от заданных частот передачи соседних базовых станций, размещенных в соседних вершинах этих правильных шестиугольников, заданными частотами приема каждого радиоприемника являются пять различных из указанных шести заданных частот, приемопередатчик, входящий в состав каждой базовой станции, содержит первую приемную антенну, три канала приема информационных радиосигналов, каждый из которых содержит первый полосовой фильтр, первый малошумящий усилитель, первый амплитудный ограничитель, первый частотный детектор, первый блок возведения в квадрат, первый инт

Description

СИСТЕМА ПЕРЕДАЧИ ИНФОРМАЦИИ НА ПОДВИЖНЫЕ
Техническое решение относится к средствам подвижной радиосвязи, а именно к системам передачи информации на подвижные объекты.
Известна система персонального радиовызова (см., например, Громаков Ю.А. Стандарты и системы подвижной радиосвязи. - М.: ЭкоТрендз, 2000, с. 10-52), содержащая радиопередатчик с заданным радиусом зоны действия, покрывающей обслуживаемую территорию, и радиоприемники, размещенные по одному на каждом из подвижных объектов, находящихся в пределах зоны действия указанного радиопередатчика.
Указанная система позволяет с помощью одного радиопередатчика передавать информацию на все подвижные объекты, находящиеся в пределах обслуживаемой территории. Однако при передаче информации на подвижные объекты, находящиеся в пределах достаточно обширной обслуживаемой территории, в системе необходимо применять радиопередатчик большой мощности, что ухудшает экологические и экономические показатели системы.
Известна система сотовой радиосвязи (см., например, Ратынский М.В. Основы сотовой связи. Под ред. Д.Б. Зимина. - М.: Радио и связь, 2000, с.20-68), содержащая первые приемопередатчики, входящие по одному в состав каждой из базовых станций, размещенных в центрах условных ячеек, представляющих собой равные правильные шестиугольники, плотно расположенные между собой, плотно покрывающие обслуживаемую территорию, с радиусами зон действия базовых станций, равными длине стороны каждого правильного
ОБЪЕКТЫ
шестиугольника, и с заданной на каждой из базовых станций частотой передачи этой базовой станции, являющейся одной из семи заданных различных частот, отличной от частот передачи соседних базовых станций, на каждой базовой станции заданы также частоты приема этой базовой станции, вторые приемопередатчики, размещенные по одному на каждом из подвижных объектов, находящихся в пределах зон действия всех базовых станций, с заданными частотами передачи и частотами приема каждого второго приемопередатчика, причем заданные частоты приема базовых станций совпадают с заданными частотами передачи каждого второго приемопередатчика, которые являются отличными от любой из заданных частот передачи базовых станций, заданными частотами приема каждого второго приемопередатчика являются все семь заданных частот передачи базовых станций, центр коммутации, оптоволоконные линии связи, соединяющие центр коммутации с базовыми станциями.
Указанная система позволяет осуществлять радиосвязь между подвижными объектами, находящимися в пределах достаточно обширной обслуживаемой территории, и, в частности, передавать информацию с одной из базовых станций, являющейся источником передаваемой информации, на эти подвижные объекты. При этом в системе могут быть применены сравнительно маломощные первые приемопередатчики и вторые приемопередатчики.
Однако для передачи информации с базовой станции, являющейся источником передаваемой информации, на базовые станции, в зонах действия которых находятся указанные подвижные объекты, в системе применены центр коммутации и оптоволоконные линии связи, соединяющие центр коммутации с базовыми станциями, что усложняет систему. При этом радиосвязь между базовыми станциями без применения дополнительных каналов радиосвязи невозможна, так как при заданных
tUWJO 53/
значениях радиусов зон действия базовых станций и параметрах размещения базовых станций на обслуживаемой территории расстояние
между двумя любыми соседними базовыми станциями в л/3 раз больше радиусов зон их действия.
Кроме того, поскольку зоны действия соседних базовых станций перекрываются незначительно, в пределах центральных участков зоны действия каждой базовой станции возможен прием радиосигналов лишь этой базовой станции, в связи с чем число заданных частот приема каждого из вторых приемопередатчиков, размещенных на подвижных объектах, не может быть меньше семи, что также усложняет систему.
Решаемой технической задачей является упрощение системы передачи информации на подвижные объекты на основе рационального размещения базовых станций на обслуживаемой территории.
Решение технической задачи в системе передачи информации на подвижные объекты, содержащей приемопередатчики, входящие по одному в состав каждой из базовых станций, размещенных в условных ячейках, представляющих собой равные правильные шестиугольники, плотно расположенные между собой, плотно покрывающие обслуживаемую территорию, с радиусами зон действия базовых станций, равными длине стороны каждого правильного шестиугольника, и с заданной на каждой базовой станции частотой передачи этой базовой станции, являющейся одной из заданных различных частот, радиоприемники, размещенные по одному на каждом из подвижных объектов, находящихся в пределах зон действия всех базовых станций, с заданными частотами приема каждого радиоприемника, достигается тем, что базовые станции размещены в вершинах указанных правильных шестиугольников, число заданных различных частот, из которых на каждой базовой станции задана одна частота передачи этой базовой станции, равно шести, заданная частота передачи каждой базовой станции,
размещенной в вершине правильных шестиугольников, является отличной от заданных частот передачи соседних базовых станций, размещенных в соседних вершинах этих правильных шестиугольников, заданными частотами приема каждого радиоприемника являются пять различных из указанных шести заданных частот, приемопередатчик, входящий в состав каждой базовой станции, содержит первую приемную антенну, три канала приема информационных радиосигналов, каждый из которых содержит первый полосовой фильтр, первый малошумящий усилитель, первый амплитудный ограничитель, первый частотный детектор, первый блок возведения в квадрат, первый интегратор, первый аналогово-цифровой преобразователь, приемопередатчик содержит также электронный коммутатор, управляемый генератор, усилитель мощности, передающую антенну, первый микроконтроллер, блок задания, причем выход первой приемной антенны подключен к входам всех первых полосовых фильтров, каждый из которых настроен на заданную частоту передачи одной из соответствующих соседних базовых станций, в каждом канале приема информационных радиосигналов выход первого полосового фильтра подключен к входу первого малошумящего усилителя, выход которого подключен к входу первого амплитудного ограничителя, выход которого подключен к входу первого частотного детектора, выход первого малошумящего усилителя подключен также к входу первого блока возведения в квадрат, выход которого подключен к входу первого интегратора, выход которого соединен с входом первого аналогоцифрового преобразователя, выходы всех первых аналого-цифровых преобразователей подключены к соответствующим входам первого микроконтроллера, выходы всех первых частотных детекторов подключены к соответствующим коммутируемым входам электронного коммутатора, выходы первого микроконтроллера подключены к одному из коммутируемых входов и к управляющим входам электронного
