RU1791767C - Device for determination of physical and mechanical properties of soils under compaction - Google Patents

Device for determination of physical and mechanical properties of soils under compaction

Info

Publication number
RU1791767C
RU1791767C SU904854789A SU4854789A RU1791767C RU 1791767 C RU1791767 C RU 1791767C SU 904854789 A SU904854789 A SU 904854789A SU 4854789 A SU4854789 A SU 4854789A RU 1791767 C RU1791767 C RU 1791767C
Authority
RU
Russia
Prior art keywords
cylinder
axis
compaction
ultrasonic transducers
stops
Prior art date
Application number
SU904854789A
Other languages
Russian (ru)
Inventor
Виталий Александрович Попов
Николай Ильич Дмитриев
Original Assignee
Усть-Каменогорский Строительно-Дорожный Институт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Усть-Каменогорский Строительно-Дорожный Институт filed Critical Усть-Каменогорский Строительно-Дорожный Институт
Priority to SU904854789A priority Critical patent/RU1791767C/en
Application granted granted Critical
Publication of RU1791767C publication Critical patent/RU1791767C/en

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

Использование: акустические измерени  свойств грунтов при уплотнении в инженерно-геологических изыскани х. Сущность: прибор содержит корпус, выполненный в виде цилиндра, ультразвуковые преобразователи, приспособление дл  уплотнени  грунта. Цилиндр размещен на ос- новании, имеющем фиксаторы и криволинейные направл ющие. Ультразвуковые преобразователи снабжены цилиндрической пружиной с упорами. 2 ил.Usage: acoustic measurements of soil properties during compaction in geotechnical surveys. SUBSTANCE: device comprises a housing made in the form of a cylinder, ultrasonic transducers, a device for soil compaction. The cylinder is placed on a base having latches and curved guides. Ultrasonic transducers are equipped with a coil spring with stops. 2 ill.

Description

Изобретение относитс  к устройствам дл  акустических измерений и может быть использовано дл  оперативного определени  оптимальной влажности и максимальной плотности грунтов при стандартном уплотнении в процессе проведени  инженерно-геологических изысканий в лабораторных и полевых услови х.The invention relates to devices for acoustic measurements and can be used to quickly determine the optimum moisture content and maximum density of soils with standard compaction during geotechnical surveys in laboratory and field conditions.

Известен прибор дл  определени  оптимальной влажности и максимальной плотности грунтов различной консистенции с помощью ультразвука, содержащий корпус, стандартный уплотнитель и ультразвуковые преобразователи (1).A device is known for determining the optimum moisture and maximum density of soils of different consistencies using ultrasound, comprising a housing, a standard seal and ultrasonic transducers (1).

Недостатком данного прибора  вл етс  трудоемкость исследовани  физико-механических характеристик, а также низка  точность Их определени .The disadvantage of this device is the complexity of the study of physical and mechanical characteristics, as well as the low accuracy of their determination.

Известен прибор дл  определени  физико-механических свойств грунтов при уплотнении , содержащий корпус, выполненный в виде цилиндра, ультразвуковые преобразователи со звукоизолирующими прокладками, вмонтированными в стенки цилиндра, приспособление дл  уплотнени  образца грунта и измерительные приспособлени  (2).f A device is known for determining the physicomechanical properties of soils during compaction, comprising a cylinder-shaped body, ultrasonic transducers with soundproof gaskets mounted in the cylinder walls, a device for compaction of a soil sample, and measuring devices (2) .f

Недостатком данного прибора  вл етс  трудоемкость определени  физико-механических характеристик, а также низка  точность определени  надежности стабильных акустических параметров исследуемого грунта, ,The disadvantage of this device is the complexity of determining physical and mechanical characteristics, as well as the low accuracy of determining the reliability of stable acoustic parameters of the test soil,

Цель изобретени  - сокращение трудозатрат и повышение точности измерени .The purpose of the invention is to reduce labor costs and improve measurement accuracy.

