RU145233U1 - Тепловая электрическая станция - Google Patents
Тепловая электрическая станция Download PDFInfo
- Publication number
- RU145233U1 RU145233U1 RU2014113708/06U RU2014113708U RU145233U1 RU 145233 U1 RU145233 U1 RU 145233U1 RU 2014113708/06 U RU2014113708/06 U RU 2014113708/06U RU 2014113708 U RU2014113708 U RU 2014113708U RU 145233 U1 RU145233 U1 RU 145233U1
- Authority
- RU
- Russia
- Prior art keywords
- steam turbine
- heated medium
- oil
- condenser
- circuit
- Prior art date
Links
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, и теплообменник-испаритель, включенный по нагреваемой среде в обратный трубопровод сетевой воды перед нижним сетевым подогревателем, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, отличающаяся тем, что в нее введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер с электрогенератором, конденсатор водяного и воздушного охлаждения, конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя соединен по нагреваемой среде с входом теплообменника-испарителя, выход которого соединен по нагреваемой среде с входом турбодетандера, образуя замкнутый контур охлаждения.2. Тепловая электрическая станция по п. 1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO.
Description
Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии.
Прототипом является тепловая электрическая станция, содержащая теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом (патент RU №2269014, МПК F01K 17/02, 27.01.2006).
Основным недостатком прототипа является то, что утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды осуществляют в целях выработки дополнительной тепловой энергии, а не для дополнительной выработки электрической энергии.
Кроме этого, недостатком прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии, обусловленный затратами электрической мощности на привод теплонасосной установки, а также из-за отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электроэнергии.
Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии.
Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, и теплообменник-испаритель, включенный по нагреваемой среде в обратный трубопровод сетевой воды перед нижним сетевым подогревателем, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, согласно настоящей полезной модели, введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер с электрогенератором, конденсатор водяного и воздушного охлаждения, конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя соединен по нагреваемой среде с входом теплообменника-испарителя, выход которого соединен по нагреваемой среде с входом турбодетандера, образуя замкнутый контур охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.
Таким образом, технический результат достигается за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, которые осуществляют путем последовательного нагрева, соответственно, в маслоохладителе и теплообменнике-испарителе, низкокипящего рабочего тела (сжиженного углекислого газа CO2) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Сущность полезной модели поясняется чертежом, на котором представлена предлагаемая тепловая электрическая станция, имеющая тепловой двигатель с водяным и воздушным охлаждением, теплообменник-испаритель.
На чертеже цифрами обозначены:
1 - паровая турбина,
2 - конденсатор паровой турбины,
3 - конденсатный насос конденсатора паровой турбины,
4 - основной электрогенератор,
5 - тепловой двигатель с замкнутым контуром циркуляции,
6 - турбодетандер,
7 - электрогенератор,
8 - конденсатор водяного и воздушного охлаждения,
9 - конденсатный насос,
10 - верхний сетевой подогреватель,
11 - нижний сетевой подогреватель,
12 - подающий трубопровод сетевой воды,
13 - обратный трубопровод сетевой воды,
14 - теплообменник-испаритель,
15 - система маслоснабжения подшипников паровой турбины,
16 - сливной трубопровод,
17 - маслобак,
18 - маслонасос,
19 - маслоохладитель,
20 - напорный трубопровод.
Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды, и теплообменник-испаритель 14, включенный по нагреваемой среде в обратный трубопровод 13 сетевой воды перед нижним сетевым подогревателем 11, а также систему 15 маслоснабжения подшипников паровой турбины 1, содержащую последовательно соединенные по греющей среде сливной трубопровод 16, маслобак 17, маслонасос 18 и маслоохладитель 19, выход которого по нагреваемой среде соединен с напорным трубопроводом 20.
Отличием предлагаемой тепловой электрической станции является то, что в нее введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.
Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, конденсатор 8 водяного и воздушного охлаждения, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом маслоохладителя 19, выход маслоохладителя 19 соединен по нагреваемой среде с входом теплообменника-испарителя 14, выход которого соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.
Конденсатор 8 водяного и воздушного охлаждения состоит из конденсатора водяного охлаждения и конденсатора воздушного охлаждения (на чертеже условно не показаны схемы подключения конденсаторов между собой), которые могут как последовательно, так и параллельно охлаждать и сжижать углекислый газ CO2.
В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.
Предлагаемая тепловая электрическая станция работает следующим образом.
Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.
Преобразование низкопотенциальной тепловой энергии системы 15 маслоснабжения подшипников паровой турбины 1 и избыточной низкопотенциальной тепловой энергии обратной сетевой воды, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.
Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного углекислого газа CO2, который направляют на нагрев в маслоохладитель 19, куда поступает нагретое масло системы 15 маслоснабжения подшипников паровой турбины 1 с температурой в интервале от 313,15 K до 343,15 K.
В процессе теплообмена нагретого масла с сжиженным углекислым газом CO2 в маслоохладителе 19, происходит нагрев сжиженного углекислого газа CO2 до критической температуры 304,13 K при сверхкритическом давлении в интервале от 7,3773 МПа до 10,5 МПа, и далее его направляют на испарение и перегрев в теплообменник-испаритель 14, куда поступает обратная сетевая вода из обратного трубопровода 13. При этом температура обратной сетевой воды может варьироваться в интервале от 313,15 K до 343,15 K.