коммутатора, выход которого подключен к управляющему входу управляемого генератора, настроенного на заданную частоту передачи этой базовой станции, выход управляемого генератора соединен с входом усилителя мощности, к выходу которого подключена передающая антенна, к входам первого микроконтроллера подключен блок задания, радиоприемник содержит вторую приемную антенну, пять каналов приема информационных радиосигналов, каждый из которых содержит второй полосовой фильтр, второй малошумящий усилитель, второй амплитудный ограничитель, второй частотной детектор, второй блок возведения в квадрат, второй интегратор, второй аналоге , -цифровой преобразователь, радиоприемник содержит также второй микроконтроллер, индикатор, причем выход второй приемной антенны подключен к входам всех вторых полосовых фильтров, каждый из которых настроен соответственно на одну из заданных частот приема этого радиоприемника, в каждом канале приема информационных радиосигналов выход второго полосового фильтра подключен к входу второго малошумящего усилителя, выход которого подключен к входу второго амплитудного ограничителя, выход которого подключен к входу второго частотного детектора, выход второго малошумящего усилителя подключен также к входу второго блока возведения в квадрат, выход которого подключен к входу второго интегратора, выход которого подключен к входу второго аналогоцифрового преобразователя, выходы всех вторых частотных детекторов и выходы всех вторых аналого-цифровых преобразователей подключены к соответствующим входам второго микроконтроллера, выходы которого подключены к входам индикатора.
Термин «подвижный объект является общепринятым. (См., например, Соловьев Ю.А. Системы спутниковой навигации. - М.: Экотрендз, 2000, с. 47.) К подвижным объектам относят, например, различные автотранспортные средства, оснащенные радиоприемной аппаратурой.
Под терминами «соседняя базовая станция или «базовая станция, являющаяся соседней по отношению к данной базовой станции понимаем базовые станции, размещаемые на ближайшем расстоянии от данной базовой станции.
На фиг. 1 изображены условно базовые станции, размещенные на обслуживаемой территории, и подвижные объекты, находящиеся в пределах обслуживаемой территории, с условным изображением зон действия базовых станций и указанием заданных рабочих частот информационных радиосигналов, излучаемых с каждой из этих базовых станций, для случая, при котором число базовых станций равно пятидесяти четырем, число подвижных объектов равно пяти.
На фиг. 2 изображена система передачи информации на подвижные объекты для случая, при котором число приемопередатчиков, входящих по одному в состав каждой из базовых станций, равно двенадцати, и число радиоприемников, размещенных по одному на каждом из подвижных объектов, равно трем, причем подвижные объекты на фиг. 2 не изображены.
На фиг. 3 изображен приемопередатчик, входящий в состав каждой из базовых станций, причем базовая станция на фиг. 3 не изображена.
На фиг. 4 изображен радиоприемник, размещенный на каждом из подвижных объектов, причем подвижный объект на фиг. 4 не изображен.
В настоящем описании применены следующие обозначения.
п - базовая станция 1 с номером п, где п 1,2,...,// положительные целые числа; 2т - подвижный объект 2 с номером т, где т 1,2,...,М - положительные целые числа; 3„ - зона 3 действия базовой станции 1„; fq - рабочая частота информационных радиосигналов, излучаемых с базовой станции 1, где q 1,2,...,О - положительные целые числа. В тех случаях, когда это не приводит к неверному толкованию, индексы в приведенных обозначениях опущены.
Сущность технического решения заключается в следующем.
На обслуживаемой территории в вершинах условных ячеек, представляющих собой равные правильные шестиугольники, плотно покрывающие обслуживаемую территорию, размещают, как показано на фиг. 1, базовые станции 1 (базовые станции li - 154) с радиусами зон 3 действия, равными длине стороны каждого правильного шестиугольника.
При таком размещении базовых станций 1 на обслуживаемой территории соседними по отношению к каждой базовой станции 1 являются не более трех базовых станций 1.
Под зоной 3 действия каждой базовой станции 1 понимаем равные между собой зону 3 действия при излучении радиосигналов с этой базовой станции 1 и зону 3 действия при приеме радиосигналов на этой базовой станции 1.
При этом под зоной 3 действия при излучении радиосигналов с каждой базовой станции 1 понимаем часть территории, в пределах которой при ненаправленном излучении с этой базовой станции 1 радиосигналов мощности Pqmil на рабочей частоте fq мощность этих
радиосигналов при их ненаправленном приеме на других базовых станциях 1 и на подвижных объектах 2, не меньше некоторой пороговой величины прмин, характеризующей чувствительность каналов приема
радиосигналов на базовых станциях 1 и на подвижных объектах 2. Под зоной 3 действия при приеме радиосигналов на каждой базовой станции 1 понимаем часть территории, в пределах которой при ненаправленном излучении с других базовых станций 1 радиосигналов той же мощности PqK3J1 на той же рабочей частоте fq мощность этих радиосигналов при
ненаправленном приеме на этой базовой станции 1, не меньше той же величины РПР.
В связи с этим, принимая допущение о том, что распространение радиоволн происходит в свободном пространстве, а обслуживаемая территория является плоскостью, зона 3 действия каждой базовой станции 1 при ненаправленном излучении с базовых станций 1 и ненаправленном приеме радиосигналов на базовых станциях 1 и на подвижных объектах 2 представляет собой круг с центром в точке размещения этой базовой станции 1 и радиусом, определяемым по формуле (см., например, Теоретические основы радиолокации. Под ред. В.Е. Дулевича. - М.: Советское радио, 1978, с.402)
Р с I диздm
4 Кпр.мин
где с - скорость света в вакууме.
