RO138065A0 - Plant for producing electric energy as result of diffusion of free protons (h+) in water - Google Patents
Plant for producing electric energy as result of diffusion of free protons (h+) in water Download PDFInfo
- Publication number
- RO138065A0 RO138065A0 ROA202300695A RO202300695A RO138065A0 RO 138065 A0 RO138065 A0 RO 138065A0 RO A202300695 A ROA202300695 A RO A202300695A RO 202300695 A RO202300695 A RO 202300695A RO 138065 A0 RO138065 A0 RO 138065A0
- Authority
- RO
- Romania
- Prior art keywords
- electrolyte
- cathode
- water
- anode
- generator
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 238000009792 diffusion process Methods 0.000 title claims abstract description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 20
- 239000010439 graphite Substances 0.000 claims abstract description 20
- 229910052911 sodium silicate Inorganic materials 0.000 claims abstract description 10
- 239000004115 Sodium Silicate Substances 0.000 claims abstract description 9
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000008187 granular material Substances 0.000 claims abstract description 4
- 239000003792 electrolyte Substances 0.000 claims description 20
- 238000009434 installation Methods 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000002800 charge carrier Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims description 2
- 239000012153 distilled water Substances 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000002184 metal Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000000243 solution Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 229920005372 Plexiglas® Polymers 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- -1 hydrogen ions Chemical class 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910018095 Ni-MH Inorganic materials 0.000 description 1
- 229910018477 Ni—MH Inorganic materials 0.000 description 1
- 229910007156 Si(OH)4 Inorganic materials 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000010616 electrical installation Methods 0.000 description 1
- 230000005592 electrolytic dissociation Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Hybrid Cells (AREA)
Abstract
Description
INSTALAȚIE PENTRU OBȚINEREA DE ENERGIE ELECTRICA CA URMARE A DIFUZIEI PROTONILOR LIBERI (H+) DIN APAINSTALLATION FOR OBTAINING ELECTRICAL ENERGY DUE TO THE DIFFUSION OF FREE PROTONS (H + ) FROM WATER
Descrierea invențieiDescription of the invention
Instalația, conform invenției, are trei parti esențiale si anume: “Generatorul unitar”, Fig.1, “Unitatea Productiva”, Fig.2 si “Unitatea Constructiva”, Fig.3, parti pe care le descriem in continuare.The installation, according to the invention, has three essential parts, namely: "Unitary generator", Fig.1, "Productive Unit", Fig.2 and "Constructive Unit", Fig.3, parts that we describe below.
Prezenta invenție este o continuare a cercetărilor efectuate de autori in tema “Baterie electrica de lunga durata - Generator natural de microunde” ce face obiectul cererii de brevet de invenție nr. A201900260 din 24/04/2019 si in tema “Generator Natural de energie electrica” ce face obiectul cererii de brevet de invenție nr. A202100792 din 17/02/2021.The present invention is a continuation of the research carried out by the authors on the topic "Long-lasting electric battery - Natural microwave generator" which is the subject of invention patent application no. A201900260 of 04/24/2019 and on the subject of "Natural generator of electric energy" which is the subject of invention patent application no. A202100792 of 02/17/2021.
Instalația construita de autori pentru obținerea de energie electrica ca urmare a difuziei protonilor liberi din apa, conform invenției, este compusa din mai multe parti identice, legate electric in serie, parti pe care in continuare le vom denumi “Unitati Productive”. Fiecare “Unitate Productiva”, vezi Fig.2 are trei generatori de energie electrica pe care in continuare ii denumim “Generatori Unitari”, vezi Fig.1, care sunt legati electric in paralel.The installation built by the authors for obtaining electrical energy as a result of the diffusion of free protons from the water, according to the invention, is composed of several identical parts, connected electrically in series, parts that we will hereinafter call "Productive Units". Each "Productive Unit", see Fig. 2, has three generators of electrical energy, which we refer to as "Unit Generators", see Fig. 1, which are connected electrically in parallel.
Generarea energiei electrice are loc in “Generatorul Unitar” care este prezentat in Fig.1 si care, conform invenției, este constituit dintr-un anod construit din grafit si un catod construit din Pb, iar ca electrolit este utilizata o soluție de Na2SiO3 in apa.The generation of electricity takes place in the "Unit Generator" which is shown in Fig.1 and which, according to the invention, consists of an anode made of graphite and a cathode made of Pb, and a solution of Na2SiO3 in water is used as the electrolyte .
Producerea de energie electrica in “Generatorul Unitar” diferă in totalitate de modul de producere a energiei electrice in sursele cunoscute sub denumirea comuna de “baterie electrica” deoarece se bazeaza pe următoarele principii si date experimentale aplicate la fabricarea “Generatorului Unitar” care are anodul din grafit, catodul din plumb si electrolitul din soluția apoasa din silicat de sodiu.The production of electricity in the "Unitary Generator" is completely different from the way of producing electricity in the sources known under the common name of "electric battery" because it is based on the following principles and experimental data applied to the manufacture of the "Unitary Generator" which has the anode of graphite, lead cathode and sodium silicate aqueous solution electrolyte.
