RU156786U1 - Геофизический волоконно-оптический кабель - Google Patents
Геофизический волоконно-оптический кабель Download PDFInfo
- Publication number
- RU156786U1 RU156786U1 RU2015105598/07U RU2015105598U RU156786U1 RU 156786 U1 RU156786 U1 RU 156786U1 RU 2015105598/07 U RU2015105598/07 U RU 2015105598/07U RU 2015105598 U RU2015105598 U RU 2015105598U RU 156786 U1 RU156786 U1 RU 156786U1
- Authority
- RU
- Russia
- Prior art keywords
- cable
- cable according
- free channel
- laid
- metal wires
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title description 4
- 230000003287 optical effect Effects 0.000 title description 4
- 239000002184 metal Substances 0.000 claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 239000013307 optical fiber Substances 0.000 claims abstract description 25
- 239000011248 coating agent Substances 0.000 claims abstract description 9
- 238000000576 coating method Methods 0.000 claims abstract description 9
- 239000004020 conductor Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 8
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 6
- 239000004917 carbon fiber Substances 0.000 claims abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 6
- 239000001257 hydrogen Substances 0.000 claims abstract description 6
- 238000009413 insulation Methods 0.000 claims abstract description 6
- 230000007797 corrosion Effects 0.000 claims abstract description 5
- 238000005260 corrosion Methods 0.000 claims abstract description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910000851 Alloy steel Inorganic materials 0.000 claims abstract description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052802 copper Inorganic materials 0.000 claims abstract description 4
- 239000010949 copper Substances 0.000 claims abstract description 4
- 210000003298 dental enamel Anatomy 0.000 claims abstract description 4
- 229920002312 polyamide-imide Polymers 0.000 claims abstract description 4
- 230000002269 spontaneous effect Effects 0.000 claims abstract description 4
- 150000001879 copper Chemical group 0.000 claims abstract 2
- 229920000642 polymer Polymers 0.000 claims description 8
- 101100533504 Arabidopsis thaliana SIEL gene Proteins 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 239000004952 Polyamide Substances 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 150000003961 organosilicon compounds Chemical class 0.000 claims description 3
- 229920002647 polyamide Polymers 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 239000004590 silicone sealant Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 3
- -1 for example Substances 0.000 abstract description 2
- 239000004962 Polyamide-imide Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229920001558 organosilicon polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
Images
Landscapes
- Communication Cables (AREA)
- Insulated Conductors (AREA)
Abstract
1. Геофизический волоконно-оптический кабель, включающий трос из металлических проволок, уложенных таким образом, что в центре образован свободный канал, и одно или несколько оптических волокон, уложенных в указанный свободный канал, причем указанный свободный канал и свободное пространство между металлическими проволоками троса заполнено материалом с низким модулем упругости.2. Кабель по п. 1, в котором в свободный канал уложено, преимущественно, от 1 до 8 оптических волокон.3. Кабель по п. 1, в котором для обеспечения стойкости к воздействию водорода оптическое волокно содержит карбоновое покрытие.4. Кабель по п. 3, в котором для обеспечения теплостойкости оптическое волокно поверх карбонового содержит теплостойкое покрытие, например полиамидимидное.5. Кабель по п. 1, в котором наряду с одним или несколькими оптическими волокнами в свободный канал уложен один или несколько изолированных металлических проводников.6. Кабель по п. 5, в котором изолированный металлический проводник представляет собой медный или никелевый провод, имеющий зависимость сопротивления от температуры, предпочтительно в эмалевой высокотемпературной изоляции, например, ПЭВ-2.7. Кабель по п. 1, в котором трос содержит от 3 до 10 металлических проволок.8. Кабель по п. 1, в котором металлические проволоки троса выполнены коррозионно-стойкими.9. Кабель по п. 8, в котором металлические проволоки выполнены оцинкованными или кадмированными, либо из легированной стали.10. Кабель по п. 1, в котором образующие трос проволоки предварительно деформированы для предотвращения самопроизвольного расплетания троса.11. Кабель по одному из пп. 1-10, в котором трос имеет �
Description
Предложение относится к техническим средствам для геофизического исследования и мониторинга нефтяных и газовых скважин и может применяться для измерения температур и давления в широком диапазоне их значений, а также в агрессивных средах. Предлагаемый кабель может применяться также для передачи информации от традиционных геофизических приборов к устью скважины.
