RU142803U1 - GAS TURBINE ENGINE - Google Patents

GAS TURBINE ENGINE Download PDF

Info

Publication number
RU142803U1
RU142803U1 RU2013149548/06U RU2013149548U RU142803U1 RU 142803 U1 RU142803 U1 RU 142803U1 RU 2013149548/06 U RU2013149548/06 U RU 2013149548/06U RU 2013149548 U RU2013149548 U RU 2013149548U RU 142803 U1 RU142803 U1 RU 142803U1
Authority
RU
Russia
Prior art keywords
shaft
knd
turbine engine
gas turbine
radial
Prior art date
Application number
RU2013149548/06U
Other languages
Russian (ru)
Inventor
Александр Викторович Артюхов
Дмитрий Юрьевич Еричев
Андрей Сергеевич Ефимов
Игорь Николаевич Иванов
Владимир Валентинович Кирюхин
Виктор Викторович Куприк
Андрей Ростиславович Котельников
Ирик Усманович Манапов
Евгений Ювенальевич Марчуков
Сергей Анатольевич Симонов
Вадим Николаевич Селиванов
Original Assignee
Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо") filed Critical Открытое Акционерное Общество "Уфимское Моторостроительное Производственное Объединение" (Оао "Умпо")
Priority to RU2013149548/06U priority Critical patent/RU142803U1/en
Application granted granted Critical
Publication of RU142803U1 publication Critical patent/RU142803U1/en

Links

Abstract

1. Газотурбинный двигатель, характеризующийся тем, что выполнен двухконтурным, двухвальным и содержит не менее восьми модулей, смонтированных, предпочтительно, по модульно-узловой системе, в состав которых входят компрессор низкого давления (КНД) со статором, имеющим входной направляющий аппарат (ВНА), не более трех промежуточных направляющих и выходной спрямляющий аппараты, а также с ротором, имеющим вал и систему наделенных лопатками предпочтительно четырех рабочих колес; промежуточный корпус; газогенератор, включающий сборочные единицы, в том числе узлы - компрессор высокого давления (КВД), имеющий статор, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД; причем входной направляющий аппарат КНД снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками, длина которых ограничена наружным и внутренним кольцами ВНА, а радиальные стойки равномерно разнесены в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед./рад, при этом, по меньшей мере, часть радиальных стоек совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек; кроме того, газогенератор включает основную камеру сгорания и турбину высокого давления (ТВД); за газогенератором последовательно соосно установлены турбина низкого давления (ТНД), смеситель, фронтовое устройство, форсажная камера сгорания и соединенное с последней всережимное реактивное сопло; кроме того, двигатель содержит коробку приводов двигательных агрегатов, установленную над промежуточным корпусом, а пр�1. A gas turbine engine, characterized in that it is double-circuit, twin-shaft and contains at least eight modules mounted, preferably in a modular-node system, which include a low pressure compressor (LPC) with a stator having an input guide vane (VNA) , no more than three intermediate guides and output straightening devices, as well as with a rotor having a shaft and a system of preferably four impellers endowed with blades; intermediate housing; a gas generator including assembly units, including assemblies — a high pressure compressor (HPC) having a stator, as well as a rotor with a shaft and a system of impellers equipped with vanes, the number of which is at least twice the number of the mentioned KND impellers; moreover, the KND input guide vane is equipped with radial racks consisting of fixed and controllable movable elements, the length of which is limited by the outer and inner rings of the VNA, and the radial racks are uniformly spaced in the plane of the input section with an angular frequency in the range of (3.0 ÷ 4.0) units. / glad, while at least part of the radial struts combined with the channels of the oil system, located in the fixed elements of the racks; in addition, the gas generator includes a main combustion chamber and a high pressure turbine (HPT); behind the gas generator, a low pressure turbine (LP), a mixer, a front-end device, an afterburner, and an all-mode jet nozzle connected to the latter are sequentially coaxially installed; in addition, the engine contains a box of drives of motor units mounted above the intermediate casing, and pr�

Description

Полезная модель относится к области авиадвигателестроения, а именно, к авиационным газотурбинным двигателям.The utility model relates to the field of aircraft engine manufacturing, namely, to aircraft gas turbine engines.

Известен двухконтурный, двухвальный газотурбинный двигатель (ГТД), включающий турбокомпрессорные комплексы, один из которых содержит установленные на одном валу компрессор и турбину низкого давления, а другой содержит аналогично объединенные на другом валу, соосном с первым, компрессор и турбину высокого давления, промежуточный разделительный корпус между упомянутыми компрессорами, наружный и внутренние контуры, основную и форсажную камеры сгорания, камеру смешения газовоздушных потоков рабочего тела и регулируемое сопло (Н.Н. Сиротин и др. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. Москва, изд. «Наука», 2011 г., стр.19-46).Known double-circuit, twin-shaft gas turbine engine (GTE), including turbocompressor complexes, one of which contains a compressor and a low pressure turbine mounted on one shaft, and the other contains a compressor and a high pressure turbine, an intermediate separation housing, similarly combined on the other shaft, coaxial with the first between the aforementioned compressors, the external and internal circuits, the main and afterburner combustion chambers, a chamber for mixing gas-air flows of the working fluid and an adjustable nozzle (N.N. Siroti and others. Fundamentals of designing the production and operation of aircraft gas turbine engines and power plants in the CALS technology system. Book 1. Moscow, Nauka ed., 2011, pp. 19-46).