O analiza atenta a tabelului periodic al elementelor arata ca atomul de carbon are cea mai mare energie necesara pentru efectuarea primei ionizari, in raport cu toate metalele. Aceasta inseamna ca atomul de carbon are tendința sa capteze electroni pentru a ajunge in starea de stabilitate maxima a gazului nobil Ne. In situația in care un electrod de carbon (grafit) se scufunda intr-un mediu lichid constituit din molecule de dipoli electrici (H2O ), atunci dipolii din vecinătatea lui se vor orienta astfel incit sa compenseze lipsa de electroni si care sa completeze ultimul strat de valența pana la 8 electroni.A careful analysis of the periodic table of the elements shows that the carbon atom has the highest energy required to carry out the first ionization, in relation to all metals. This means that the carbon atom tends to capture electrons to reach the state of maximum stability of the noble gas Ne. In the situation where a carbon electrode (graphite) is immersed in a liquid environment consisting of molecules of electric dipoles (H2O), then the dipoles in its vicinity will orient themselves in such a way as to compensate for the lack of electrons and to complete the last layer of valence up to 8 electrons.
Daca in acest mediu se afla un electrod din metal care nu reacționează cu mediul (H2O) si acesta se pune in legătură electrica cu electrodul din grafit, atunci electrodul din grafit va purta întotdeauna semnul “(+)” iar electrodul din metal semnul “(-)”.If in this medium there is a metal electrode that does not react with the medium (H2O) and it is electrically connected to the graphite electrode, then the graphite electrode will always bear the sign "(+)" and the metal electrode the sign "( -)".
Existenta moleculelor de apa sub forma dipolara foarte alungită, conduce la autopolarizarea mutuala a moleculelor de apa si in final la disocierea electrolitica aThe existence of water molecules in a very elongated dipolar form leads to the mutual self-polarization of water molecules and finally to the electrolytic dissociation of
apei. In fapt, in apa se găsesc ioni de hidrogen “H+”, adica protoni si ioni de hidroxil “(OH)·. Protonul H+ se poate atașa de o molecula de apa prin legătură de hidrogen, formind o molecula incarcata cu o sarcina electrica (H3O). Stabilirea unei diferente de potențial intre anodul de grafit si catodul din metal modifica mișcarea haotica a ionilor din apa intr-o mișcare ordonata care conduce la separarea sarcinilor si deci la apariția unui curent elecric.the water. In fact, in the water there are hydrogen ions "H + ", i.e. protons and hydroxyl ions "(OH)·. The H + proton can attach to a water molecule through a hydrogen bond, forming a molecule charged with an electric charge (H3O). Establishing a potential difference between the graphite anode and the metal cathode changes the chaotic movement of the ions in the water into an orderly movement that leads to the separation of the charges and thus to the appearance of an electric current.
Catodul fiecărui “Generator Unitar” este construit din plumb. Alegerea plumbului pentru a juca rolul de catod se bazeaza pe consecințele care rezulta din poziționarea plumbului in scara Volta. In scara Volta, ionul de hidrogen împarte metalele in doua categorii: in partea stanga se afla metalele active (K, Ba, Ca, Na, Al, Mg,..Pb), cu slaba afinitate pentru electroni si care nu se separa prin electroliza din soluția apoasa, iar in partea dreapta se afla metalele care se separa prin electroliza din soluția apoasa (Cu, Ag, Au, Pt...The cathode of each "Unit Generator" is made of lead. The choice of lead to play the role of cathode is based on the consequences resulting from the placement of lead in the Volta scale. In the Volta scale, the hydrogen ion divides the metals into two categories: on the left side are the active metals (K, Ba, Ca, Na, Al, Mg,...Pb), with low affinity for electrons and which are not separated by electrolysis from the aqueous solution, and on the right side are the metals that are separated by electrolysis from the aqueous solution (Cu, Ag, Au, Pt...
In scara Volta, plumbul se afla langa hidrogen, intre aceste elemente nu se mai afla nici un alt ion. Așadar, afinitatea pentru electroni a plumbului aproape se confunda cu afinitatea pentru electroni a protonului. In apa distilata sunt foarte putini ioni care sa joace rolul de purtători de sarcina si de aceea apa distilata nu poate fi folosita ca electrolit pentru “Generatorul Unitar” ci numai sub forma unei soluții dintre ea si sarea unui acid si care sa fie perfect disociabila.In the Volta scale, lead is next to hydrogen, there is no other ion between these elements. So the electron affinity of lead almost matches the electron affinity of the proton. In distilled water there are very few ions to play the role of charge carriers and therefore distilled water cannot be used as an electrolyte for the "Unitary Generator" but only in the form of a solution between it and the salt of an acid and which is perfectly dissociable.