Под радиусом зоны 3 действия каждой базовой станции 1 понимаем радиус указанного круга.
При размещении базовых станций 1 в вершинах условных ячеек, представляющих собой равные правильные шестиугольники, плотно покрывающие обслуживаемую территорию, с радиусами зон 3 действия базовых станций 1, равными длине стороны каждого правильного шестиугольника, граница зоны 3 действия каждой базовой станции 1 проходит через точки размещения соседних базовых станций 1. На фиг.1 границы зон 3 действия базовых станций 1 изображены условно окружностями.
В настоящем описании под термином «мощность сигнала понимаем среднюю мощность Р сигнала s(t), определяемую в интервале времени ta t tb по формуле (см., например, A.M. Трахтман. Введение в
обобщенную спектральную теорию сигналов. - М.: Советское радио, 1972, с.14)
Задают шесть различных рабочих частот (Q 6) информационных
радиосигналов, излучаемых со всех базовых станций 1. Из шести заданных рабочих частот на каждой базовой станции 1 задают, как показано на фиг. 1, одну рабочую частоту информационных радиосигналов, излучаемых с этой базовой станции 1, отличную от заданных рабочих частот информационных радиосигналов, излучаемых с соседних базовых станций 1. Таким образом, на базовых станциях 1, не являющихся соседними, задают повторяющиеся рабочие частоты информационных радиосигналов, излучаемых с этих базовых станций 1.
Под термином «рабочая частота понимаем значение частоты несущего колебания, центральное или какое-либо другое характерное значение частоты полосы частот информационных радиосигналов. При этом полосы частот информационных радиосигналов, соответствующие различным рабочим частотам, являются не перекрывающимися.
Информационные сигналы, соответствующие информации, передаваемой на подвижные объекты 2, находящиеся в пределах обслуживаемой территории, передают с одной из базовых станций 1, являющейся источником передаваемой информации, на базовые станции 1, в зонах 3 действия которых находятся подвижные объекты 2. С этих базовых станций 1 осуществляют излучение информационных радиосигналов, соответствующих передаваемой информации. При этом информационными сигналами, соответствующими информации, передаваемой на подвижные объекты 2, находящиеся в пределах обслуживаемой территории, являются соответствующие информационные радиосигналы.
Передача информационных радиосигналов с базовой станции 1, являющейся источником передаваемой информации, на базовые станции 1, в зонах 3 действия которых находятся подвижные объекты 2, состоит в следующем. С базовой станции 1, являющейся источником передаваемой
информации, осуществляют излучение информационных радиосигналов на заданной рабочей частоте. При этом на всех базовых станциях 1, являющихся соседними по отношению к базовой станции 1, являющейся источником передаваемой информации, осуществляют одновременно прием излучаемых с последней базовой станции 1 информационных радиосигналов и их излучение на соответствующих заданных рабочих частотах. Затем на всех других базовых станциях 1, являющихся соседними по отношению к указанным базовым станциям 1, осуществляют одновременно прием излучаемых с указанных базовых станций 1 информационных радиосигналов и их излучение на соответствующих заданных рабочих частотах. Затем таким же образом последовательно, по всем направлениям от базовой станции 1, являющейся источником передаваемой информации, к границам обслуживаемой территории на всех других последующих базовых станциях 1, являющихся соседними по отношению к предыдущим базовым станциям 1, осуществляют одновременно прием излучаемых с предыдущих базовых станций 1 информационных радиосигналов и их излучение на соответствующих заданных рабочих частотах.
Для обеспечения передачи информационных радиосигналов с базовой станции 1, являющейся источником передаваемой информации, на базовые станции 1, в зонах 3 действия которых находятся подвижные объекты 2, на базовые станции 1, в зонах 3 действия которых находятся подвижные объекты 2, а, следовательно, и на все другие базовые станции 1, без «зацикливания на каждой базовой станции 1, кроме базовой станции 1, являющейся источником передаваемой информации, задают рабочие частоты информационных радиосигналов, принимаемых на этой базовой станции 1, при которых с этой базовой станции 1 осуществляют излучение информационных радиосигналов на заданной рабочей частоте.
3&CM07Sfy
При указанных параметрах размещения на обслуживаемой территории базовых станций 1 с заданными радиусами зон 3 действия в каждой точке обслуживаемой территории перекрываются не менее двух зон 3 действия соседних базовых станций 1. Поскольку излучение информационных радиосигналов с соседних базовых станций 1 осуществляют на различных рабочих частотах, в каждую точку приема поступают информационные радиосигналы не менее двух различных заданных рабочих частот. Поэтому для обеспечения гарантированного приема информационных радиосигналов на подвижных объектах 2 при их перемещении в пределах обслуживаемой территории прием информационных радиосигналов на каждом подвижном объекте 2 достаточно осуществлять лишь на пяти различных из шести заданных рабочих частот.
На подвижных объектах 2 осуществляют прием информационных радиосигналов, излучаемых с базовых станций 1, в зонах 3 действия которых находятся эти подвижные объекты 2. При этом прием информационных радиосигналов на подвижных объектах 2 осуществляют на заданных рабочих частотах, которыми на каждом подвижном объекте 2 являются пять различных из шести заданных рабочих частот.
Для обеспечения работоспособности системы размещение базовых станций 1 вблизи границ обслуживаемой территории необходимо осуществлять так, чтобы в каждой точке обслуживаемой территории происходило перекрытие не менее двух зон 3 действия соседних базовых станций 1. Так, например, границей обслуживаемой территории, представленной на фиг. 1, может являться замкнутая ломаная, проходящая через все крайние базовые станции 1 (базовые станции 1Ь 15, Ь, U, Ъ, Ь,
111, Il6, bl, 127, Ъз, Ьв, 143, 1-47, Ьь Ь4, Ьо, 1бЗ, 149, Is2, Ug, 144, 1з9, 1з4, Ъ, Ь2, Il7, Il2, Ь, U)Система передачи информации на подвижные объекты 2 представлена на фиг. 2. Система содержит приемопередатчики 4, входящие по одному в состав каждой из базовых станций 1, и радиоприемники 5, размещенные по одному на каждом из подвижных объектов 2, находящихся в пределах обслуживаемой территории. На фиг. 2 в качестве примера изображена система, содержащая двенадцать приемопередатчиков 4 и три радиоприемника 5. При этом описание системы и работы этой системы приведено для произвольного числа приемопередатчиков 4, входящих по одному в состав каждой из базовых станций 1, и радиоприемников 5, размещенных по одному на каждом из подвижных объектов 2, находящихся в пределах обслуживаемой территории.