Дл  достижени  этой цели прибор дл  определени  физико-механических свойств грунтов при уплотнении, содержащий корпус , выполненный в виде цилиндра, ультразвуковыепреобразователи , приспособление дл  уплотнени  образца грунта и измерительные приспособлени , снабжен основанием с осью, фиксаторами и криволинейными направл ющими, а ультV|To achieve this goal, the device for determining the physicomechanical properties of soils during compaction, comprising a cylinder-shaped body, ultrasonic transducers, a device for compaction of a soil sample, and measuring devices, is equipped with a base with an axis, clamps, and curved guides, and ultV |

ЮYU

чh

О VIAbout VI

развуковые преобразователи снабжены цилиндрическими пружинами с упорами, имеющими криволинейную поверхность, при этом пружины с упорами соосно размещены на ультразвуковых преобразовател х с воз- можностью взаимодействи  криволинейной поверхности упора с криволинейной повер Х ГЬЬ й5 н1аправл ющих а цилиндр устайоелей а Шй основани  с возможно- Сть0а1ра1ценйг  Шокруг нее и взаимбдейст- ви  с фиксаторами.the sonic transducers are equipped with cylindrical springs with stops having a curved surface, while the springs with stops are coaxially placed on ultrasonic transducers with the possibility of the interaction of the curved surface of the stop with a curvilinear axis X Г b й 5 n1 guiding the cylinder and the base of the base with a possible it and mutual action with clamps.

На фиг. 1 изображен общий вид прибора; на фиг, 2 - разрез А-А на фиг. 1.In FIG. 1 shows a general view of the device; FIG. 2 is a section AA in FIG. 1.

Прибор содержит корпус, выполненный в виде цилиндра 1, в которой вмонтированы ультразвуковые преобразователи 2, установленные навстречу друг другу, и звуко- изилйрующие прокладки 3. Цилиндр 1 установлен подвижно на оси основани  ,4. Основание А снабжено криволинейными на- правл ющими 5, фиксаторами 6. Ультразвуковыё пр06браз6 ватели 2 снабжены цилиндрическими пружинами 7 с упорами 8; имеющимикриволинейную поверхность. Прибор снабжен приспособлением дл  уп- лотнени  грунта9, рукр тками 10 Дл  поворота цилиндра 1. В ос нова нии 4 имеетс  задвижка/И , котора i перёдви.гаетс  по пЬлбз м 12. .Прибор работает следующим образом. The device comprises a housing made in the form of a cylinder 1, in which ultrasonic transducers 2 are mounted, mounted towards each other, and sound-proofing gaskets 3. Cylinder 1 is mounted movably on the axis of the base, 4. The base A is equipped with curved guides 5, clamps 6. Ultrasonic transducers 2 are equipped with coil springs 7 with stops 8; having a curved surface. The device is equipped with a soil compaction device 9, handgrips 10 for turning cylinder 1. Base 4 has an I / O valve, which is forward. It is operated according to instructions 12. The device works as follows.

Перед началом контрол  акустических параметрбй фуйт высушивают до воздушно-сухого состо ни , измельМают и просеивают через сито 0,5 мм. Затем из него приготовл ют р д проб заданной влажности . Каждую пробу помещают в цилиндр 1 и уплотн ют посредством уплотнител  9. По окончаййи уплотнени  Цилиндр поворачивают вокруг оси при помощи руко ток 10, при этом ультразвуковые преббразоватёли 2, пЬвЬрачйвайсь вместе с цилиндром 1 и упира сь упором 8 в к кр ивр инейнйе на- правл ющиё 5, будут перемещатьс  на оп- редеШн ую :вёлйчину в сторону оси цилиндра 1 и вдавливатьс  в уплотнённый грунт, йбесйёчивй  надёжный акустический KdHtiak r и1лучающйх поверхностей ультра- звукоёых преобраэрвателей с исследуемымBefore starting the monitoring of the acoustic parameters, the feet are dried to an air-dry state, crushed and sieved through a 0.5 mm sieve. Then a series of samples of a predetermined humidity are prepared from it. Each sample is placed in cylinder 1 and sealed with a gasket 9. At the end of the seal, the cylinder is rotated around the axis with the help of handles 10, while the ultrasonic transducers 2 are rotated together with cylinder 1 and abut against the stop 8 in the direction of the inverse direction 5, will be moved to a definite: a value in the direction of the axis of cylinder 1 and squeezed into compacted soil, extremely reliable acoustic KdHtiak r and 1 radiating surfaces of ultrasonic converters with the studied

грунтом, а также стабильную величину длины пути прозвучивани .soil, as well as a stable length of the sounding path.