Consideratii teoretice arata ca aceasta trebuie sa fie sarea unui acid slab, sa fie perfect disociabila si sa nu producă depuneri solide sau gaze care sa paraseasca sistemul.Theoretical considerations show that this must be the salt of a weak acid, be perfectly dissociable and not produce solid deposits or gases that leave the system.
Electrolitul care se utilizează in “Generatorul Unitar” conform invenției este silicatul de sodiu pur, cu o concentrație de 25%o, volum la volum in apa distilata, deoarece la aceasta concentrație silicatul de sodiu polimerizeaza, iar pH-ul electrolitului este intre 10,85 si 10,95, conform cu datele preluate din lucrarea “Sodium Silicat Blass Binder in Foundry Industry”, Ahmed Rabi, Iran Polymer Institute, 2001.The electrolyte used in the "Unitary Generator" according to the invention is pure sodium silicate, with a concentration of 25%o, volume to volume in distilled water, because at this concentration sodium silicate polymerizes, and the pH of the electrolyte is between 10, 85 and 10.95, according to the data taken from the work "Sodium Silicate Blass Binder in Foundry Industry", Ahmed Rabi, Iran Polymer Institute, 2001.
Valoarea ridicata a concentrației soluției de silicat de sodiu se explica prin apariția grupului (OH)' ca urmare a formarii lanțurilor de polimer, conform ecuației.The high value of the sodium silicate solution concentration is explained by the appearance of the (OH)' group as a result of the formation of polymer chains, according to the equation.
Așadar polimerizarea silicatului de sodiu produce in electrolit creșterea brusca a numărului de purtători de sarcina reprezentat de grupul (OH)'.Therefore, the polymerization of sodium silicate produces in the electrolyte a sudden increase in the number of charge carriers represented by the group (OH)'.
Fiecare unitate Si(OH)4 se leaga coordinativ prin legătură de hidrogen pentru a forma lanțul polimeric si ca urmare se produce o creștere brusca a curentului de scurtcircuit dintre anodul de grafit si catodul de plumb.Each Si(OH)4 unit is coordinatively linked by hydrogen bonding to form the polymer chain and as a result there is a sudden increase in the short circuit current between the graphite anode and the lead cathode.
Protonii liberi H+ sau legati (HsO)* vor ajunge la catodul de plumb si vor intra o parte din ei in rețeaua cristalina a catodului, iar grupul oxidril (OH)' va ajunge la anodul de grafit, unde se produce reacția:The free protons H + or bound (HsO)* will reach the lead cathode and part of them will enter the crystal network of the cathode, and the oxidryl group (OH)' will reach the graphite anode, where the reaction occurs:
4(OH)'2H2O + O2 4(OH)'2H 2 O + O 2
Moleculele de oxigen se vor atașa de suprafața anodului de grafit formând un strat izolator care face sa scada in timp curentul de scurt-circuit pana la o valoare minima de echilibru, cu toate ca suprafața specifica a anodului este foarte mare, de circa 1000m2/gram.The oxygen molecules will attach to the surface of the graphite anode forming an insulating layer that causes the short-circuit current to decrease over time to a minimum equilibrium value, although the specific surface of the anode is very large, of about 1000m 2 / gram.
Aceasta scădere in timp a curentului de scurtcircuit este cel mai important inconvenient pentru Generatorul de energie electrica ce se bazeaza pe difuzia protonilor liberi din apa.This decrease in time of the short-circuit current is the most important inconvenience for the generator of electrical energy, which is based on the diffusion of free protons from the water.