Базовые станции 1 размещены в вершинах условных ячеек, представляющих собой равные правильные шестиугольники, плотно расположенные между собой, плотно покрывающие обслуживаемую территорию. Радиус зоны 3 действия каждой базовой станции 1 задан равным длине стороны каждого правильного шестиугольника. В каждой точке обслуживаемой территории перекрываются не менее двух зон 3 действия соседних базовых станций 1.
Частотой передачи базовой станции 1 является соответствующая рабочая частота информационных радиосигналов, излучаемых с этой базовой станции 1. Частотой приема радиоприемника 5 является соответствующая рабочая частота информационных радиосигналов, принимаемых на соответствующем подвижном объекте 2.
Термины «частота передачи и «частота приема какого-либо устройства являются общепринятыми. (См., например, Громаков Ю.А. Стандарты и системы подвижной радиосвязи. - М.: Эко-Трендз, 2000, с.22.)
ZUMVOT-ztf
Из шести заданных различных рабочих частот на каждой базовой станции 1 задана частота передачи этой базовой станции 1, отличная от заданных частот передачи соседних базовых станций 1. Из указанных шести заданных рабочих частот на каждом подвижном объекте 2 заданы пять различных частот приема радиоприемника 5, размещенного на этом подвижном объекте 2.
Все элементы и блоки, входящие в состав системы, являются известными и описанными в литературе.
Приемопередатчик 4, входящий в состав каждой базовой станции 1, представленный на фиг. 3, содержит первую приемную антенну 6, три канала приема информационных радиосигналов, каждый из которых содержит первый полосовой фильтр 7, первый малошумящий усилитель 8, первый амплитудный ограничитель 9, первый частотный детектор 10, первый блок 11 возведения в квадрат, первый интегратор 12, первый аналогово-цифровой преобразователь (АЦП) 13. Приемопередатчик 4 содержит также электронный коммутатор 14, управляемый генератор 15, усилитель 16 мощности, передающую антенну 17, первый микроконтроллер 18, блок 19 задания.
Выход первой приемной антенны 6, предназначенной для ненаправленного приема информационных радиосигналов, излучаемых с соседних базовых станций 1, подключен к входам всех первых полосовых фильтров 7. Информационные радиосигналы представляют собой высокочастотные частотно-манипулированные электромагнитные колебания соответствующих рабочих частот. Первые полосовые фильтры 7 служат для селекции информационных радиосигналов по частоте. При этом каждый из них настроен на заданную частоту передачи одной из соответствующих соседних базовых станций 1. Ширина полосы пропускания каждого первого полосового фильтра 7 не меньше ширины полосы частот информационных радиосигналов соответствующей рабочей
частоты. Полосы пропускания первых полосовых фильтров 7 являются не перекрывающимися. В каждом канале приема информационных радиосигналов выход первого полосового фильтра 7 подключен к входу первого малошумящего усилителя 8, предназначенного для усиления принимаемых информационных радиосигналов. Выход первого малошумящего усилителя 8 подключен к входу первого амплитудного ограничителя 9, который служит для устранения паразитной амплитудной модуляции сигналов, возникающей при распространении радиоволн. Выход первого амплитудного ограничителя 9 подключен к входу первого частотного детектора 10, предназначенного для осуществления частотного детектирования принимаемых информационных радиосигналов. Выход первого малошумящего усилителя 8 подключен также к входу первого блока 11 возведения в квадрат, выход которого подключен к входу первого интегратора 12. Последовательно соединенные первый блок 11 возведения в квадрат и первый интегратор 12 служат для формирования сигналов, пропорциональных мощности принимаемых радиосигналов. Выход первого интегратора 12 соединен с входом первого АЦП 13. Выходы всех первых АЦП 13 подключены к соответствующим входам первого микроконтроллера 18. Первый микроконтроллер 18 предназначен для управления электронным коммутатором 14, а также для формирования в приемопередатчике 4, входящем в состав базовой станции 1, являющейся источником передаваемой информации, модулирующей двоичной последовательности импульсов, соответствующей информации, передаваемой на подвижные объекты 2. Выходы всех первых частотных детекторов 10 подключены к соответствующим коммутируемым входам электронного коммутатора 14. Выходы первого микроконтроллера 18 подключены к одному из коммутируемых входов и к управляющим входам электронного коммутатора 14. Выход электронного коммутатора 14 подключен к управляющему входу управляемого генератора 15,
Зи&ОМО настроенного на заданную частоту передачи этой базовой станции 1. Управляемый генератор 15 служит для формирования высокочастотных частотно-манипулированных сигналов, соответствующих передаваемой информации. Выход управляемого генератора 15 соединен с входом усилителя 16 мощности, к выходу которого подключена передающая антенна 17, предназначенная для ненаправленного излучения в пространство информационных радиосигналов. К входам первого микроконтроллера 18 подключены выходы блока 19 задания, который на базовой станции 1, являющейся источником передаваемой информации, служит для ввода в первый микроконтроллер 18 информации, предназначенной для передачи на подвижные объекты 2, а на каждой из всех других базовых станций 1 - для задания значений рабочих частот информационных радиосигналов, принимаемых на этой базовой станции 1, при которых с этой базовой станции 1 осуществляют излучение информационных радиосигналов на заданной рабочей частоте.
Термин «управляемый генератор является общепринятым. (См., например, Теоретические основы радиолокации. Под ред. В.Е. Дулевича. М.: Советское радио, 1978, с. 358). Частота колебаний, формируемых управляемым генератором, определяется напряжением, действующим на его управляющем входе. В этом случае управляемый генератор является генератором, управляемым по напряжению. Генераторы, управляемые по напряжению, являются известными и описанными в литературе устройствами. (См., например, Хоровиц П., Хилл. У. Искусство схемотехники. В 3-х томах: Т.1. Пер. с англ. - 4-е изд. перераб. и доп. М.: Мир, 1993, с. 308.) Под частотой настройки управляемого генератора понимаем центральную частоту рабочего диапазона управляемого генератора, соответствующего рабочему диапазону управляющих напряжений.