Известен газотурбинный двигатель, который выполнен двухконтурным, содержит корпус, опертые на него компрессоры и турбины, охлаждаемую камеру сгорания, топливно-насосную группу, реактивное сопло, а также систему управления с командными и исполнительными органами (Конструкция и проектирование авиационных газотурбинных двигателей. Под редакцией Д.В.Хронина. М. Машиностроение 1989. с.12-88).Known gas turbine engine, which is a dual-circuit, contains a housing supported by compressors and turbines, a cooled combustion chamber, a fuel pump group, a jet nozzle, as well as a control system with command and executive bodies (Design and engineering of aircraft gas turbine engines. Edited by D .V. Chronina. M. Engineering 1989.p.12-88).

Известен способ разработки и испытаний авиационных газотурбинных двигателей, заключающийся в измерении параметров по режимам работы двигателя и приведении их к стандартным атмосферным условиям с учетом изменения свойств рабочего тела и геометрических характеристик проточной части двигателя при изменении атмосферных условий (Ю.А. Литвинов, В.О. Боровик. Характеристики и эксплуатационные свойства авиационных газотурбинных двигателей. Москва: Машиностроение, 1979, 288 с, стр.136-137).A known method for the development and testing of aircraft gas turbine engines, which consists in measuring the parameters according to the operating modes of the engine and bringing them to standard atmospheric conditions, taking into account changes in the properties of the working fluid and the geometric characteristics of the engine flow part when changing atmospheric conditions (Yu.A. Litvinov, V.O Borovik. Characteristics and operational properties of aircraft gas turbine engines. Moscow: Engineering, 1979, 288 s, pp. 136-137).

Известен способ разработки и испытаний авиационных двигателей типа газотурбинных, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°C (SU 1151075 А1, опубл. 10.08.2004).A known method of development and testing of aircraft engines such as gas turbine, including the development of predetermined modes, parameter control and assessment of resource and reliability of the engine. In order to reduce the test time during engine refinement of 10-20%, tests are carried out with the gas temperature in front of the turbine exceeding the maximum operating temperature by 45-65 ° C (SU 1151075 A1, publ. 10.08.2004).

Общими недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний и недостаточно высокая надежность оценки тяги двигателя в широком диапазоне режимов и региональных температурно-климатических условий эксплуатации вследствие неотработанности программы приведения конкретных результатов испытаний, выполняемых в различных температурных и климатических условиях к результатам, отнесенным к стандартным условиям атмосферы известными способами, которые не учитывают с достаточной корректностью изменение параметров и режимов работы двигателя в зависимости от принятых программ, адекватных полетным циклам, характерным для конкретного назначения разрабатываемого газотурбинного двигателя, что осложняет возможность приведения экспериментальных параметров испытаний к параметрам, соответствующим условиям стандартной атмосферы.Common shortcomings of these known technical solutions are the increased labor and energy intensity of tests and the insufficiently high reliability of engine traction assessment in a wide range of modes and regional temperature and climate conditions due to the inadequacy of the program for bringing specific test results performed in various temperature and climatic conditions to the results referred to to standard atmospheric conditions by known methods that do not take into account with sufficient accuracy Stu change parameters and modes of engine operation depending on the received programs adequate flight cycles, specific to a particular destination developed turbomachine, which complicates the possibility of bringing the experimental test parameters to the parameters corresponding to the standard atmosphere.

Задача полезной модели состоит в разработке совокупности технических решений ГТД, обеспечивающих улучшение тяги и повышение достоверности эксплуатационных характеристик для разных температурно-климатических условий различных регионов и режимов эксплуатации двигателя и в повышении репрезентативности характеристик для полного диапазона перечисленных ситуаций применительно к полетным циклам двигателя в учебных и боевых условиях в различных регионах и сезонных периодах эксплуатации.The objective of the utility model is to develop a set of technical solutions for gas turbine engines that provide improved thrust and increase the reliability of operational characteristics for different temperature and climatic conditions of different regions and operating modes of the engine and to increase the representativeness of the characteristics for the full range of these situations as applied to flight cycles of the engine in training and combat conditions in different regions and seasonal periods of operation.

