RU1791767C - Device for determination of physical and mechanical properties of soils under compaction - Google Patents
Device for determination of physical and mechanical properties of soils under compactionInfo
- Publication number
- RU1791767C RU1791767C SU904854789A SU4854789A RU1791767C RU 1791767 C RU1791767 C RU 1791767C SU 904854789 A SU904854789 A SU 904854789A SU 4854789 A SU4854789 A SU 4854789A RU 1791767 C RU1791767 C RU 1791767C
- Authority
- RU
- Russia
- Prior art keywords
- cylinder
- axis
- compaction
- ultrasonic transducers
- stops
- Prior art date
Links
Landscapes
- Sampling And Sample Adjustment (AREA)
Abstract
Использование: акустические измерени свойств грунтов при уплотнении в инженерно-геологических изыскани х. Сущность: прибор содержит корпус, выполненный в виде цилиндра, ультразвуковые преобразователи, приспособление дл уплотнени грунта. Цилиндр размещен на ос- новании, имеющем фиксаторы и криволинейные направл ющие. Ультразвуковые преобразователи снабжены цилиндрической пружиной с упорами. 2 ил.Usage: acoustic measurements of soil properties during compaction in geotechnical surveys. SUBSTANCE: device comprises a housing made in the form of a cylinder, ultrasonic transducers, a device for soil compaction. The cylinder is placed on a base having latches and curved guides. Ultrasonic transducers are equipped with a coil spring with stops. 2 ill.
Description
Изобретение относитс к устройствам дл акустических измерений и может быть использовано дл оперативного определени оптимальной влажности и максимальной плотности грунтов при стандартном уплотнении в процессе проведени инженерно-геологических изысканий в лабораторных и полевых услови х.The invention relates to devices for acoustic measurements and can be used to quickly determine the optimum moisture content and maximum density of soils with standard compaction during geotechnical surveys in laboratory and field conditions.
Известен прибор дл определени оптимальной влажности и максимальной плотности грунтов различной консистенции с помощью ультразвука, содержащий корпус, стандартный уплотнитель и ультразвуковые преобразователи (1).A device is known for determining the optimum moisture and maximum density of soils of different consistencies using ultrasound, comprising a housing, a standard seal and ultrasonic transducers (1).
Недостатком данного прибора вл етс трудоемкость исследовани физико-механических характеристик, а также низка точность Их определени .The disadvantage of this device is the complexity of the study of physical and mechanical characteristics, as well as the low accuracy of their determination.
Известен прибор дл определени физико-механических свойств грунтов при уплотнении , содержащий корпус, выполненный в виде цилиндра, ультразвуковые преобразователи со звукоизолирующими прокладками, вмонтированными в стенки цилиндра, приспособление дл уплотнени образца грунта и измерительные приспособлени (2).f A device is known for determining the physicomechanical properties of soils during compaction, comprising a cylinder-shaped body, ultrasonic transducers with soundproof gaskets mounted in the cylinder walls, a device for compaction of a soil sample, and measuring devices (2) .f
Недостатком данного прибора вл етс трудоемкость определени физико-механических характеристик, а также низка точность определени надежности стабильных акустических параметров исследуемого грунта, ,The disadvantage of this device is the complexity of determining physical and mechanical characteristics, as well as the low accuracy of determining the reliability of stable acoustic parameters of the test soil,
Цель изобретени - сокращение трудозатрат и повышение точности измерени .The purpose of the invention is to reduce labor costs and improve measurement accuracy.
Дл достижени этой цели прибор дл определени физико-механических свойств грунтов при уплотнении, содержащий корпус , выполненный в виде цилиндра, ультразвуковыепреобразователи , приспособление дл уплотнени образца грунта и измерительные приспособлени , снабжен основанием с осью, фиксаторами и криволинейными направл ющими, а ультV|To achieve this goal, the device for determining the physicomechanical properties of soils during compaction, comprising a cylinder-shaped body, ultrasonic transducers, a device for compaction of a soil sample, and measuring devices, is equipped with a base with an axis, clamps, and curved guides, and ultV |
ЮYU
чh
О VIAbout VI
развуковые преобразователи снабжены цилиндрическими пружинами с упорами, имеющими криволинейную поверхность, при этом пружины с упорами соосно размещены на ультразвуковых преобразовател х с воз- можностью взаимодействи криволинейной поверхности упора с криволинейной повер Х ГЬЬ й5 н1аправл ющих а цилиндр устайоелей а Шй основани с возможно- Сть0а1ра1ценйг Шокруг нее и взаимбдейст- ви с фиксаторами.the sonic transducers are equipped with cylindrical springs with stops having a curved surface, while the springs with stops are coaxially placed on ultrasonic transducers with the possibility of the interaction of the curved surface of the stop with a curvilinear axis X Г b й 5 n1 guiding the cylinder and the base of the base with a possible it and mutual action with clamps.