В качестве блока 19 задания может быть использовано какое-либо известное и описанное в литературе цифровое устройство ввода данных. (См., например, Шевкопляс Б. В. Микропроцессорные структуры. Инженерные решения. -М.: Радио и связь, 1993, с. 27.)
Все базовые станции 1 содержат однотипные приемопередатчики 4, отличающиеся лишь значениями частот, на которые настраивают первые полосовые фильтры 7 и управляемые генераторы 15.
Радиоприемник 5, размещенный на каждом подвижном объекте 2, представленный на фиг. 4, содержит вторую приемную антенну 20, пять каналов приема информационных радиосигналов, каждый из которых содержит второй полосовой фильтр 21, второй малошумящий усилитель 22, второй амплитудный ограничитель 23, второй частотной детектор 24, второй блок 25 возведения в квадрат, второй интегратор 26, второй АЦП 27. Радиоприемник 5 содержит также второй микроконтроллер 28, индикатор 29.
Выход второй приемной антенны 20, предназначенной для ненаправленного приема информационных радиосигналов, излучаемых с базовых станций 1, подключен к входам всех вторых полосовых фильтров 21, которые служат для селекции информационных радиосигналов по частоте. Каждый из них настроен соответственно на одну из заданных частот приема этого радиоприемника 5. Ширина полосы пропускания каждого второго полосового фильтра 21 не меньше ширины полосы частот информационных радиосигналов соответствующей рабочей частоты. Полосы пропускания вторых полосовых фильтров 21 являются не перекрывающимися. В каждом канале приема информационных радиосигналов выход второго полосового фильтра 21 подключен к входу второго малошумящего усилителя 22, предназначенного для усиления принимаемых информационных радиосигналов. Выход второго малошумящего усилителя 22 подключен к входу второго амплитудного
Ј&амо7 гя
ограничителя 23, который служит для устранения паразитной амплитудной модуляции сигналов, возникающей при распространении радиоволн. Выход второго амплитудного ограничителя 23 подключен к входу второго частотного детектора 24, предназначенного для осуществлениячастотногодетектированияпринимаемых
информационных радиосигналов. Выход второго малошумящего усилителя 22 подключен также к входу второго блока 25 возведения в квадрат, выход которого подключен к входу второго интегратора 26. Последовательно соединенные второй блок 25 возведения в квадрат и второй интегратор 26 служат для формирования сигналов, пропорциональных мощности принимаемых радиосигналов. Выход второго интегратора 26 соединен с входом второго АЦП 27. Выходы всех вторых частотных детекторов 24 и выходы всех вторых АЦП 27 подключены к соответствующим входам второго микроконтроллера 28, предназначенного для обработки поступающей с базовых станций 1 информации и отображения ее на индикаторе 29, входы которого подключены к выходам второго микроконтроллера 28.
В качестве первых амплитудных ограничителей 9 и вторых амплитудных ограничителей 23 могут быть применены, например, нелинейные резонансные усилители, настроенные на соответствующие рабочие частоты. (См., например, Гоноровский И.С. Радиотехнические цепи и сигналы. - М.: Радио и связь, 1986, с. 235.)
На всех подвижных объектах 2 размещены однотипные радиоприемники 5, причем рабочие частоты, на которые настраивают вторые полосовые фильтры 21, могут совпадать на различных подвижных объектах 2.
На базовых станциях 1 и на подвижных объектах 2 заданы соответственно такие значения коэффициентов усиления первых малошумящих усилителей 8 и вторых малошумящих усилителей 22, при
которых чувствительность каналов приема информационных радиосигналов на базовых станциях 1 и на подвижных объектах 2 равна пр.мин- На базовых станциях 1 в зависимости от заданных значений
рабочих частот fq информационных радиосигналов, излучаемых с этих
базовых станций 1, заданы такие значения коэффициентов усиления по мощности усилителей 16 мощности, при которых значения мощности информационных радиосигналов, излучаемых с этих базовых станций 1, равны соответственно Pqwsl. При этом значения Pqlsm и значение Р
выбраны исходя из заданного значения радиуса зоны 3 действия каждой базовой станции 1, равного длине стороны каждого из указанных правильных шестиугольников.
Информационные радиосигналы являются узкополосными; время распространения радиосигналов от каждой базовой станции 1 до соседних базовых станций 1 и интервал времени измерения мощности принимаемых радиосигналов пренебрежимо малы по сравнению с длительностью любого из импульсов модулирующих двоичных последовательностей импульсов, соответствующих информации, передаваемой на подвижные объекты 2; время распространения сигналов в приемопередающих трактах базовых станций 1 пренебрежимо мало.
Принятым допущениям соответствуют, например, следующие параметры системы. Радиус зоны 3 действия каждой базовой станции 1 равен 500 м; рабочие частоты информационных радиосигналов, излучаемых со всех базовых станций 1, соответственно равны 12, 13, 14, 15, 16 и 17 МГц; длительность любого из импульсов модулирующих двоичных последовательностей импульсов, соответствующих информации, передаваемой на подвижные объекты 2, не менее 10 мс, интервал времени однократного измерения мощности принимаемых радиосигналов не более 0,1 мс.
На каждой базовой станции 1, кроме базовой станции 1, являющейся источником передаваемой информации, в блок 19 задания приемопередатчика 4, представленного на фиг. 3, вводят значения рабочих частот информационных радиосигналов, принимаемых на этой базовой станции 1, при которых с этой базовой станции 1 осуществляют излучение информационных радиосигналов на заданной рабочей частоте.
На базовой станции 1, являющейся источником передаваемой информации на подвижные объекты 2, находящиеся в пределах обслуживаемой территории, в блок 19 задания приемопередатчика 4 вводят информацию, предназначенную для передачи на подвижные объекты 2. Эта информация поступает в двоичном коде на первый микроконтроллер 18, который формирует соответствующую двоичную последовательность импульсов, поступающую на один из коммутируемых входов электронного коммутатора 14. Одновременно первый микроконтроллер 18 формирует на управляющих входах электронного коммутатора 14 управляющие сигналы, по которым электронный коммутатор 14 подключает указанный коммутируемый вход к управляющему входу управляемого генератора 15. Управляемый генератор 15, настроенный на заданную частоту передачи этой базовой станции 1, по сигналам, действующим на выходе электронного коммутатора 14, вырабатывает высокочастотный частотноманипулированный сигнал, который поступает на вход усилителя 16 мощности. Передающая антенна 17 излучает в пространство сформированный таким образом информационный радиосигнал, соответствующий информации, передаваемой на подвижные объекты 2.