Поставленная задача решается тем, что газотурбинный двигатель, согласно полезной модели, выполнен двухконтурным, двухвальным и содержит не менее восьми модулей, смонтированных, предпочтительно, по модульно-узловой системе, в состав которых входят компрессор низкого давления (КНД) со статором, имеющем входной направляющий аппарат (ВНА), не более трех промежуточных направляющих и выходной спрямляющий аппараты, а также с ротором, имеющем вал и систему наделенных лопатками, предпочтительно, четырех рабочих колес; промежуточный корпус; газогенератор, включающий сборочные единицы, в том числе узлы - компрессор высокого давления (КВД), имеющий статор, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД; причем входной направляющий аппарат КНД снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками, длина которых ограничена наружным и внутренним кольцами ВНА, а радиальные стойки равномерно разнесены в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед/рад, при этом, по меньшей мере, часть радиальных стоек совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек; кроме того газогенератор включает основную камеру сгорания и турбину высокого давления (ТВД); за газогенератором последовательно соосно установлены турбина низкого давления (ТНД), смеситель, фронтовое устройство, форсажная камера сгорания и соединенное с последней всережимное реактивное сопло; кроме того двигатель содержит коробку приводов двигательных агрегатов, установленную над промежуточным корпусом, а промежуточный корпус наделен функцией силового узла двигателя с возможностью восприятия суммарных осевых и радиальных нагрузок от компрессоров и турбин с последующей передачей на внешние силовые элементы и установлен между КНД и КВД, разделяя поступающий из КНД воздух на два потока - наружный и внутренний контуры, при этом в наружном контуре вокруг корпуса основной камеры сгорания установлен воздухо-воздушный теплообменник, собранный не менее чем из шестидесяти трубчатых блок-модулей.The problem is solved in that the gas turbine engine, according to the utility model, is double-circuit, twin-shaft and contains at least eight modules mounted, preferably according to a modular-node system, which include a low pressure compressor (LPC) with a stator having an input guide apparatus (VNA), not more than three intermediate guides and output straightening apparatus, as well as with a rotor having a shaft and a system endowed with blades, preferably four impellers; intermediate housing; a gas generator including assembly units, including assemblies — a high pressure compressor (HPC) having a stator, as well as a rotor with a shaft and a system of impellers equipped with vanes, the number of which is at least twice the number of the mentioned KND impellers; moreover, the input guide vane KND is equipped with radial racks consisting of fixed and controllable movable elements, the length of which is limited by the outer and inner rings of the VNA, and the radial racks are uniformly spaced in the plane of the input section with an angular frequency in the range of (3.0 ÷ 4.0) units / I am glad that at least a part of the radial struts is aligned with the channels of the oil system located in the stationary elements of the struts; in addition, the gas generator includes a main combustion chamber and a high pressure turbine (HPT); behind the gas generator, a low pressure turbine (LP), a mixer, a front-end device, an afterburner, and an all-mode jet nozzle connected to the latter are sequentially coaxially installed; in addition, the engine contains a box of drives of motor units mounted above the intermediate casing, and the intermediate casing is endowed with the function of a power unit of the engine with the ability to absorb the total axial and radial loads from compressors and turbines with subsequent transmission to external power elements and is installed between the low-pressure and high-pressure pumps, separating the incoming from KND air into two flows - the external and internal circuits, while in the external circuit around the main combustion chamber body is installed air-air heat exchange nickname collected from at least sixty tubular block modules.

При этом статоры КНД и КВД могут быть выполнены каждый в виде продольно-сегментных блоков в количестве не менее двух, объединенных, преимущественно, на разъемных соединениях с возможностью разборки для ремонта или замены деталей соответствующего модуля, кроме того в виде аналогичных продольно-сегментных блоков выполнены и объединены на разъемных соединениях сопловые аппараты турбин ТНД и ТВД.In this case, the KND and KVD stators can each be made in the form of at least two longitudinal-segment blocks, combined mainly on detachable joints with the possibility of disassembling for repair or replacement of parts of the corresponding module, in addition, similar longitudinal-segment blocks are made and nozzle apparatuses of turbines TND and TVD are combined on detachable joints.

КНД объединен с ТНД по валу с возможностью передачи от указанной турбины крутящего момента, а КВД объединен с ТВД с возможностью получения последним крутящего момента от турбины высокого давления через автономный вал ротора КВД-ТВД, коаксиально с возможностью вращения охватывающий вал ротора КНД-ТНД на части длины и выполненный короче последнего, по меньшей мере, на совокупную осевую длину промежуточного корпуса, основной камеры сгорания и турбины низкого давления.KND is combined with a high-pressure pump on a shaft with the possibility of transmitting torque from a specified turbine, and a high-pressure valve is combined with a high-pressure pump with the possibility of receiving the latest torque from a high-pressure turbine through a stand-alone rotor shaft of a high-pressure turbine engine, coaxially rotatably covering the rotor shaft of a low-pressure turbine pump lengths and shorter than the last, at least by the total axial length of the intermediate casing, the main combustion chamber and the low pressure turbine.

Статор КВД может содержать входной направляющий аппарат, не более восьми промежуточных направляющих и выходной спрямляющий аппараты.The stator of the HPC may contain an input guide vane, no more than eight intermediate guides and an output rectifier.

Входной направляющий аппарат компрессора низкого давления может содержать, предпочтительно, двадцать три радиальные стойки, причем, по меньшей мере, часть радиальных стоек совмещена с каналами масляной системы с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора компрессора низкого давления.The inlet guide apparatus of the low-pressure compressor may preferably comprise twenty-three radial racks, at least part of the radial racks being combined with the channels of the oil system with the possibility of supplying and discharging oil, as well as venting the oil and pre-oil cavities of the front support of the low pressure compressor rotor .

Площадь фронтальной проекции входного проема Fвх.пр. ВНА КНД, геометрически определяющая поперечное сечение входного устья воздухозаборного канала, ограниченного на большем радиусе внутренним контуром наружного кольца ВНА, а на меньшем радиусе контуром внутреннего кольца ВНА, может быть выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока и радиальных стоек, в (2,54÷2,72) раза и составляет (0,67÷0,77) от полной площади круга Fплн., ограниченного радиусом внутреннего контура наружного кольца ВНА в плоскости входного проема.Frontal projection area of the input aperture F vh.pr. BHA KND, geometrically determining the cross section of the inlet mouth of the air intake channel, bounded at a larger radius by the inner contour of the outer ring of the BHA, and at a smaller radius by the contour of the inner ring of the BHA, can be performed in excess of the total area of aerodynamic shading F ST created by the frontal projection of the coke and radial struts, in (2.54 ÷ 2.72) times and is (0.67 ÷ 0.77) of the total area of the circle F pln. bounded by the radius of the inner contour of the outer ring of the BHA in the plane of the inlet opening.