На фиг. 1 изображен общий вид прибора; на фиг, 2 - разрез А-А на фиг. 1.In FIG. 1 shows a general view of the device; FIG. 2 is a section AA in FIG. 1.
Прибор содержит корпус, выполненный в виде цилиндра 1, в которой вмонтированы ультразвуковые преобразователи 2, установленные навстречу друг другу, и звуко- изилйрующие прокладки 3. Цилиндр 1 установлен подвижно на оси основани ,4. Основание А снабжено криволинейными на- правл ющими 5, фиксаторами 6. Ультразвуковыё пр06браз6 ватели 2 снабжены цилиндрическими пружинами 7 с упорами 8; имеющимикриволинейную поверхность. Прибор снабжен приспособлением дл уп- лотнени грунта9, рукр тками 10 Дл поворота цилиндра 1. В ос нова нии 4 имеетс задвижка/И , котора i перёдви.гаетс по пЬлбз м 12. .Прибор работает следующим образом. The device comprises a housing made in the form of a cylinder 1, in which ultrasonic transducers 2 are mounted, mounted towards each other, and sound-proofing gaskets 3. Cylinder 1 is mounted movably on the axis of the base, 4. The base A is equipped with curved guides 5, clamps 6. Ultrasonic transducers 2 are equipped with coil springs 7 with stops 8; having a curved surface. The device is equipped with a soil compaction device 9, handgrips 10 for turning cylinder 1. Base 4 has an I / O valve, which is forward. It is operated according to instructions 12. The device works as follows.
Перед началом контрол акустических параметрбй фуйт высушивают до воздушно-сухого состо ни , измельМают и просеивают через сито 0,5 мм. Затем из него приготовл ют р д проб заданной влажности . Каждую пробу помещают в цилиндр 1 и уплотн ют посредством уплотнител 9. По окончаййи уплотнени Цилиндр поворачивают вокруг оси при помощи руко ток 10, при этом ультразвуковые преббразоватёли 2, пЬвЬрачйвайсь вместе с цилиндром 1 и упира сь упором 8 в к кр ивр инейнйе на- правл ющиё 5, будут перемещатьс на оп- редеШн ую :вёлйчину в сторону оси цилиндра 1 и вдавливатьс в уплотнённый грунт, йбесйёчивй надёжный акустический KdHtiak r и1лучающйх поверхностей ультра- звукоёых преобраэрвателей с исследуемымBefore starting the monitoring of the acoustic parameters, the feet are dried to an air-dry state, crushed and sieved through a 0.5 mm sieve. Then a series of samples of a predetermined humidity are prepared from it. Each sample is placed in cylinder 1 and sealed with a gasket 9. At the end of the seal, the cylinder is rotated around the axis with the help of handles 10, while the ultrasonic transducers 2 are rotated together with cylinder 1 and abut against the stop 8 in the direction of the inverse direction 5, will be moved to a definite: a value in the direction of the axis of cylinder 1 and squeezed into compacted soil, extremely reliable acoustic KdHtiak r and 1 radiating surfaces of ultrasonic converters with the studied
грунтом, а также стабильную величину длины пути прозвучивани .soil, as well as a stable length of the sounding path.
Дл определени угла поворота цилиндра 1 служат фиксаторы б. Звукоизолирующие прокладки 3 установлены в отверсти между стенкой цилиндра и ультразвуковыми преобразовател ми 2, служат дл устранени акустических помех, возникающих в процессе проведени измерений.Clamps b are used to determine the angle of rotation of cylinder 1. Soundproofing pads 3 are installed in the openings between the cylinder wall and ultrasonic transducers 2 and serve to eliminate the acoustic disturbances arising during the measurement process.
