RU145222U1 - Тепловая электрическая станция - Google Patents
Тепловая электрическая станция Download PDFInfo
- Publication number
- RU145222U1 RU145222U1 RU2014113697/06U RU2014113697U RU145222U1 RU 145222 U1 RU145222 U1 RU 145222U1 RU 2014113697/06 U RU2014113697/06 U RU 2014113697/06U RU 2014113697 U RU2014113697 U RU 2014113697U RU 145222 U1 RU145222 U1 RU 145222U1
- Authority
- RU
- Russia
- Prior art keywords
- steam turbine
- oil
- condenser
- series
- condensate pump
- Prior art date
Links
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, отличающаяся тем, что в нее введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер с электрогенератором, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом маслоохладителя, выход которого соединен по нагреваемой среде с входом турбодетандера, образуя замкнутый контур охлаждения.2. Тепловая электрическая станция по п. 1, отличающаяся тем, что в качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO.
Description
Полезная модель относится к области энергетики и может быть использована на тепловых электрических станциях (ТЭС) при утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии.
Прототипом является тепловая электрическая станция, содержащая теплофикационную турбину с отопительными отборами пара, подающий и обратный трубопроводы теплосети, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами теплосети и подключенные по греющей среде к отопительным отборам, теплонасосную установку с испарителем, включенным в обратный трубопровод теплосети, и конденсатором, при этом конденсатор теплонасосной установки включен в подающий трубопровод теплосети после сетевых подогревателей (патент RU №2269014, МПК F01K 17/02, 27.01.2006).
Основным недостатком прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электроэнергии.
Задачей полезной модели является повышение коэффициента полезного действия ТЭС за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии.
Технический результат достигается тем, что в тепловую электрическую станцию, включающую последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, согласно настоящей полезной модели, введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер с электрогенератором, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом маслоохладителя, выход которого соединен по нагреваемой среде с входом турбодетандера, образуя замкнутый контур охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.
Таким образом, технический результат достигается за счет утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины для дополнительной выработки электрической энергии, которую осуществляют путем нагрева в маслоохладителе низкокипящего рабочего тела (сжиженного углекислого газа CO2) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Сущность полезной модели поясняется чертежом, на котором представлена предлагаемая тепловая электрическая станция, имеющая тепловой двигатель с водяным охлаждением.
На чертеже цифрами обозначены:
1 - паровая турбина,
2 - конденсатор паровой турбины,
3 - конденсатный насос конденсатора паровой турбины,
4 - основной электрогенератор,
5 - тепловой двигатель с замкнутым контуром циркуляции,
6 - турбодетандер,
7 - электрогенератор,
8 - конденсатор водяного охлаждения,
9 - конденсатный насос,
10 - система маслоснабжения подшипников паровой турбины,
11 - сливной трубопровод,
12 - маслобак,
13 - маслонасос,
14 - маслоохладитель,
15 - напорный трубопровод.
Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, а также систему 10 маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод 11, маслобак 12, маслонасос 13 и маслоохладитель 14, выход которого по нагреваемой среде соединен с напорным трубопроводом 15.
Отличием предлагаемой тепловой электрической станции является то, что в нее введен тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина. Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, конденсатор 8 водяного охлаждения и конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом маслоохладителя 14, выход которого соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный углекислый газ CO2.
Предлагаемая тепловая электрическая станция работает следующим образом.
Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок. При этом образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации. Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.
Преобразование низкопотенциальной тепловой энергии системы 10 маслоснабжения подшипников паровой турбины 1, в механическую и, далее, в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина. Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного углекислого газа CO2, который направляют на испарение и перегрев в маслоохладитель 14, куда поступает нагретое масло системы 10 маслоснабжения подшипников паровой турбины 1 с температурой в интервале от 313,15 К до 348,15 К.
Температура кипения сжиженного углекислого газа CO2 сравнительна низка (при критической температуре 304,13 К и давлении 7,3773 МПа), поэтому в маслоохладителе 14, в процессе теплообмена нагретого масла с сжиженным углекислым газом CO2, происходит испарение сжиженного углекислого газа CO2 и его перегрев до температуры в интервале от 308,15 К до 338,15 К. После маслоохладителя 14 перегретый углекислый газ CO2 направляют в турбодетандер 6.
Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации углекислого газа CO2 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 углекислый газ CO2 имеет температуру около 288 К с влажностью не превышающей 12%.
Далее, при снижении температуры углекислого газа CO2, происходит его сжижение в конденсаторе 8 водяного охлаждения, охлаждаемого технической водой окружающей среды в температурном диапазоне от 278,15 К до 283,15 К.
После конденсатора 8 водяного охлаждения в сжиженном состоянии углекислый газ CO2 направляют для сжатия в конденсатный насос 9 теплового двигателя 5.
Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.
Конденсатор 8 водяного охлаждения обладает большей эффективностью теплопередачи по сравнению с воздушным охлаждением и не требует больших площадей теплообменной поверхности. При этом затраты мощности на привод циркуляционных насосов конденсатора 8 водяного охлаждения меньше, чем на привод вентиляторов конденсатора воздушного охлаждения.
Claims (2)
1. Тепловая электрическая станция, включающая последовательно соединенные паровую турбину, конденсатор паровой турбины и конденсатный насос конденсатора паровой турбины, основной электрогенератор, соединенный с паровой турбиной, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом, отличающаяся тем, что в нее введен тепловой двигатель с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина, при этом замкнутый контур циркуляции теплового двигателя выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер с электрогенератором, конденсатор водяного охлаждения и конденсатный насос, причем выход конденсатного насоса соединен по нагреваемой среде с входом маслоохладителя, выход которого соединен по нагреваемой среде с входом турбодетандера, образуя замкнутый контур охлаждения.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014113697/06U RU145222U1 (ru) | 2014-04-08 | 2014-04-08 | Тепловая электрическая станция |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014113697/06U RU145222U1 (ru) | 2014-04-08 | 2014-04-08 | Тепловая электрическая станция |
Publications (1)
Publication Number | Publication Date |
---|---|
RU145222U1 true RU145222U1 (ru) | 2014-09-10 |
Family
ID=51540744
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014113697/06U RU145222U1 (ru) | 2014-04-08 | 2014-04-08 | Тепловая электрическая станция |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU145222U1 (ru) |
-
2014
- 2014-04-08 RU RU2014113697/06U patent/RU145222U1/ru not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU145195U1 (ru) | Тепловая электрическая станция | |
RU145194U1 (ru) | Тепловая электрическая станция | |
RU145222U1 (ru) | Тепловая электрическая станция | |
RU145214U1 (ru) | Тепловая электрическая станция | |
RU145210U1 (ru) | Тепловая электрическая станция | |
RU146387U1 (ru) | Тепловая электрическая станция | |
RU145805U1 (ru) | Тепловая электрическая станция | |
RU145226U1 (ru) | Тепловая электрическая станция | |
RU145221U1 (ru) | Тепловая электрическая станция | |
RU145202U1 (ru) | Тепловая электрическая станция | |
RU145832U1 (ru) | Тепловая электрическая станция | |
RU145230U1 (ru) | Тепловая электрическая станция | |
RU144943U1 (ru) | Тепловая электрическая станция | |
RU144945U1 (ru) | Тепловая электрическая станция | |
RU145818U1 (ru) | Тепловая электрическая станция | |
RU146404U1 (ru) | Тепловая электрическая станция | |
RU144915U1 (ru) | Тепловая электрическая станция | |
RU146393U1 (ru) | Тепловая электрическая станция | |
RU145803U1 (ru) | Тепловая электрическая станция | |
RU145204U1 (ru) | Тепловая электрическая станция | |
RU145231U1 (ru) | Тепловая электрическая станция | |
RU145213U1 (ru) | Тепловая электрическая станция | |
RU146379U1 (ru) | Тепловая электрическая станция | |
RU145215U1 (ru) | Тепловая электрическая станция | |
RU145233U1 (ru) | Тепловая электрическая станция |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Utility model has become invalid (non-payment of fees) |
Effective date: 20150409 |