Технический результат, обеспечиваемый приведенной совокупностью признаков, состоит в обеспечении улучшенной тяги двигателя и повышенной надежности эксплуатационных характеристик ГТД за счет применения в двигателе совокупности основных модулей с разработанными в полезной модели параметрами, включая количество и соотношение рабочих колес роторов КВД и КНД и конструктивное решение ВНА статора КНД с равномерно разнесенными в плоскости входного сечения с заявленной угловой частотой регулируемыми радиальными стойками, что обеспечивает в совокупности необходимое повышение компрессии рабочего тела в каждом из контуров на всех режимах эксплуатации двигателя.The technical result provided by the given set of features is to provide improved engine traction and increased reliability of GTE performance due to the use of a combination of basic modules in the engine with parameters developed in the utility model, including the number and ratio of impellers of the HPC and KND rotors and the design solution of the stator VNA KND with uniformly spaced in the plane of the input section with the declared angular frequency adjustable radial racks, which ensures collectively desired increase in the working fluid compressed in each of the circuits at all engine operating conditions.

Одновременно в полезной модели обеспечена повышенная достоверность экспериментально проверенных характеристик двигателя на влияние климатических условий за счет проведения испытаний по разработанной для этого математической модели двигателя и программе испытаний.At the same time, the utility model provides increased reliability of experimentally tested engine characteristics on the influence of climatic conditions by conducting tests using the developed mathematical model of the engine and the test program.

Технический результат, достигаемый полезной моделью, позволяет обеспечить возможность достижения максимальных значений тяги двигателя в границах, варьируемых в зависимости от региональных и сезонных климатических условий последующей летной эксплуатации двигателей. Сущность полезной модели поясняется чертежами, где:The technical result achieved by the utility model makes it possible to achieve the maximum values of engine thrust within a range that varies depending on regional and seasonal climatic conditions of the subsequent flight operation of the engines. The essence of the utility model is illustrated by drawings, where:

на фиг.1 изображен газотурбинный двигатель, продольный разрез;figure 1 shows a gas turbine engine, a longitudinal section;

на фиг.2 - входной направляющий аппарат КНД, вид сверху.figure 2 - input guide apparatus KND, top view.

Газотурбинный двигатель выполнен двухконтурным, двухвальным. Газотурбинный двигатель содержит не менее восьми модулей, смонтированных, предпочтительно, по модульно-узловой системе, в состав которых входят компрессор 1 низкого давления, промежуточный корпус 2 и газогенератор.The gas turbine engine is double-circuit, twin-shaft. The gas turbine engine contains at least eight modules mounted, preferably, in a modular-node system, which include a low-pressure compressor 1, an intermediate housing 2 and a gas generator.

КНД 1 выполнен со статором, имеющем входной направляющий аппарат 3, не более трех промежуточных направляющих аппаратов 4 и выходной спрямляющий аппарат 5, а также с ротором, имеющем вал 6 и систему предпочтительно, четырех рабочих колес 7, наделенных лопатками 8.KND 1 is made with a stator having an input guide apparatus 3, no more than three intermediate guide vanes 4 and an output straightener 5, and also with a rotor having a shaft 6 and a system of preferably four impellers 7 endowed with blades 8.

Газогенератор включает сборочные единицы, в том числе узлы - компрессор 9 высокого давления со статором, основную камеру 10 сгорания и турбину 11 высокого давления.The gas generator includes assembly units, including units - a high pressure compressor 9 with a stator, a main combustion chamber 10 and a high pressure turbine 11.

КВД 9 включает статор, а также ротор с валом 12 и системой оснащенных лопатками 13 рабочих колес 14. При этом число рабочих колес 14 КВД 9 не менее чем в два раза превышает число рабочих колес 7 КНД 1.KVD 9 includes a stator, as well as a rotor with a shaft 12 and a system of impellers 14 equipped with blades 13. Moreover, the number of impellers 14 of the KVD 9 is at least twice the number of impellers 7 of the KND 1.

За газогенератором последовательно соосно установлены турбина 15 низкого давления, смеситель 16, фронтовое устройство 17, форсажная камера 18 сгорания и соединенное с форсажной камерой 18 сгорания всережимное реактивное сопло 19.Behind the gas generator, a low pressure turbine 15, a mixer 16, a frontal device 17, a combustion afterburner 18, and an all-mode jet nozzle 19 connected to the afterburner 18 are connected in series.

Двигатель содержит коробку приводов двигательных агрегатов (на чертежах не показано), установленную над промежуточным корпусом 2. Промежуточный корпус 2 наделен функцией силового узла двигателя с возможностью восприятия суммарных осевых и радиальных нагрузок от компрессоров и турбин с последующей передачей на внешние силовые элементы и установлен между КНД 1 и КВД 9, разделяя поступающий из КНД 1 воздух на два потока - наружный и внутренний контуры 20 и 21 соответственно. В наружном контуре 20 вокруг корпуса основной камеры 10 сгорания установлен воздухо-воздушный теплообменник 22, собранный не менее чем из шестидесяти трубчатых блок-модулей.The engine contains a box of drives of motor units (not shown in the drawings) mounted above the intermediate housing 2. The intermediate housing 2 is endowed with the function of a power unit of the engine with the ability to absorb the total axial and radial loads from compressors and turbines with subsequent transmission to external power elements and is installed between the low pressure switch 1 and KVD 9, dividing the air coming from KND 1 into two flows - the outer and inner circuits 20 and 21, respectively. An air-air heat exchanger 22, assembled from at least sixty tubular block modules, is installed in the outer circuit 20 around the body of the main combustion chamber 10.