Дл  определени  угла поворота цилиндра 1 служат фиксаторы б. Звукоизолирующие прокладки 3 установлены в отверсти  между стенкой цилиндра и ультразвуковыми преобразовател ми 2, служат дл  устранени  акустических помех, возникающих в процессе проведени  измерений.Clamps b are used to determine the angle of rotation of cylinder 1. Soundproofing pads 3 are installed in the openings between the cylinder wall and ultrasonic transducers 2 and serve to eliminate the acoustic disturbances arising during the measurement process.

По окончании за меров акустических параметров грунта цилиндр 1 поворачивают при помощи руко ток 10 в обратную сторону , при этом пружины 7 возвращают ультразвуковые преобразователи 2 в первоначальное положение. Затем по полозь м 12 передвигают задвижку 11, установленную в основании 4 и грунт при помощи уплотнител -выдавливают из цилиндра 1.At the end of measurements of the acoustic parameters of the soil, cylinder 1 is turned with the help of handles 10 in the opposite direction, while the springs 7 return the ultrasonic transducers 2 to their original position. Then, using a slide 12, slide the valve 11 installed in the base 4 and the soil with the help of a sealant is squeezed out of the cylinder 1.

Далее исследовани  провод т со следующим образцом грунта.: ...-.Further studies were carried out with the following soil sample: ...-.

Claims (1)

. Формула изобрете ни  . Formula invented neither При бор дл  определени  физико-механических свойств груйтой при уплотнении, содержащий корпус, выполненный в виде цилиндра, ультразвуковые преобразователи со зву коизУлирующймй прокладками, ; вмонтированные в стенки цилиндра, приспособление дл  уплотнени  образца грунта и измерительные приспособлени , о т - л и чаю щ и и с   тем, что, с целью.сокращени  трудозатрат и повышени  точности. измерени , он снабжен основанием с осью, фиксаторами и криволинейными направл ющими , а ультразвуковые преобразователи снабжены цилиндрическими пружинами с упорами, имеющими криволинейную поверхность , при этом пружины с упорами соосно размещены на ультразвуковых.преобразо- B ate/inx с..возможностью взаимодействи  криволинейной поверхности упора с криво-. линейной поверхностью направл ющих, а Ци л и н д р уста но вл ел i на оси оси ован и  с воз- можнос гь ю вращени  вокруг нее и взаимодействи  с фиксаторами.An instrument for determining the physicomechanical properties of a compaction primer comprising a cylinder-shaped body, ultrasonic transducers with soundproofing gaskets; mounted in the walls of the cylinder, a device for compaction of the soil sample and measuring devices, which can be used to reduce labor costs and increase accuracy. measurement, it is equipped with a base with an axis, clamps and curved guides, and ultrasonic transducers are equipped with cylindrical springs with stops having a curved surface, while the springs with stops are coaxially placed on the ultrasonic ones. emphasis with a crooked. the linear surface of the guides, and the cylinder set i on the axis of the axis of the axis and with the possibility of rotation around it and interacting with the latches. 2Ь42b4 4 /4 /
SU904854789A 1990-06-12 1990-06-12 Device for determination of physical and mechanical properties of soils under compaction RU1791767C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU904854789A RU1791767C (en) 1990-06-12 1990-06-12 Device for determination of physical and mechanical properties of soils under compaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU904854789A RU1791767C (en) 1990-06-12 1990-06-12 Device for determination of physical and mechanical properties of soils under compaction

Publications (1)

Publication Number Publication Date
RU1791767C true RU1791767C (en) 1993-01-30

Family

ID=21529631

Family Applications (1)

Application Number Title Priority Date Filing Date
SU904854789A RU1791767C (en) 1990-06-12 1990-06-12 Device for determination of physical and mechanical properties of soils under compaction