По окончании за меров акустических параметров грунта цилиндр 1 поворачивают при помощи руко ток 10 в обратную сторону , при этом пружины 7 возвращают ультразвуковые преобразователи 2 в первоначальное положение. Затем по полозь м 12 передвигают задвижку 11, установленную в основании 4 и грунт при помощи уплотнител -выдавливают из цилиндра 1.At the end of measurements of the acoustic parameters of the soil, cylinder 1 is turned with the help of handles 10 in the opposite direction, while the springs 7 return the ultrasonic transducers 2 to their original position. Then, using a slide 12, slide the valve 11 installed in the base 4 and the soil with the help of a sealant is squeezed out of the cylinder 1.
Далее исследовани провод т со следующим образцом грунта.: ...-.Further studies were carried out with the following soil sample: ...-.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU904854789A RU1791767C (en) | 1990-06-12 | 1990-06-12 | Device for determination of physical and mechanical properties of soils under compaction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SU904854789A RU1791767C (en) | 1990-06-12 | 1990-06-12 | Device for determination of physical and mechanical properties of soils under compaction |
Publications (1)
Publication Number | Publication Date |
---|---|
RU1791767C true RU1791767C (en) | 1993-01-30 |
Family
ID=21529631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SU904854789A RU1791767C (en) | 1990-06-12 | 1990-06-12 | Device for determination of physical and mechanical properties of soils under compaction |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU1791767C (en) |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11079725B2 (en) | 2019-04-10 | 2021-08-03 | Deere & Company | Machine control using real-time model |
US11178818B2 (en) | 2018-10-26 | 2021-11-23 | Deere & Company | Harvesting machine control system with fill level processing based on yield data |
US11234366B2 (en) | 2019-04-10 | 2022-02-01 | Deere & Company | Image selection for machine control |
US11240961B2 (en) | 2018-10-26 | 2022-02-08 | Deere & Company | Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity |
US20220110251A1 (en) | 2020-10-09 | 2022-04-14 | Deere & Company | Crop moisture map generation and control system |
US11467605B2 (en) | 2019-04-10 | 2022-10-11 | Deere & Company | Zonal machine control |
US11474523B2 (en) | 2020-10-09 | 2022-10-18 | Deere & Company | Machine control using a predictive speed map |
US11477940B2 (en) | 2020-03-26 | 2022-10-25 | Deere & Company | Mobile work machine control based on zone parameter modification |
US11592822B2 (en) | 2020-10-09 | 2023-02-28 | Deere & Company | Machine control using a predictive map |
US11589509B2 (en) | 2018-10-26 | 2023-02-28 | Deere & Company | Predictive machine characteristic map generation and control system |
US11635765B2 (en) | 2020-10-09 | 2023-04-25 | Deere & Company | Crop state map generation and control system |
US11641800B2 (en) | 2020-02-06 | 2023-05-09 | Deere & Company | Agricultural harvesting machine with pre-emergence weed detection and mitigation system |
US11650587B2 (en) | 2020-10-09 | 2023-05-16 | Deere & Company | Predictive power map generation and control system |
US11653588B2 (en) | 2018-10-26 | 2023-05-23 | Deere & Company | Yield map generation and control system |
US11672203B2 (en) | 2018-10-26 | 2023-06-13 | Deere & Company | Predictive map generation and control |
US11675354B2 (en) | 2020-10-09 | 2023-06-13 | Deere & Company | Machine control using a predictive map |
US11711995B2 (en) | 2020-10-09 | 2023-08-01 | Deere & Company | Machine control using a predictive map |
US11727680B2 (en) | 2020-10-09 | 2023-08-15 | Deere & Company | Predictive map generation based on seeding characteristics and control |
US11778945B2 (en) | 2019-04-10 | 2023-10-10 | Deere & Company | Machine control using real-time model |
US11825768B2 (en) | 2020-10-09 | 2023-11-28 | Deere & Company | Machine control using a predictive map |
US11844311B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Machine control using a predictive map |
US11845449B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Map generation and control system |
US11849671B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Crop state map generation and control system |
US11849672B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Machine control using a predictive map |
US11864483B2 (en) | 2020-10-09 | 2024-01-09 | Deere & Company | Predictive map generation and control system |
US11874669B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Map generation and control system |
US11889787B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive speed map generation and control system |