Статоры КНД 1 и КВД 9 выполнены каждый в виде продольно-сегментных блоков в количестве не менее двух, объединенных, преимущественно, на разъемных соединениях с возможностью разборки для ремонта или замены деталей соответствующего модуля или сборочной единицы. В виде аналогичных продольно-сегментных блоков выполнены и объединены на разъемных соединениях сопловые аппараты 23 турбин 11 и 15 соответственно высокого и низкого давления.The stators KND 1 and KVD 9 are each made in the form of longitudinally segmented units in an amount of at least two, united mainly on detachable joints with the possibility of disassembly for repair or replacement of parts of the corresponding module or assembly unit. In the form of similar longitudinal-segment blocks, nozzle apparatuses 23 of turbines 11 and 15, respectively, of high and low pressure, are made and combined on detachable joints.

Компрессор 1 низкого давления объединен с турбиной 15 низкого давления по валу 6 с возможностью передачи от турбины 15 крутящего момента. Компрессор 9 высокого давления объединен с турбиной 11 высокого давления с возможностью получения последним крутящего момента от турбины 11 через автономный вал 12 ротора КВД-ТВД, коаксиально с возможностью вращения охватывающий вал 6 ротора КНД-ТНД на части длины и выполненный короче последнего, по меньшей мере, на совокупную осевую длину промежуточного корпуса 2, основой камеры 10 сгорания и турбины 15 низкого давления.The low pressure compressor 1 is integrated with the low pressure turbine 15 along the shaft 6 with the possibility of transmitting torque from the turbine 15. The high-pressure compressor 9 is combined with the high-pressure turbine 11 with the possibility of obtaining the latest torque from the turbine 11 through the autonomous shaft 12 of the HPH-HPH rotor, coaxially rotatably covering the shaft 6 of the KND-TND rotor for a length part and made shorter than the last, at least , on the total axial length of the intermediate casing 2, the basis of the combustion chamber 10 and the low pressure turbine 15.

Статор КВД 9 содержит входной направляющий аппарат 24, не более восьми промежуточных направляющих аппаратов 25 и выходной спрямляющий аппарат 26.The stator KVD 9 contains an input guide vane 24, no more than eight intermediate guide vanes 25 and an output rectifier 26.

Входной направляющий аппарат 3 КНД 1 снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками 27, равномерно разнесенными в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед/рад.The input guiding apparatus 3 of the KND 1 is equipped with radial racks 27 consisting of a fixed and a controlled movable element, uniformly spaced in the plane of the input section with an angular frequency in the range (3.0 ÷ 4.0) units / rad.

Входной направляющий аппарат 3 КНД 1 содержит, предпочтительно, двадцать три радиальные стойки 27. Длина радиальных стоек 27 ограничена наружным и внутренним кольцами 28 и 29 соответственно ВНА. По меньшей мере, часть радиальных стоек 27 совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек, с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора КНД 1.The input guiding apparatus 3 of the KND 1 preferably comprises twenty-three radial struts 27. The length of the radial struts 27 is limited by the outer and inner rings 28 and 29, respectively, of the BHA. At least part of the radial struts 27 is combined with channels of the oil system located in the stationary elements of the racks, with the possibility of supplying and discharging oil, as well as venting the oil and pre-oil cavities of the front support of the KND 1 rotor.

Площадь фронтальной проекции входного проема Fвх.пр. входного направляющего аппарата 3 КНД 1, геометрически определяющая поперечное сечение входного устья воздухозаборного канала 30, ограниченного на большем радиусе внутренним контуром наружного кольца 28 ВНА, а на меньшем радиусе контуром внутреннего кольца 29 ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока 31 и радиальных стоек 27, в (2,54÷2,72) раза и составляет (0,67÷0,77) от полной площади круга Fплн., ограниченного радиусом внутреннего контура наружного кольца 28 ВНА в плоскости входного проема.Frontal projection area of the input aperture F vh.pr. the input guide vane 3 KND 1, geometrically defining the cross section of the inlet mouth of the air intake channel 30, bounded at a larger radius by the inner contour of the outer ring 28 of the BHA, and at a smaller radius by the contour of the inner ring 29 of the BHA, made larger than the total aerodynamic shading area F c created by the frontal projection Coca 31 and radial racks 27, (2.54 ÷ 2.72) times and is (0.67 ÷ 0.77) of the total area of the circle F pln. bounded by the radius of the inner contour of the outer ring 28 VNA in the plane of the inlet opening.

Двигатель проверен, по крайней мере, на стадии серийного промышленного производства на влияние климатических условий на основные характеристики работы компрессора. Для этого двигатель испытан на стенде на различных режимах. Параметры режимов адекватны параметрам полетных режимов в диапазоне, запрограммированном для конкретной серии двигателей.The engine was tested, at least at the stage of mass production, on the influence of climatic conditions on the main characteristics of the compressor. To do this, the engine is tested on a stand in various modes. The parameters of the modes are adequate to the parameters of the flight modes in the range programmed for a specific series of engines.