Прием информационного радиосигнала, излучаемого с базовой станции 1, являющейся источником передаваемой информации, осуществляют на всех соседних базовых станциях 1 с помощью содержащихся в них приемопередатчиков 4. При этом первая приемная
антенна 6, входящая в состав каждого из этих приемопередатчиков 4, принимает информационный радиосигнал, излучаемый с базовой станции 1, являющейся источником передаваемой информации. Принимаемый информационный радиосигнал поступает на входы первых полосовых фильтров 7. На каждой базовой станции 1, являющейся соседней по отношению к базовой станции 1, являющейся источником передаваемой информации, на выходе одного из первых полосовых фильтров 7, настроенного на заданную рабочую частоту информационных радиосигналов, излучаемых с базовой станции 1, являющейся источником передаваемой информации, действует соответствующий принимаемому информационному радиосигналу высокочастотный частотноманипулированный сигнал. Этот сигнал поступает на вход первого малошумящего усилителя 8, с выхода которого сигнал поступает на вход первого амплитудного ограничителя 9. Первый амплитудный ограничитель 9 осуществляет амплитудное ограничение сигнала. С выхода первого амплитудного ограничителя 9 сигнал поступает на вход первого частотного детектора 10. Первый частотный детектор 10 осуществляет частотное детектирование принимаемого информационного радиосигнала и вырабатывает двоичную последовательность импульсов, соответствующую передаваемой информации, которые поступают на соответствующий коммутируемый вход электронного коммутатора 14.
Одновременно сигнал с выхода указанного первого малошумящего усилителя 8 поступает на вход первого блока 11 возведения в квадрат, выходной сигнал которого поступает на вход первого интегратора 12, который на входе первого АЦП 13 формирует в соответствии с формулой (2) сигнал, пропорциональный мощности принимаемого информационного радиосигнала. Цифровой код с выходов указанного первого АЦП 13 поступает на входы первого микроконтроллера 18. Первый микроконтроллер 18 определяет по цифровому коду,
Ш)
действующему на выходе указанного первого АЦП 13, и известному значению коэффициента усиления соответствующего канала приема информационных радиосигналов, значение мощности принимаемого информационного радиосигнала Рщ. Первый микроконтроллер 18
осуществляет проверку условия Рщ Рпр-мин и в случае его выполнения
принимает решение о наличии на входе приемопередатчика 4 информационного радиосигнала соответствующей рабочей частоты, в противном случае первый микроконтроллер 18 принимает противоположное решение. Затем первый микроконтроллер 18 считывает из блока 19 задания заданные значения рабочих частот информационных радиосигналов, принимаемых на этой базовой станции 1, при которых с этой базовой станции 1 осуществляют излучение информационных радиосигналов на заданной рабочей частоте, и определяет по этим заданным значениям рабочих частот и значениям сигналов, действующих на выходах соответствующих первых АЦП 13, рабочую частоту информационного радиосигнала максимальной мощности. (На каждой базовой станции 1, являющейся соседней по отношению к базовой станции 1, являющейся источником передаваемой информации, определяемая таким образом рабочая частота информационного радиосигнала максимальной мощности является рабочей частотой информационных радиосигналов, излучаемых с базовой станции 1, являющейся источником передаваемой информации.) Первый микроконтроллер 18 формирует управляющие сигналы на управляющих входах электронного коммутатора 14, по которым электронный коммутатор 14 подключает выход первого частотного детектора 10, соответствующего рабочей частоте информационного радиосигнала максимальной мощности, к управляющему входу управляемого генератора 15. Управляемый генератор 15 формирует высокочастотный частотно-манипулированный сигнал на заданной рабочей частоте,
который поступает на вход усилителя 16 мощности. С выхода усилителя 16 мощности усиленный по мощности сигнал поступает на вход передающей антенны 17, которая излучает в пространство информационный радиосигнал, соответствующий информации, передаваемой на подвижные объекты 2.
Прием информационных радиосигналов, излучаемых с указанных соседних базовых станций 1, осуществляют на всех других соседних базовых станциях 1, являющихся соседними по отношению к указанным соседним базовым станциям 1, с помощью содержащихся в них приемопередатчиков 4. При этом первая приемная антенна 6, входящая в состав каждого из этих приемопередатчиков 4, принимает информационные радиосигналы, излучаемые с указанных соседних базовых станций 1. Принимаемые информационные радиосигналы поступают на входы первых полосовых фильтров 7, которые осуществляют их селекцию по частоте. На каждой базовой станции 1, являющейся соседней по отношению к указанным соседним базовым станциям 1, на выходе первых полосовых фильтров 7 действуют соответствующие принимаемым информационным радиосигналам высокочастотные частотно-манипулированные сигналы. Эти сигналы поступают на входы первых малошумящих усилителей 8, с выходов которых сигналы поступают на входы первых амплитудных ограничителей 9. Первые амплитудные ограничители 9 осуществляют амплитудное ограничение сигналов. С выходов первых амплитудных ограничителей 9 сигналы поступают на входы первых частотных детекторов 10. Первые частотные детекторы 10 осуществляют частотное детектирование принимаемых информационных радиосигналов и вырабатываютдвоичныепоследовательностиимпульсов,
соответствующие передаваемой информации, которые поступают на коммутируемые входы электронного коммутатора 14.