Country Status (1)

Country Link
RU (1) RU1791767C (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US12013245B2 (en) 2020-10-09 2024-06-18 Deere & Company Predictive map generation and control system
US12035648B2 (en) 2020-02-06 2024-07-16 Deere & Company Predictive weed map generation and control system
US12058951B2 (en) 2022-04-08 2024-08-13 Deere & Company Predictive nutrient map and control
US12069978B2 (en) 2018-10-26 2024-08-27 Deere & Company Predictive environmental characteristic map generation and control system
US12069986B2 (en) 2020-10-09 2024-08-27 Deere & Company Map generation and control system
US12082531B2 (en) 2022-01-26 2024-09-10 Deere & Company Systems and methods for predicting material dynamics
US12127500B2 (en) 2021-01-27 2024-10-29 Deere & Company Machine control using a map with regime zones

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1. Дмитриев Н,И. и др. Метод определени оптимальной влажности грунтов. Информационный листок ВКУНТИ. Усть-Каменогорск, 1984. рубрика 67.01.81, N° 48-85. 2. Авторское свидетельство СССР N° 679868. кл. G 01 N 29/04, 1977. 2 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12010947B2 (en) 2018-10-26 2024-06-18 Deere & Company Predictive machine characteristic map generation and control system
US12069978B2 (en) 2018-10-26 2024-08-27 Deere & Company Predictive environmental characteristic map generation and control system
US11672203B2 (en) 2018-10-26 2023-06-13 Deere & Company Predictive map generation and control
US11240961B2 (en) 2018-10-26 2022-02-08 Deere & Company Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity
US11589509B2 (en) 2018-10-26 2023-02-28 Deere & Company Predictive machine characteristic map generation and control system
US11178818B2 (en) 2018-10-26 2021-11-23 Deere & Company Harvesting machine control system with fill level processing based on yield data
US11653588B2 (en) 2018-10-26 2023-05-23 Deere & Company Yield map generation and control system
US11467605B2 (en) 2019-04-10 2022-10-11 Deere & Company Zonal machine control
US11234366B2 (en) 2019-04-10 2022-02-01 Deere & Company Image selection for machine control
US11079725B2 (en) 2019-04-10 2021-08-03 Deere & Company Machine control using real-time model
US11650553B2 (en) 2019-04-10 2023-05-16 Deere & Company Machine control using real-time model
US11778945B2 (en) 2019-04-10 2023-10-10 Deere & Company Machine control using real-time model
US11829112B2 (en) 2019-04-10 2023-11-28 Deere & Company Machine control using real-time model
US11957072B2 (en) 2020-02-06 2024-04-16 Deere & Company Pre-emergence weed detection and mitigation system
US11641800B2 (en) 2020-02-06 2023-05-09 Deere & Company Agricultural harvesting machine with pre-emergence weed detection and mitigation system
US12035648B2 (en) 2020-02-06 2024-07-16 Deere & Company Predictive weed map generation and control system
US11477940B2 (en) 2020-03-26 2022-10-25 Deere & Company Mobile work machine control based on zone parameter modification
US11844311B2 (en) 2020-10-09 2023-12-19 Deere & Company Machine control using a predictive map
US11927459B2 (en) 2020-10-09 2024-03-12 Deere & Company Machine control using a predictive map
US11711995B2 (en) 2020-10-09 2023-08-01 Deere & Company Machine control using a predictive map
US11825768B2 (en) 2020-10-09 2023-11-28 Deere & Company Machine control using a predictive map
US11675354B2 (en) 2020-10-09 2023-06-13 Deere & Company Machine control using a predictive map
US11650587B2 (en) 2020-10-09 2023-05-16 Deere & Company Predictive power map generation and control system
US11845449B2 (en) 2020-10-09 2023-12-19 Deere & Company Map generation and control system
US11849671B2 (en) 2020-10-09 2023-12-26 Deere & Company Crop state map generation and control system
US11849672B2 (en) 2020-10-09 2023-12-26 Deere & Company Machine control using a predictive map
US11864483B2 (en) 2020-10-09 2024-01-09 Deere & Company Predictive map generation and control system
US11874669B2 (en) 2020-10-09 2024-01-16 Deere & Company Map generation and control system
US11871697B2 (en) 2020-10-09 2024-01-16 Deere & Company Crop moisture map generation and control system
US11889787B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive speed map generation and control system
US11889788B2 (en) 2020-10-09 2024-02-06 Deere & Company Predictive biomass map generation and control
US11895948B2 (en) 2020-10-09 2024-02-13 Deere & Company Predictive map generation and control based on soil properties
US11727680B2 (en) 2020-10-09 2023-08-15 Deere & Company Predictive map generation based on seeding characteristics and control
US11946747B2 (en) 2020-10-09 2024-04-02 Deere & Company Crop constituent map generation and control system
US11635765B2 (en) 2020-10-09 2023-04-25 Deere & Company Crop state map generation and control system
US11983009B2 (en) 2020-10-09 2024-05-14 Deere & Company Map generation and control system
US11592822B2 (en) 2020-10-09 2023-02-28 Deere & Company Machine control using a predictive map
US12013698B2 (en) 2020-10-09 2024-06-18 Deere & Company Machine control using a predictive map
US12013245B2 (en) 2020-10-09 2024-06-18 Deere & Company Predictive map generation and control system
US11474523B2 (en) 2020-10-09 2022-10-18 Deere & Company Machine control using a predictive speed map
US12048271B2 (en) 2020-10-09 2024-07-30 Deere &Company Crop moisture map generation and control system
US12080062B2 (en) 2020-10-09 2024-09-03 Deere & Company Predictive map generation based on seeding characteristics and control
US20220110251A1 (en) 2020-10-09 2022-04-14 Deere & Company Crop moisture map generation and control system
US12069986B2 (en) 2020-10-09 2024-08-27 Deere & Company Map generation and control system
US12127500B2 (en) 2021-01-27 2024-10-29 Deere & Company Machine control using a map with regime zones
US12082531B2 (en) 2022-01-26 2024-09-10 Deere & Company Systems and methods for predicting material dynamics
US12058951B2 (en) 2022-04-08 2024-08-13 Deere & Company Predictive nutrient map and control