По результатам стендовых испытаний создана и скорректирована математическая модель газотурбинного двигателя. Затем по математической модели определены параметры газотурбинного двигателя при стандартных атмосферных условиях и различных температурах атмосферного воздуха из заданного рабочего диапазона температур стендовых испытаний с учетом принятой программы регулирования двигателя на максимальных и форсированных режимах. Фактические значения параметров при конкретных температурах атмосферного воздуха каждого режима испытаний отнесены к значениям параметров при стандартных атмосферных условиях. После чего вычислены поправочные коэффициенты к измеренным параметрам в зависимости от температуры атмосферного воздуха. Приведение измеренных параметров к стандартным атмосферным условиям выполнено умножением измеренных значений на коэффициенты, учитывающие отклонение атмосферного давления от стандартного, и на поправочный коэффициент. Поправочный коэффициент отражает зависимость измеренных значений параметров от температуры атмосферного воздуха, зарегистрированной при конкретных испытаниях газотурбинных двигателей.Based on the results of bench tests, a mathematical model of a gas turbine engine was created and adjusted. Then, using a mathematical model, the parameters of a gas turbine engine are determined under standard atmospheric conditions and various atmospheric air temperatures from a given operating temperature range of bench tests, taking into account the adopted program for regulating the engine at maximum and forced modes. The actual parameter values at specific atmospheric air temperatures of each test mode are assigned to the parameter values under standard atmospheric conditions. After that, correction factors to the measured parameters are calculated depending on the temperature of the air. Bringing the measured parameters to standard atmospheric conditions is done by multiplying the measured values by coefficients that take into account the deviation of atmospheric pressure from the standard, and by a correction factor. The correction factor reflects the dependence of the measured parameter values on the temperature of the air recorded during specific tests of gas turbine engines.

Пример реализации испытания ГТД на влияние климатических условий на основные характеристики работы компрессора.An example of a gas turbine engine test on the influence of climatic conditions on the main characteristics of the compressor.

Испытаниям подвергают репрезентативную группу из трех-пяти ГТД. При этом используют предварительно разработанную математическую модель двигателя. Испытания указанной группы ГТД проводят при температуре tВХ=0°C, Ba=745 мм рт.ст.A representative group of three to five gas turbine engines is subjected to testing. In this case, a previously developed mathematical model of the engine is used. Tests of the specified group of gas turbine engines are carried out at a temperature of t BX = 0 ° C, Ba = 745 mm Hg.

По результатам замеров и их статистического обобщения получают значения параметров: усилия тяги двигателя R=985 кгс и частоту вращения n=98,8%.According to the results of measurements and their statistical generalization, the following parameter values are obtained: engine thrust forces R = 985 kgf and rotation speed n = 98.8%.

Для последующей оценки результатов испытаний используют математическую модель двигателя, по которой проводят расчет параметров на различных режимах работы двигателя в диапазоне температур воздуха на входе в двигатель, в том числе и при tВХ=+15°C. Результаты расчета представлены в Табл.1For the subsequent evaluation of the test results, a mathematical model of the engine is used, according to which the parameters are calculated at various engine operating modes in the range of air temperatures at the engine inlet, including at t BX = + 15 ° C. The calculation results are presented in Table 1

Табл.1Table 1 tВХ, °Ct VH , ° C -15-fifteen 00 +15+15 +30+30 Температура на входе в ГТДThe temperature at the entrance to the gas turbine engine R, кгсR, kgf 10001000 980980 970970 950950 Усилие тягиTraction force n, %n,% 9898 9999 100one hundred 100one hundred частота вращенияrotation frequency

Сопоставляют полученные выше данные и вычисляют поправочные коэффициенты путем отношения значения параметра при tВХ=+15°C к значениям параметра в заданном диапазоне температур на входе в двигатель (Табл.2)Compare the data obtained above and calculate the correction coefficients by the ratio of the parameter value at t BX = + 15 ° C to the parameter values in a given temperature range at the engine inlet (Table 2)

Табл.2Table 2 tВХ, °Ct VH , ° C -15-fifteen ±0± 0 +15+15 +30+30 KR K r 0,970.97 0,990.99 1one 1,0211,021 KnKn 1,021,02 1,011.01 1one 1one

Затем определяют параметры при стандартных атмосферных условиях (МСА)Then determine the parameters under standard atmospheric conditions (MSA)

nMCA=n×Kn=98,8×1,01=99,79%n MCA = n × Kn = 98.8 × 1.01 = 99.79%

и вносят полученные данные в сопроводительную документацию соответствующей группы ГТД.and enter the data into the accompanying documentation of the relevant group of gas turbine engines.

Используют полученные выше параметры ГТД для вычисления соответствующих параметров применительно к температурно-климатическим условиям конкретных районов эксплуатации двигателей в диапазоне рабочих температур наружного воздуха tВХ=±50°C. Экстремальные для указанного диапазона температур значения параметров ГТД, полученные на основе результатов испытаний с использованием математической модели и данных при стандартных атмосферных условиях (МСА) представлены в Табл.3 и Табл.4.The parameters of the gas turbine engine obtained above are used to calculate the corresponding parameters as applied to the temperature and climatic conditions of specific areas of engine operation in the range of operating outdoor temperatures t BX = ± 50 ° C. Extreme values of gas turbine engine parameters for the indicated temperature range, obtained on the basis of test results using the mathematical model and data under standard atmospheric conditions (MCA), are presented in Table 3 and Table 4.

Табл.3Table 3 tВХ, °Ct VH , ° C -50-fifty -15-fifteen 00 +15+15 +20+20 +50+50 Температура на входе в ГТДThe temperature at the entrance to the gas turbine engine R, кгсR, kgf 12001200 10001000 980980 970970 950950 900900 Усилие от тягиTraction force n, %n,% 9696 9898 9999 100one hundred 100one hundred 100one hundred частота вращенияrotation frequency Табл.4Table 4 tВХ, °Ct VH , ° C -50-fifty -15-fifteen 00 +15+15 +20+20 +50+50 KR K r 0,810.81 0,970.97 0,990.99 1one 1,0211,021 1,0781,078 KnKn 1,0421,042 1,021,02 1,011.01 1one 1one 1one

Из табл.3 и табл.4 видно, что тяга в экстремальном диапазоне температур от (-50)°C до (+50)°C изменяется на одну треть при изменении оборотов на 4%.From table 3 and table 4 it is seen that the thrust in the extreme temperature range from (-50) ° C to (+50) ° C changes by one third with a change in speed of 4%.