US11889788B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive biomass map generation and control |
US11895948B2 (en) | 2020-10-09 | 2024-02-13 | Deere & Company | Predictive map generation and control based on soil properties |
US11927459B2 (en) | 2020-10-09 | 2024-03-12 | Deere & Company | Machine control using a predictive map |
US11946747B2 (en) | 2020-10-09 | 2024-04-02 | Deere & Company | Crop constituent map generation and control system |
US11957072B2 (en) | 2020-02-06 | 2024-04-16 | Deere & Company | Pre-emergence weed detection and mitigation system |
US11983009B2 (en) | 2020-10-09 | 2024-05-14 | Deere & Company | Map generation and control system |
US12013245B2 (en) | 2020-10-09 | 2024-06-18 | Deere & Company | Predictive map generation and control system |
US12035648B2 (en) | 2020-02-06 | 2024-07-16 | Deere & Company | Predictive weed map generation and control system |
US12058951B2 (en) | 2022-04-08 | 2024-08-13 | Deere & Company | Predictive nutrient map and control |
US12069978B2 (en) | 2018-10-26 | 2024-08-27 | Deere & Company | Predictive environmental characteristic map generation and control system |
US12069986B2 (en) | 2020-10-09 | 2024-08-27 | Deere & Company | Map generation and control system |
US12082531B2 (en) | 2022-01-26 | 2024-09-10 | Deere & Company | Systems and methods for predicting material dynamics |
US12127500B2 (en) | 2021-01-27 | 2024-10-29 | Deere & Company | Machine control using a map with regime zones |
-
1990
- 1990-06-12 RU SU904854789A patent/RU1791767C/en active
Non-Patent Citations (1)
Title |
---|
1. Дмитриев Н,И. и др. Метод определени оптимальной влажности грунтов. Информационный листок ВКУНТИ. Усть-Каменогорск, 1984. рубрика 67.01.81, N° 48-85. 2. Авторское свидетельство СССР N° 679868. кл. G 01 N 29/04, 1977. 2 * |
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12010947B2 (en) | 2018-10-26 | 2024-06-18 | Deere & Company | Predictive machine characteristic map generation and control system |
US12069978B2 (en) | 2018-10-26 | 2024-08-27 | Deere & Company | Predictive environmental characteristic map generation and control system |
US11672203B2 (en) | 2018-10-26 | 2023-06-13 | Deere & Company | Predictive map generation and control |
US11240961B2 (en) | 2018-10-26 | 2022-02-08 | Deere & Company | Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity |
US11589509B2 (en) | 2018-10-26 | 2023-02-28 | Deere & Company | Predictive machine characteristic map generation and control system |
US11178818B2 (en) | 2018-10-26 | 2021-11-23 | Deere & Company | Harvesting machine control system with fill level processing based on yield data |
US11653588B2 (en) | 2018-10-26 | 2023-05-23 | Deere & Company | Yield map generation and control system |
US11467605B2 (en) | 2019-04-10 | 2022-10-11 | Deere & Company | Zonal machine control |
US11234366B2 (en) | 2019-04-10 | 2022-02-01 | Deere & Company | Image selection for machine control |
US11079725B2 (en) | 2019-04-10 | 2021-08-03 | Deere & Company | Machine control using real-time model |
US11650553B2 (en) | 2019-04-10 | 2023-05-16 | Deere & Company | Machine control using real-time model |
US11778945B2 (en) | 2019-04-10 | 2023-10-10 | Deere & Company | Machine control using real-time model |
US11829112B2 (en) | 2019-04-10 | 2023-11-28 | Deere & Company | Machine control using real-time model |
US11957072B2 (en) | 2020-02-06 | 2024-04-16 | Deere & Company | Pre-emergence weed detection and mitigation system |
US11641800B2 (en) | 2020-02-06 | 2023-05-09 | Deere & Company | Agricultural harvesting machine with pre-emergence weed detection and mitigation system |
US12035648B2 (en) | 2020-02-06 | 2024-07-16 | Deere & Company | Predictive weed map generation and control system |
US11477940B2 (en) | 2020-03-26 | 2022-10-25 | Deere & Company | Mobile work machine control based on zone parameter modification |
US11844311B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Machine control using a predictive map |
US11927459B2 (en) | 2020-10-09 | 2024-03-12 | Deere & Company | Machine control using a predictive map |
US11711995B2 (en) | 2020-10-09 | 2023-08-01 | Deere & Company | Machine control using a predictive map |
US11825768B2 (en) | 2020-10-09 | 2023-11-28 | Deere & Company | Machine control using a predictive map |
US11675354B2 (en) | 2020-10-09 | 2023-06-13 | Deere & Company | Machine control using a predictive map |
US11650587B2 (en) | 2020-10-09 | 2023-05-16 | Deere & Company | Predictive power map generation and control system |
US11845449B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Map generation and control system |
US11849671B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Crop state map generation and control system |