Известен геофизический оптический кабель, содержащий, по меньше мере, одну токопроводящую жилу и наружную оболочку, выполненную из полимерного материала - гелькоута, при этом, по меньшей мере, одна токопроводящая жила расположена в массе полимерного композиционного материала, армированного стеклянными или углеродными волокнами, параллельно, по меньшей мере, одной токопроводящей жиле в массе полимерного композиционного материала расположен стальной трос и оптическое волокно (RU 147382, 2014).
Недостатком известного кабеля является то, что он имеет низкую стойкость к поперечному сжатию и подвержен деформациям вплоть до разрушения под действием сдавливающих нагрузок внешней среды (жидкость и/или газ), что в конечном итоге осложняет возможность осуществления его надежной герметизации на фонтанной арматуре скважины и может приводить к потере герметичности и истечения жидкости или газа за пределы герметизирующих устройств арматуры. Кроме того кабель имеет низкую стойкость к высоким температурам внешней среды.
Известна конструкция оптического кабеля для тяжелых условий эксплуатации, преимущественно, в нефтяных скважинах. Кабель содержит набор оптических волокон, металлическую герметичную трубку, наполнитель, преимущественно, тиксотропный гель, силовой элемент в виде расположенных по окружности металлических, преимущественно, стальных проволок и внешнего покрытия, преимущественно, полимерного (US 7000696, 2006).
Известна также более сложная конструкция (US 7024081, 2006), где роль силового элемента выполняет вторая (внешняя) металлическая трубка, обладающая герметичностью, причем пространство между трубками заполнено полимером, предпочтительно, вспененным. Кроме того, в состав контактирующего с оптическими волокнами геля введен поглотитель водорода. Преимуществом можно считать меньшую площадь поперечного сечения и меньшую погонную массу кабеля. Однако техническое решение имеет те же недостатки, что и указанное выше.
Аналогичными характеристиками обладает и известное техническое решение (US 7424190, 2008).
Известен геофизический кабель, включающий наружный и внутренний слои брони со слоем изоляции между ними, а также оптоволоконный модуль в центре, размещенный в металлическом капилляре, например, из нержавеющей стали, который одновременно является токопроводящей жилой и имеет снаружи подушку-изолятор, а с внутренней - гидрофобный заполнитель с размещенными оптоволоконными каналами, причем внутренний слой брони с наложенной на него изоляцией является токопроводящей жилой и каркасом, воспринимающим на себя внешнее давление (RU 50337, 2005).
Недостатками известных технических решений является сложность конструкции и низкая стойкость к поперечному сжатию из-за присутствия в конструкциях металлической трубки (капилляра) из коррозионно-стойкого материала (сталь, инконель и т.д.), что ведет к появлению остаточных деформаций в результате действия сдавливающих нагрузок внешней среды (жидкость и/или газ) и в конечном итоге осложняет возможность осуществления их надежной герметизации на фонтанной арматуре скважины и может приводить к потере ее герметичности и истечения жидкости и/или газа за пределы герметизирующих устройств арматуры. Кроме того они имеют низкую стойкость к высоким температурам внешней среды.
Техническим результатом настоящего предложения является создание простой конструкции геофизического волоконно-оптического кабеля, обладающего высокой температурной стойкостью, устойчивостью по отношению к внешнему давлению и наличию водорода.
Технический результат достигается тем, что геофизический волоконно-оптический кабель включает трос из металлических проволок, уложенных таким образом, что в центре образован свободный канал, и одно или несколько оптических волокон, уложенных в указанный свободный канал, причем указанный свободный канал и свободное пространство между металлическими проволоками троса заполнено материалом с низким модулем упругости.
Способствует достижению технического результата то, что:
- в свободный канал троса уложено, преимущественно, от 1 до 8 оптических волокон;
- для обеспечения стойкости к воздействию водорода каждое оптическое волокно содержит карбоновое покрытие, а для обеспечения теплостойкости оптическое волокно поверх карбонового содержит теплостойкое покрытие, например, полиамидимидное;
- наряду с одним или несколькими оптическими волокнами в свободный канал уложен один или несколько изолированных металлических проводников, каждый из которых представляет собой медный или никелевый провод, имеющий зависимость сопротивления от температуры, предпочтительно в эмалевой высокотемпературной изоляции, например, ПЭВ-2;
- трос содержит от 3 до 10 металлических проволок, выполненных коррозионно стойкими, например, оцинкованными или кадмированными, либо из легированной стали, причем образующие трос проволоки предварительно деформированы для предотвращения самопроизвольного расплетания троса, а сам трос имеет спиральный повив и ошлангован по внешней поверхности высокотемпературным полимером, например, полиамидом;
- в качестве материала с низким модулем упругости для заполнения свободного канала и свободного пространства между металлическими проволоками троса использован резиноподобный силикон, например, одно- или двухкомпонентный силиконовый герметик или иной кремнийорганический компаунд, например, компаунд СИЭЛ.