Изложенную выше последовательность испытания ГТД применяют для оценки изменения тяги для различных температурно-климатических условий и режимов работы двигателя, при необходимости на любых этапах от доводки до промышленного производства и эксплуатации авиационных газотурбинных двигателей.The GTE test sequence described above is used to assess thrust changes for various temperature and climatic conditions and engine operating conditions, if necessary at any stages from the development to the industrial production and operation of aircraft gas turbine engines.

Claims (6)

1. Газотурбинный двигатель, характеризующийся тем, что выполнен двухконтурным, двухвальным и содержит не менее восьми модулей, смонтированных, предпочтительно, по модульно-узловой системе, в состав которых входят компрессор низкого давления (КНД) со статором, имеющим входной направляющий аппарат (ВНА), не более трех промежуточных направляющих и выходной спрямляющий аппараты, а также с ротором, имеющим вал и систему наделенных лопатками предпочтительно четырех рабочих колес; промежуточный корпус; газогенератор, включающий сборочные единицы, в том числе узлы - компрессор высокого давления (КВД), имеющий статор, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД; причем входной направляющий аппарат КНД снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками, длина которых ограничена наружным и внутренним кольцами ВНА, а радиальные стойки равномерно разнесены в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед./рад, при этом, по меньшей мере, часть радиальных стоек совмещена с каналами масляной системы, размещенными в неподвижных элементах стоек; кроме того, газогенератор включает основную камеру сгорания и турбину высокого давления (ТВД); за газогенератором последовательно соосно установлены турбина низкого давления (ТНД), смеситель, фронтовое устройство, форсажная камера сгорания и соединенное с последней всережимное реактивное сопло; кроме того, двигатель содержит коробку приводов двигательных агрегатов, установленную над промежуточным корпусом, а промежуточный корпус наделен функцией силового узла двигателя с возможностью восприятия суммарных осевых и радиальных нагрузок от компрессоров и турбин с последующей передачей на внешние силовые элементы и установлен между КНД и КВД, разделяя поступающий из КНД воздух на два потока - наружный и внутренний контуры, при этом в наружном контуре вокруг корпуса основной камеры сгорания установлен воздухо-воздушный теплообменник, собранный не менее чем из шестидесяти трубчатых блок-модулей.1. A gas turbine engine, characterized in that it is double-circuit, twin-shaft and contains at least eight modules mounted, preferably in a modular-node system, which include a low pressure compressor (LPC) with a stator having an input guide vane (VNA) , no more than three intermediate guides and output straightening devices, as well as with a rotor having a shaft and a system of preferably four impellers endowed with blades; intermediate housing; a gas generator including assembly units, including assemblies — a high pressure compressor (HPC) having a stator, as well as a rotor with a shaft and a system of impellers equipped with vanes, the number of which is at least twice the number of the mentioned KND impellers; moreover, the KND input guide vane is equipped with radial racks consisting of fixed and controllable movable elements, the length of which is limited by the outer and inner rings of the VNA, and the radial racks are uniformly spaced in the plane of the input section with an angular frequency in the range of (3.0 ÷ 4.0) units. / glad, while at least part of the radial struts combined with the channels of the oil system, located in the fixed elements of the racks; in addition, the gas generator includes a main combustion chamber and a high pressure turbine (HPT); behind the gas generator, a low pressure turbine (LP), a mixer, a front-end device, an afterburner, and an all-mode jet nozzle connected to the latter are sequentially coaxially installed; in addition, the engine contains a box of drives of motor units mounted above the intermediate casing, and the intermediate casing is endowed with the function of a power unit of the engine with the possibility of absorbing the total axial and radial loads from compressors and turbines with subsequent transmission to external power elements and is installed between the low-pressure and high-pressure pumps, sharing air coming from the low pressure switch into two flows - the external and internal circuits, while an air-air heat exchange is installed in the outer circuit around the main combustion chamber body nick collected from at least sixty tubular block modules. 2. Газотурбинный двигатель по п.1, отличающийся тем, что статоры КНД и КВД выполнены каждый в виде продольно-сегментных блоков в количестве не менее двух, объединенных, преимущественно, на разъемных соединениях с возможностью разборки для ремонта или замены деталей соответствующего модуля, кроме того, в виде аналогичных продольно-сегментных блоков выполнены и объединены на разъемных соединениях сопловые аппараты турбин ТНД и ТВД.2. The gas turbine engine according to claim 1, characterized in that the KND and KVD stators are each made in the form of at least two longitudinal-segment blocks, connected mainly on detachable joints with the possibility of disassembly for repair or replacement of parts of the corresponding module, except Moreover, in the form of similar longitudinal-segment blocks, the nozzle apparatuses of the high pressure turbine and turbine engine turbines are made and combined on detachable joints. 3. Газотурбинный двигатель по п.1, отличающийся тем, что КНД объединен с ТНД по валу с возможностью передачи от указанной турбины крутящего момента, а КВД объединен с ТВД с возможностью получения последним крутящего момента от турбины высокого давления через автономный вал ротора КВД-ТВД, коаксиально с возможностью вращения охватывающий вал ротора КНД-ТНД на части длины и выполненный короче последнего, по меньшей мере, на совокупную осевую длину промежуточного корпуса, основной камеры сгорания и турбины низкого давления.3. The gas turbine engine according to claim 1, characterized in that the low pressure valve is integrated with the low pressure pump via a shaft with the possibility of transmitting torque from the specified turbine, and the high pressure turbine is combined with the high pressure fuel pump with the possibility of receiving the latest torque from the high pressure turbine through the autonomous shaft of the high pressure turbine engine , coaxially rotatably enclosing the rotor shaft of the KND-TND in parts of length and made shorter than the latter, at least by the total axial length of the intermediate casing, the main combustion chamber and the low-pressure turbine. 4. Газотурбинный двигатель по п.1, отличающийся тем, что статор КВД содержит входной направляющий аппарат, не более восьми промежуточных направляющих и выходной спрямляющий аппараты.4. The gas turbine engine according to claim 1, characterized in that the stator KVD contains an input guide vane, no more than eight intermediate guides and an output rectifier. 5. Газотурбинный двигатель по п.1, отличающийся тем, что входной направляющий аппарат компрессора низкого давления содержит, предпочтительно, двадцать три радиальные стойки, причем, по меньшей мере, часть радиальных стоек совмещена с каналами масляной системы с возможностью подачи и отвода масла, а также суфлирования масляной и предмасляных полостей передней опоры ротора компрессора низкого давления.5. The gas turbine engine according to claim 1, characterized in that the inlet guide apparatus of the low-pressure compressor contains preferably twenty-three radial racks, and at least part of the radial racks is combined with the channels of the oil system with the possibility of supplying and discharging oil, and also venting of oil and pre-oil cavities of the front support of the rotor of the low-pressure compressor. 6. Газотурбинный двигатель по п.1, отличающийся тем, что площадь фронтальной проекции входного проема Fвх.пр ВНА КНД, геометрически определяющая поперечное сечение входного устья воздухозаборного канала, ограниченного на большем радиусе внутренним контуром наружного кольца ВНА, а на меньшем радиусе контуром внутреннего кольца ВНА, выполнена превышающей суммарную площадь аэродинамического затенения Fзт, создаваемого фронтальной проекцией кока и радиальных стоек, в 2,54÷2,72 раза и составляет 0,67÷0,77 от полной площади круга Fплн, ограниченного радиусом внутреннего контура наружного кольца ВНА в плоскости входного проема.
Figure 00000001
6. The gas turbine engine according to claim 1, characterized in that the frontal projection area of the inlet opening F in.pr. VNA KND, geometrically defining the cross section of the inlet mouth of the air intake channel, limited to a larger radius by the inner contour of the outer ring of the BHA, and by a smaller radius by the contour of the inner ring VNA rings, exceeding the total area of aerodynamic shading F Z created by the frontal projection of the coke and radial struts, 2.54 ÷ 2.72 times and is 0.67 ÷ 0.77 of the total area of the circle F pln , limited the radius of the inner contour of the outer ring of the BHA in the plane of the inlet opening.
Figure 00000001
RU2013149548/06U 2013-11-07 2013-11-07 GAS TURBINE ENGINE RU142803U1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013149548/06U RU142803U1 (en) 2013-11-07 2013-11-07 GAS TURBINE ENGINE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013149548/06U RU142803U1 (en) 2013-11-07 2013-11-07 GAS TURBINE ENGINE