US11849672B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Machine control using a predictive map |
US11864483B2 (en) | 2020-10-09 | 2024-01-09 | Deere & Company | Predictive map generation and control system |
US11874669B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Map generation and control system |
US11871697B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Crop moisture map generation and control system |
US11889787B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive speed map generation and control system |
US11889788B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive biomass map generation and control |
US11895948B2 (en) | 2020-10-09 | 2024-02-13 | Deere & Company | Predictive map generation and control based on soil properties |
US11727680B2 (en) | 2020-10-09 | 2023-08-15 | Deere & Company | Predictive map generation based on seeding characteristics and control |
US11946747B2 (en) | 2020-10-09 | 2024-04-02 | Deere & Company | Crop constituent map generation and control system |
US11635765B2 (en) | 2020-10-09 | 2023-04-25 | Deere & Company | Crop state map generation and control system |
US11983009B2 (en) | 2020-10-09 | 2024-05-14 | Deere & Company | Map generation and control system |
US11592822B2 (en) | 2020-10-09 | 2023-02-28 | Deere & Company | Machine control using a predictive map |
US12013698B2 (en) | 2020-10-09 | 2024-06-18 | Deere & Company | Machine control using a predictive map |
US12013245B2 (en) | 2020-10-09 | 2024-06-18 | Deere & Company | Predictive map generation and control system |
US11474523B2 (en) | 2020-10-09 | 2022-10-18 | Deere & Company | Machine control using a predictive speed map |
US12048271B2 (en) | 2020-10-09 | 2024-07-30 | Deere &Company | Crop moisture map generation and control system |
US12080062B2 (en) | 2020-10-09 | 2024-09-03 | Deere & Company | Predictive map generation based on seeding characteristics and control |
US20220110251A1 (en) | 2020-10-09 | 2022-04-14 | Deere & Company | Crop moisture map generation and control system |
US12069986B2 (en) | 2020-10-09 | 2024-08-27 | Deere & Company | Map generation and control system |
US12127500B2 (en) | 2021-01-27 | 2024-10-29 | Deere & Company | Machine control using a map with regime zones |
US12082531B2 (en) | 2022-01-26 | 2024-09-10 | Deere & Company | Systems and methods for predicting material dynamics |
US12058951B2 (en) | 2022-04-08 | 2024-08-13 | Deere & Company | Predictive nutrient map and control |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU1791767C (en) | Device for determination of physical and mechanical properties of soils under compaction | |
Daponte et al. | Ultrasonic signal-processing techniques for the measurement of damage growth in structural materials | |
Bucur | Theory of and experimental methods for the acoustic characterization of wood | |
US3254739A (en) | Method and apparatus for measuring the sound absorption of acoustical materials | |
RU2297627C1 (en) | Device for ultrasonic test | |
US4249421A (en) | Method to determine the shear absorption of a rubberlike material | |
RU2025726C1 (en) | Device for determination of mixture homogeneity degree | |
SU1762220A2 (en) | Device for materials elastic properties determining | |
CN203849215U (en) | Ultrasonic transducer fixing and measuring device | |
RU2052774C1 (en) | Ultrasonic device for measurement of physical properties of liquid media | |
Briscoe et al. | Polymer-gas interactions at high pressure: the use of ultrasonic probes | |
SU1312472A1 (en) | Method of determining acoustical resistance of materials | |
SU588495A1 (en) | Ultrasonic method of determining sound attenuation in material specimens | |
RU93008580A (en) | DEVICE FOR DETERMINING MECHANICAL PROPERTIES OF BIOLOGICAL TISSUES | |
SU1205008A1 (en) | Ultrasonic method of inspecting content of liquid in impregnated materials | |
SU715991A1 (en) | Method of measuring non-linear parameter of liquid media | |
SU1741054A1 (en) | Method of determining moisture content in objects using a transducer with buffer rod | |
SU1747929A1 (en) | Ultrasonic device for studying liquids | |
SU976316A1 (en) | Method of measuring high pressures | |
SU967584A1 (en) | Wide band ultrasonic converter | |
Erwin et al. | Ultrasonic resonance applied to non‐destructive testing | |
SU1536298A1 (en) | Method of determining content of filler in material | |
SU1700462A1 (en) | Method of measuring coefficient of reflection of sound from plate | |
SU1260842A1 (en) | Method of determining physical and mechanical properties of objects by means of buffer rod converter | |
SU1476372A1 (en) | Method for testing ferromagnetic material structure |