Предложенное техническое решение поясняется графическим изображением кабеля (поперечное сечение).
Геофизический волоконно-оптический кабель в одном из частных случаев выполнен с ошлангованным тросом по внешней поверхности высокотемпературным полимером, например, полиамидом (имеет внешнюю полимерную оболочку 1). Кабель включает силовой элемент - трос из металлических проволок 2, уложенных таким образом, что в центре образован свободный канал 3. В указанный свободный канал 3 уложены одно или несколько оптических волокон 4. Указанный свободный канал 3 и свободное пространство 5 между металлическими проволоками 2 троса заполнено материалом 6 с низким модулем упругости. Трос содержит от 3 до 10 металлических проволок 2, в данном случае пять, выполненных коррозионно стойкими, например, оцинкованными или кадмированными, либо из легированной стали. Образующие трос проволоки 2 предварительно деформированы для предотвращения самопроизвольного расплетания троса, а сам трос имеет спиральный повив. В свободный канал 3 троса уложено от 1 до 8 оптических волокон, в данном случае два. Для обеспечения стойкости к воздействию водорода каждое оптическое волокно 4 содержит карбоновое покрытие, а для обеспечения теплостойкости оптическое волокно 4 поверх карбонового содержит теплостойкое покрытие, например, полиамидимидное. Наряду с двумя оптическими волокнами 4 в свободный канал 3 может быть уложен один или несколько изолированных металлических проводников 6, в данном случае два. Каждый из проводников 6 представляет собой медный или никелевый провод, имеющий зависимость сопротивления от температуры, предпочтительно, в эмалевой высокотемпературной изоляции, например, ПЭВ-2. В качестве материала 6 с низким модулем упругости для заполнения свободного канала 3 и свободного пространства 5 между металлическими проволоками 2 троса использован резиноподобный силикон, например, одно- или двухкомпонентный силиконовый герметик или иной кремнийорганический компаунд, например, компаунд СИЭЛ.
Работает геофизический волоконно-оптический кабель следующим образом. При необходимости проведения исследований, в скважину, например, нефтяную, известным образом вводят необходимый прибор или набор приборов, связанных с кабелем, навитым на барабан подъемника. Благодаря низкому модулю упругости оптическое волокно 4 в свободном канале 3 в малой степени подвержено влиянию микроизгибов, приводящих к оптическим потерям. Кроме того, кремнийорганические полимеры термостойки, благодаря чему кабель оказывается высокотемпературным (при использовании высокотемпературных оптических волокон). При наличии одного или нескольких изолированных металлических проводников 6 в свободном канале 3 возможно измерение также средней по кабелю температуры.
Claims (13)
1. Геофизический волоконно-оптический кабель, включающий трос из металлических проволок, уложенных таким образом, что в центре образован свободный канал, и одно или несколько оптических волокон, уложенных в указанный свободный канал, причем указанный свободный канал и свободное пространство между металлическими проволоками троса заполнено материалом с низким модулем упругости.
2. Кабель по п. 1, в котором в свободный канал уложено, преимущественно, от 1 до 8 оптических волокон.
3. Кабель по п. 1, в котором для обеспечения стойкости к воздействию водорода оптическое волокно содержит карбоновое покрытие.
4. Кабель по п. 3, в котором для обеспечения теплостойкости оптическое волокно поверх карбонового содержит теплостойкое покрытие, например полиамидимидное.
5. Кабель по п. 1, в котором наряду с одним или несколькими оптическими волокнами в свободный канал уложен один или несколько изолированных металлических проводников.
6. Кабель по п. 5, в котором изолированный металлический проводник представляет собой медный или никелевый провод, имеющий зависимость сопротивления от температуры, предпочтительно в эмалевой высокотемпературной изоляции, например, ПЭВ-2.
7. Кабель по п. 1, в котором трос содержит от 3 до 10 металлических проволок.
8. Кабель по п. 1, в котором металлические проволоки троса выполнены коррозионно-стойкими.
9. Кабель по п. 8, в котором металлические проволоки выполнены оцинкованными или кадмированными, либо из легированной стали.
10. Кабель по п. 1, в котором образующие трос проволоки предварительно деформированы для предотвращения самопроизвольного расплетания троса.
11. Кабель по одному из пп. 1-10, в котором трос имеет спиральный повив.