Publications (1)

Publication Number Publication Date
RU142803U1 true RU142803U1 (en) 2014-07-10

Family

ID=51219712

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013149548/06U RU142803U1 (en) 2013-11-07 2013-11-07 GAS TURBINE ENGINE

Country Status (1)

Country Link
RU (1) RU142803U1 (en)

Similar Documents

Publication Publication Date Title
RU2551015C1 (en) Method of operational development of experimental jet turbine engine
RU142961U1 (en) TURBOJET
RU2551142C1 (en) Method of gas turbine engine batch manufacturing and gas turbine engine manufactured according to this method
RU144423U1 (en) TURBOJET
RU142803U1 (en) GAS TURBINE ENGINE
RU142807U1 (en) TURBOJET
RU2551007C1 (en) Method of operational development of experimental gas-turbine engine
RU2555931C2 (en) Jet turbine engine
RU2551003C1 (en) Method of operational development of experimental gas-turbine engine
RU144434U1 (en) GAS TURBINE ENGINE
RU2555940C2 (en) Method of mass production of gas turbine engine and gas turbine engine made using this method
RU2551013C1 (en) Method of batch production of gas-turbine engine, and gas-turbine engine made by means of this method
RU144428U1 (en) GAS TURBINE ENGINE
RU144425U1 (en) TURBOJET
RU2544414C1 (en) Gas turbine engine
RU144426U1 (en) GAS TURBINE ENGINE
RU2544638C1 (en) Gas turbine engine
RU2551911C1 (en) Jet turbine engine
RU144431U1 (en) TURBOJET
RU2551246C1 (en) Adjustment method of test gas-turbine engine
RU142920U1 (en) TURBOJET
RU2551247C1 (en) Jet turbine engine
RU2555935C2 (en) Method of mass production of gas turbine engine and gas turbine engine made using this method
RU2545110C1 (en) Gas-turbine engine
RU144429U1 (en) GAS TURBINE ENGINE

Legal Events

Date Code Title Description
PD9K Change of name of utility model owner