В процессе теплообмена обратной сетевой воды с сжиженным углекислым газом CO2 в теплообменнике-испарителе 14, происходит испарение сжиженного углекислого газа CO2 и дальнейший его перегрев до сверхкритической температуры в интервале от 304,13 K до 333,15 K при сверхкритическом давлении в интервале от 7,3773 МПа до 10,5 МПа, который направляют в турбодетандер 6.
Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации углекислого газа CO2 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 углекислый газ CO2 имеет температуру около 288 K с влажностью не превышающей 12%.
Далее, при снижении температуры углекислого газа CO2, происходит его сжижение в конденсаторе 8 водяного и воздушного охлаждения, охлаждаемого технической водой окружающей среды в температурном диапазоне от 278,15 K до 283,15 K и воздухом окружающей среды в температурном диапазоне от 223,15 K до 283,15 K.
После конденсатора 8 водяного и воздушного охлаждения в сжиженном состоянии углекислый газ CO2 направляют для сжатия в конденсатный насос 9 теплового двигателя 5.
Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.
Применение конденсатора 8 водяного и воздушного охлаждения позволяет как последовательно, так и параллельно охлаждать и сжижать углекислый газ CO2. При последовательном охлаждении температуру углекислого газа CO2 снижают вначале в конденсаторе водяного охлаждения, а затем его сжижают в конденсаторе воздушного охлаждения. При параллельном охлаждении углекислый газ CO2 разделяют на два потока: первый поток охлаждается и сжижается в конденсаторе водяного охлаждения, а второй поток в конденсаторе воздушного охлаждения, и в процессе смешения двух выходных потоков возможно регулирование температуры сжиженного углекислого газа CO2.
Применение воздуха в качестве теплоотводящей среды конденсатора 8 позволяет резко сократить расходы воды и улучшить экологический баланс естественных водоемов.
Claims (2)
1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, которая соединена по греющей среде с верхним и нижним сетевыми подогревателями, включенными по нагреваемой среде между подающим и обратным трубопроводами сетевой воды, и теплообменник-испаритель, включенный по нагреваемой среде в обратный трубопровод сетевой воды перед нижним сетевым подогревателем, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, отличающаяся тем, что в нее введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер с электрогенератором, конденсатор водяного и воздушного охлаждения, конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом маслоохладителя, выход маслоохладителя соединен по нагреваемой среде с входом теплообменника-испарителя, выход которого соединен по нагреваемой среде с входом турбодетандера, образуя замкнутый контур охлаждения.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014113708/06U RU145233U1 (ru) | 2014-04-08 | 2014-04-08 | Тепловая электрическая станция |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014113708/06U RU145233U1 (ru) | 2014-04-08 | 2014-04-08 | Тепловая электрическая станция |
Publications (1)
Publication Number | Publication Date |
---|---|
RU145233U1 true RU145233U1 (ru) | 2014-09-10 |
Family
ID=51540755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014113708/06U RU145233U1 (ru) | 2014-04-08 | 2014-04-08 | Тепловая электрическая станция |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU145233U1 (ru) |
-
2014
- 2014-04-08 RU RU2014113708/06U patent/RU145233U1/ru not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU145195U1 (ru) | Тепловая электрическая станция | |
RU145203U1 (ru) | Тепловая электрическая станция | |
RU145193U1 (ru) | Тепловая электрическая станция | |
RU145233U1 (ru) | Тепловая электрическая станция | |
RU145197U1 (ru) | Тепловая электрическая станция | |
RU144946U1 (ru) | Тепловая электрическая станция | |
RU145214U1 (ru) | Тепловая электрическая станция | |
RU146399U1 (ru) | Тепловая электрическая станция | |
RU145221U1 (ru) | Тепловая электрическая станция | |
RU145708U1 (ru) | Тепловая электрическая станция | |
RU146387U1 (ru) | Тепловая электрическая станция | |
RU146245U1 (ru) | Тепловая электрическая станция | |
RU145230U1 (ru) | Тепловая электрическая станция | |
RU145210U1 (ru) | Тепловая электрическая станция | |
RU144955U1 (ru) | Тепловая электрическая станция | |
RU145228U1 (ru) | Тепловая электрическая станция | |
RU145222U1 (ru) | Тепловая электрическая станция | |
RU144950U1 (ru) | Тепловая электрическая станция | |
RU145201U1 (ru) | Тепловая электрическая станция | |
RU146394U1 (ru) | Тепловая электрическая станция | |
RU145217U1 (ru) | Тепловая электрическая станция | |
RU146398U1 (ru) | Тепловая электрическая станция | |
RU144937U1 (ru) | Тепловая электрическая станция | |
RU145209U1 (ru) | Тепловая электрическая станция | |
RU145722U1 (ru) | Тепловая электрическая станция |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Utility model has become invalid (non-payment of fees) |
Effective date: 20150409 |