12. Кабель по п. 1, в котором в качестве материала с низким модулем упругости использован резиноподобный силикон, например одно- или двухкомпонентный силиконовый герметик или иной кремнийорганический компаунд, например компаунд СИЭЛ.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015105598/07U RU156786U1 (ru) | 2015-02-19 | 2015-02-19 | Геофизический волоконно-оптический кабель |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015105598/07U RU156786U1 (ru) | 2015-02-19 | 2015-02-19 | Геофизический волоконно-оптический кабель |
Publications (1)
Publication Number | Publication Date |
---|---|
RU156786U1 true RU156786U1 (ru) | 2015-11-20 |
Family
ID=54598486
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015105598/07U RU156786U1 (ru) | 2015-02-19 | 2015-02-19 | Геофизический волоконно-оптический кабель |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU156786U1 (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU175594U1 (ru) * | 2017-05-23 | 2017-12-11 | Общество с ограниченной ответственностью "Сарансккабель-Оптика" | Распределенный волоконно-оптический кабель-датчик |
RU196039U1 (ru) * | 2019-10-31 | 2020-02-14 | Общество с ограниченной ответственностью "Предприятие "ФХС-ПНГ" | Геофизический волоконно-оптический стабилизированный кабель |
RU2723291C2 (ru) * | 2015-12-28 | 2020-06-09 | Призмиан С.П.А. | Скважинный кабель с уменьшенным диаметром |
RU202982U1 (ru) * | 2020-02-25 | 2021-03-17 | Общество с ограниченной ответственностью "Предприятие "ФХС-ПНГ" | Геофизический кабель с оптическим волокном и капилярной трубкой |
-
2015
- 2015-02-19 RU RU2015105598/07U patent/RU156786U1/ru active
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2723291C2 (ru) * | 2015-12-28 | 2020-06-09 | Призмиан С.П.А. | Скважинный кабель с уменьшенным диаметром |
RU175594U1 (ru) * | 2017-05-23 | 2017-12-11 | Общество с ограниченной ответственностью "Сарансккабель-Оптика" | Распределенный волоконно-оптический кабель-датчик |
RU196039U1 (ru) * | 2019-10-31 | 2020-02-14 | Общество с ограниченной ответственностью "Предприятие "ФХС-ПНГ" | Геофизический волоконно-оптический стабилизированный кабель |
RU202982U1 (ru) * | 2020-02-25 | 2021-03-17 | Общество с ограниченной ответственностью "Предприятие "ФХС-ПНГ" | Геофизический кабель с оптическим волокном и капилярной трубкой |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU156786U1 (ru) | Геофизический волоконно-оптический кабель | |
US11054603B2 (en) | Method for manufacturing hybrid cable | |
CN109215861B (zh) | 一种耐腐蚀潜油泵电缆及其制造方法 | |
CN102737782B (zh) | 一种中心钢管双铠型水下生产系统用脐带缆 | |
CN204731464U (zh) | 一种层绞式阻燃光缆 | |
CN101191876A (zh) | 耐高温大长度承荷探测光缆 | |
CN107134311A (zh) | 一种钢丝铠装光电复合测井缆线 | |
CN203205125U (zh) | 一种耐高温光纤复合油井探测电缆 | |
RU109907U1 (ru) | Электрооптический кабель для установок погружных электронасосов | |
CN202256792U (zh) | 用于井下高温测试的双管光缆 | |
CN102998757A (zh) | 高强度海底光缆 | |
CN204596489U (zh) | 一种新型潜油泵用电缆 | |
RU183643U1 (ru) | Оптоволоконный бронированный кабель для измерения температурного профиля нефтяных и газовых скважин | |
CN207909544U (zh) | 一种油井用耐高温光电复合光缆 | |
CN208093200U (zh) | 一种密封提捞专用承荷测试光电复合强力缆 | |
CN106653191B (zh) | 一种纵向水密气密电缆及其制备方法 | |
CN205140594U (zh) | 一种加强防干扰数字通信电缆 | |
KR101547914B1 (ko) | 젤 프리 opgw | |
CN114859487A (zh) | 一种密封型油井光缆 | |
CN204389751U (zh) | 一种耐火智能微缆 | |
RU144512U1 (ru) | Грузонесущий геофизический бронированный кабель с наружной полимерной оболочкой и зазорами между проволоками брони | |
CN207488583U (zh) | 一种不锈钢管油井测试光缆 | |
CN209525970U (zh) | 基于微震监测横波增敏传感光纤承荷探测电缆 | |
CN108957651A (zh) | 一种高强度耐折弯光缆 | |
CN202025542U (zh) | 一种多层不锈钢管密封测井电缆 |