SU&OH07Z2S
Одновременно сигналы с выходов первых малошумящих усилителей 8 поступают на входы первых блоков 11 возведения в квадрат, выходные сигналы которых поступают на входы первых интеграторов 12, которые на входах первых АЦП 13 формируют в соответствии с формулой (2) сигналы, пропорциональные мощности принимаемых информационных радиосигналов. Цифровые коды с выходов первых АЦП 13 поступают на входы первого микроконтроллера 18. Первый микроконтроллер 18 определяет по цифровым кодам, действующим на выходах первых АЦП 13, и известным значениям коэффициентов усиления соответствующих каналов приема информационных радиосигналов, значения мощности Р
принимаемых информационных радиосигналов. Для каждого из каналов приема информационных радиосигналов первый микроконтроллер 18 осуществляет проверку условия Р Р и в случае его выполнения
принимает решение о наличии на входе приемопередатчика 4 информационного радиосигнала соответствующей рабочей частоты, в противном случае первый микроконтроллер 18 принимает противоположное решение. Затем первый микроконтроллер 18 считывает из блока 19 задания заданные значения рабочих частот информационных радиосигналов, принимаемых на этой базовой станции 1, при которых с этой базовой станции 1 осуществляют излучение информационных радиосигналов на заданной рабочей частоте, и определяет по этим заданным значениям рабочих частот и значениям сигналов, действующих на выходах соответствующих первых АЦП 13, рабочую частоту информационного радиосигнала максимальной мощности. Первый микроконтроллер 18 формирует управляющие сигналы на управляющих входах электронного коммутатора 14, по которым электронный коммутатор 14 подключает выход первого частотного детектора 10, соответствующего рабочей частоте информационного радиосигнала максимальной мощности, к управляющему входу управляемого
генератора 15. Управляемый генератор 15 формирует высокочастотный частотно-манипулированный сигнал на заданной рабочей частоте, который поступает на вход усилителя 16 мощности. С выхода усилителя 16 мощности усиленный по мощности сигнал поступает на вход передающей антенны 17, которая излучает в пространство информационный радиосигнал, соответствующий информации, передаваемой на подвижные объекты 2.
По аналогии с изложенным функционируют приемопередатчики 4, входящие в состав всех других базовых станций 1.
Информационные радиосигналы, излучаемые с каждой базовой станции 1, проникают через первые приемные антенны 6 на входы приемопередатчиков 4, входящих в состав соседних базовых станций 1. Однако это не вызывает «зацикливания работы системы, поскольку излучение информационных радиосигналов с каждой базовой станции 1, кроме базовой станции 1, являющейся источником передаваемой информации, осуществляют лишь при приеме на этой базовой станции 1 информационных радиосигналов одной из заданных на этой базовой станции 1 рабочих частот. При этом излучение информационных радиосигналов с базовой станции 1, являющейся источником передаваемой информации, осуществляют независимо от работы соседних базовых станций 1.
При достаточно высоком быстродействии описанных элементов и блоков, можно считать, что приемопередатчики 4, входящие в состав базовых станций 1, осуществляют одновременно прием излучаемых с соседних базовых станций 1 информационных радиосигналов и их излучение на соответствующих заданных рабочих частотах.
Таким образом, приемопередатчики 4, входящие в состав базовых станций 1, в соответствии с информацией, содержащейся в блоках 19 задания, последовательно, по всем направлениям от базовой станции 1,
являющейся источником передаваемой информации, к границам обслуживаемой территории на всех других последующих базовых станциях 1, являющихся соседними по отношению к предыдущим базовым станциям 1, осуществляют одновременно прием излучаемых с предыдущих базовых станций 1 информационных радиосигналов и их излучение на соответствующих заданных рабочих частотах.
На каждом подвижном объекте 2, находящемся в пределах обслуживаемой территории, вторая приемная антенна 20, входящая в состав размещенного на нем радиоприемника 5, представленного на фиг. 4, принимает информационные радиосигналы, излучаемые с базовых станций 1, в зонах 3 действия которых находится этот подвижный объект 2. Эти сигналы с выхода второй приемной антенны 20 поступают на входы вторых полосовых фильтров 21, которые осуществляют их селекцию по частоте. Сигналы с выходов вторых полосовых фильтров 21 поступают на входы вторых малошумящих усилителей 22, сигналы с выходов которых поступают на входы вторых амплитудных ограничителей 23. Вторые амплитудные ограничители 23 осуществляют амплитудное ограничение сигналов. С выходов вторых амплитудных ограничителей 23 сигналы поступают на входы вторых частотных детекторов 24, которые осуществляют частотное детектирование принимаемых информационных радиосигналов.Двоичныепоследовательностиимпульсов,
вырабатываемые вторыми частотными детекторами 24, поступают на входы второго микроконтроллера 28. Одновременно сигналы с выходов вторых малошумящих усилителей 22 поступают на входы вторых блоков 25 возведения в квадрат, выходные сигналы которых поступают на входы вторых интеграторов 26, которые на входах вторых АЦП 27 формируют в соответствии с формулой (2) сигналы, пропорциональные мощности принимаемых информационных радиосигналов. Цифровые коды с выходов вторых АЦП 27 поступают на входы второго микроконтроллера
28. Второй микроконтроллер 28 определяет по цифровым кодам, действующим на выходах вторых АЦП 27, и известным значениям коэффициентов усиления соответствующих каналов приема информационных радиосигналов, значения мощности Р принимаемых
информационных радиосигналов. Для каждого из каналов приема информационных радиосигналов второй микроконтроллер 28 осуществляет проверку условия Р Р и в случае его выполнения
принимает решение о наличии на входе радиоприемника 5 информационного радиосигнала соответствующей рабочей частоты, в противном случае второй микроконтроллер 28 принимает противоположное решение. Затем второй микроконтроллер 28 обрабатывает двоичные последовательности импульсов, действующие на выходах соответствующих вторых частотных детекторов 24, и формирует на входах индикатора 29 сигналы, по которым индикатор 29 отображает информацию, передаваемую на подвижные объекты 2.
Таким образом, описанное техническое решение позволяет, в отличие от прототипа, осуществлять передачу информации на подвижные объекты 2, находящиеся в пределах обслуживаемой территории, без использования центра коммутации и оптоволоконных линий связи, соединяющих центр коммутации с базовыми станциями 1, что существенно упрощает систему. Кроме того, данное техническое решение позволяет снизить, по сравнению с прототипом, число заданных частот приема каждого из радиоприемников 6, размещенных на подвижных объектах 2, с семи до пяти, что также упрощает систему.