Similar Documents

Publication Publication Date Title
RU1791767C (en) Device for determination of physical and mechanical properties of soils under compaction
Daponte et al. Ultrasonic signal-processing techniques for the measurement of damage growth in structural materials
Bucur Theory of and experimental methods for the acoustic characterization of wood
US3254739A (en) Method and apparatus for measuring the sound absorption of acoustical materials
RU2297627C1 (en) Device for ultrasonic test
US4249421A (en) Method to determine the shear absorption of a rubberlike material
RU2025726C1 (en) Device for determination of mixture homogeneity degree
SU1762220A2 (en) Device for materials elastic properties determining
CN203849215U (en) Ultrasonic transducer fixing and measuring device
RU2052774C1 (en) Ultrasonic device for measurement of physical properties of liquid media
Briscoe et al. Polymer-gas interactions at high pressure: the use of ultrasonic probes
SU1312472A1 (en) Method of determining acoustical resistance of materials
SU588495A1 (en) Ultrasonic method of determining sound attenuation in material specimens
RU93008580A (en) DEVICE FOR DETERMINING MECHANICAL PROPERTIES OF BIOLOGICAL TISSUES
SU1205008A1 (en) Ultrasonic method of inspecting content of liquid in impregnated materials
SU715991A1 (en) Method of measuring non-linear parameter of liquid media
SU1741054A1 (en) Method of determining moisture content in objects using a transducer with buffer rod
SU1747929A1 (en) Ultrasonic device for studying liquids
SU976316A1 (en) Method of measuring high pressures
SU967584A1 (en) Wide band ultrasonic converter
Erwin et al. Ultrasonic resonance applied to non‐destructive testing
SU1536298A1 (en) Method of determining content of filler in material
SU1700462A1 (en) Method of measuring coefficient of reflection of sound from plate
SU1260842A1 (en) Method of determining physical and mechanical properties of objects by means of buffer rod converter
SU1476372A1 (en) Method for testing ferromagnetic material structure