Claims (1)

  1. Система передачи информации на подвижные объекты, содержащая приемопередатчики, входящие по одному в состав каждой из базовых станций, размещенных в условных ячейках, представляющих собой равные правильные шестиугольники, плотно расположенные между собой, плотно покрывающие обслуживаемую территорию с радиусами зон действия базовых станций, равными длине стороны каждого правильного шестиугольника, и с заданной на каждой базовой станции частотой передачи этой базовой станции, являющейся одной из заданных различных частот, радиоприемники, размещенные по одному на каждом из подвижных объектов, находящихся в пределах зон действия всех базовых станций, с заданными частотами приема каждого радиоприемника, отличающаяся тем, что базовые станции размещены в вершинах указанных правильных шестиугольников, число заданных различных частот, из которых на каждой базовой станции задана одна частота передачи этой базовой станции, равно шести, заданная частота передачи каждой базовой станции, размещенной в вершине правильных шестиугольников, является отличной от заданных частот передачи соседних базовых станций, размещенных в соседних вершинах этих правильных шестиугольников, заданными частотами приема каждого радиоприемника являются пять различных из указанных шести заданных частот, приемопередатчик, входящий в состав каждой базовой станции, содержит первую приемную антенну, три канала приема информационных радиосигналов, каждый из которых содержит первый полосовой фильтр, первый малошумящий усилитель, первый амплитудный ограничитель, первый частотный детектор, первый блок возведения в квадрат, первый интегратор, первый аналого-цифровой преобразователь, приемопередатчик содержит также электронный коммутатор, управляемый генератор, усилитель мощности, передающую антенну, первый микроконтроллер, блок задания, причем выход первой приемной антенны подключен к входам всех первых полосовых фильтров, каждый из которых настроен на заданную частоту передачи одной из соответствующих соседних базовых станций, в каждом канале приема информационных радиосигналов выход первого полосового фильтра подключен к входу первого малошумящего усилителя, выход которого подключен к входу первого амплитудного ограничителя, выход которого подключен к входу первого частотного детектора, выход первого малошумящего усилителя подключен также к входу первого блока возведения в квадрат, выход которого подключен к входу первого интегратора, выход которого соединен с входом первого аналого-цифрового преобразователя, выходы всех первых аналого-цифровых преобразователей подключены к соответствующим входам первого микроконтроллера, выходы всех первых частотных детекторов подключены к соответствующим коммутируемым входам электронного коммутатора, выходы первого микроконтроллера подключены к одному из коммутируемых входов и к управляющим входам электронного коммутатора, выход которого подключен к управляющему входу управляемого генератора, настроенного на заданную частоту передачи этой базовой станции, выход управляемого генератора соединен с входом усилителя мощности, к выходу которого подключена передающая антенна, к входам первого микроконтроллера подключен блок задания, радиоприемник содержит вторую приемную антенну, пять каналов приема информационных радиосигналов, каждый из которых содержит второй полосовой фильтр, второй малошумящий усилитель, второй амплитудный ограничитель, второй частотной детектор, второй блок возведения в квадрат, второй интегратор, второй аналого-цифровой преобразователь, радиоприемник содержит также второй микроконтроллер, индикатор, причем выход второй приемной антенны подключен к входам всех вторых полосовых фильтров, каждый из которых настроен соответственно на одну из заданных частот приема этого радиоприемника, в каждом канале приема информационных радиосигналов выход второго полосового фильтра подключен к входу второго малошумящего усилителя, выход которого подключен к входу второго амплитудного ограничителя, выход которого подключен к входу второго частотного детектора, выход второго малошумящего усилителя подключен также к входу второго блока возведения в квадрат, выход которого подключен к входу второго интегратора, выход которого подключен к входу второго аналого-цифрового преобразователя, выходы всех вторых частотных детекторов и выходы всех вторых аналого-цифровых преобразователей подключены к соответствующим входам второго микроконтроллера, выходы которого подключены к входам индикатора.
    Figure 00000001
RU2001107531/20U 2001-03-23 2001-03-23 Система передачи информации на подвижные объекты RU19621U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001107531/20U RU19621U1 (ru) 2001-03-23 2001-03-23 Система передачи информации на подвижные объекты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001107531/20U RU19621U1 (ru) 2001-03-23 2001-03-23 Система передачи информации на подвижные объекты

Publications (1)

Publication Number Publication Date
RU19621U1 true RU19621U1 (ru) 2001-09-10

Family

ID=48278965

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001107531/20U RU19621U1 (ru) 2001-03-23 2001-03-23 Система передачи информации на подвижные объекты

Country Status (1)

Country Link
RU (1) RU19621U1 (ru)

Similar Documents

Publication Publication Date Title
US4117271A (en) Inductive communication system
RU19621U1 (ru) Система передачи информации на подвижные объекты
RU19620U1 (ru) Система передачи информации на подвижные объекты
RU2187894C1 (ru) Способ передачи информации на подвижные объекты
RU2195775C2 (ru) Способ передачи информации на подвижные объекты
RU2191474C1 (ru) Способ передачи информации на подвижные объекты
RU2193818C1 (ru) Способ передачи информации на подвижные объекты
RU2187895C1 (ru) Способ передачи информации на подвижные объекты
RU2195778C2 (ru) Способ определения местоположения подвижного объекта
RU19623U1 (ru) Система передачи информации на подвижные объекты
RU19627U1 (ru) Система передачи информации на подвижные объекты
RU19589U1 (ru) Система определения местоположения подвижного объекта
RU19622U1 (ru) Система передачи информации на подвижные объекты
RU2193816C1 (ru) Способ передачи информации на подвижные объекты
RU19624U1 (ru) Система передачи информации на подвижные объекты
RU19626U1 (ru) Система передачи информации на подвижные объекты
RU19625U1 (ru) Система передачи информации на подвижные объекты
RU2193819C1 (ru) Способ передачи информации на подвижные объекты
RU19628U1 (ru) Система передачи информации на подвижные объекты
RU2193817C1 (ru) Способ передачи информации на подвижные объекты
RU2194364C1 (ru) Способ передачи информации на подвижные объекты
RU19672U1 (ru) Система передачи информации на подвижные объекты
RU2191473C1 (ru) Способ передачи информации на подвижные объекты
RU19591U1 (ru) Система определения местоположения подвижного объекта
RU2191476C1 (ru) Способ передачи информации на подвижные объекты