Dispariția sau diminuarea efectului de scădere a curentului de scurtcircuit dintre anod si catod se realizează prin eliminarea oxigenului adsorbit pe suprafața catodului de grafit prin întreruperea contactului dintre anod si catod, prin următoarele metode:The disappearance or reduction of the short-circuit current reduction effect between the anode and the cathode is achieved by removing the oxygen adsorbed on the surface of the graphite cathode by breaking the contact between the anode and the cathode, by the following methods:
- Oprirea funcționarii “Generatorului Unitar” pentru o perioada de timp care este de circa trei ori mai mare decât a fost perioada de funcționare a “Generatorului Unitar”;- Stopping the operation of the "Unitary Generator" for a period of time that is about three times longer than the period of operation of the "Unitary Generator";
- Scoaterea in atmosfera libera a anodului din electrolit pentru o perioada de timp de aproape egala cu perioada de funcționare a “Generatorului Unitar”;- Removing the anode from the electrolyte into the free atmosphere for a period of time almost equal to the period of operation of the "Unitary Generator";
Anodul acestui “Generator Unitar” conform invenției, este de forma cilindrica cu diametrul de 6 cm si inaltimea de 9 cm. El este confecționat din plasa de PVC cu ochiul de 1x1 mm. Volumul acestui cilindru este umplut cu granule din grafit poros (Pellets) cu diametrul de 4 mm si lungimea intre 2 si 5 mm (vezi Fig. 1-(3)), obținute prin extrudare, cu o densitate aparenta de 0,48 g/cm3 si o suprafața specifica de 1000 m2/g.The anode of this "Unitary Generator" according to the invention, is cylindrical with a diameter of 6 cm and a height of 9 cm. It is made of PVC mesh with a 1x1 mm mesh. The volume of this cylinder is filled with porous graphite granules (Pellets) with a diameter of 4 mm and a length between 2 and 5 mm (see Fig. 1-(3)), obtained by extrusion, with an apparent density of 0.48 g/ cm 3 and a specific surface of 1000 m 2 /g.
Prin centru axial al acestui cilindru este fixat un electrod din grafit sub forma cilindrica, cu diametrul de 7 mm si lungimea de 15 cm (vezi Fig.1-(4)). Acest electrod din grafit constituie polul “+” al “Generatorului Unitar”.Through the axial center of this cylinder, a cylindrical graphite electrode is fixed, with a diameter of 7 mm and a length of 15 cm (see Fig. 1-(4)). This graphite electrode constitutes the "+" pole of the "Unitary Generator".
Catodul “Generatorul Unitar”, conform invenției este de forma unui pahar cilindric cu diametrul de 6 cm si inaltimea de 12 cm. El este confecționat din foaie de plumb de puritate mare si cu grosimea de 0,2 mm (vezi Fig.1-(2)). Ansamblul alcătuit din catodul din plumb ce conține in interiorul lui anodul din grafit este introdus intr-o carcasa cilindrica, din plexiglas, cu diametrul de 6,4 cm si inaltimea de 14 cm (vezi Fig. 1-(1))The "Unitary Generator" cathode, according to the invention, is shaped like a cylindrical glass with a diameter of 6 cm and a height of 12 cm. It is made of high purity lead sheet with a thickness of 0.2 mm (see Fig. 1-(2)). The assembly consisting of the lead cathode containing the graphite anode inside is inserted into a cylindrical case, made of Plexiglas, with a diameter of 6.4 cm and a height of 14 cm (see Fig. 1-(1))
in care se gaseste electrolitul, care conform invenției, este o soluție in apa distilata de silicat de sodiu de puritate mare (NazSOa) (vezi Fig. 1-(6)).in which the electrolyte is found, which according to the invention, is a solution in distilled water of sodium silicate of high purity (NazSOa) (see Fig. 1-(6)).
Invenția “Instalație pentru obținerea de energie electrica ca urmare a difuziei protonilor liberi (H+) din apa”, conform invenției, prezintă soluția tehnica prin care se obține o putere electrica constanta in timp, folosind eliminarea gravitaționala din “Generatorul Unitar” a electrolitului, pe perioada de timp cel puțin egala cu perioada de timp cat “Generatorul Unitar” a funcționat.The invention "Installation for obtaining electrical energy as a result of the diffusion of free protons (H + ) from water", according to the invention, presents the technical solution by which a constant electrical power is obtained over time, using the gravitational removal from the "Unitary Generator" of the electrolyte, for a period of time at least equal to the period of time that the "Unitary Generator" has been operating.
De aceea construcția de baza pentru instalația construita, conform invenției, nu are un singur “Generator Unitar” ci trei “Generatoare Unitare” (vezi Fig.2-(î)(2)(3)), legate electric in paralel din care numai un singur “Generator Unitar” are electrolit, iar celelalte doua nu au electrolit si au anozii in atmosfera libera si nu funcționează (vezi Fig. 2).That is why the basic construction for the built installation, according to the invention, does not have a single "Unit Generator" but three "Unit Generators" (see Fig. 2-(î)(2)(3)), electrically connected in parallel of which only only one "Unitary Generator" has electrolyte, and the other two do not have electrolyte and have anodes in the free atmosphere and do not work (see Fig. 2).
Cele trei “Generatoare Unitare” folosesc același electrolit care este depozitat intr-un cilindru rezervor care face corp comun cu ele ( vezi Fig.2-(4)). Acest ansamblu constituie unitatea constructiva de baza pentru instalația construita, conform invenției si pe care o denumim “Unitate Productiva”.The three "Unit Generators" use the same electrolyte which is stored in a tank cylinder that forms a common body with them (see Fig. 2-(4)). This assembly constitutes the basic constructive unit for the constructed installation, according to the invention and which we call "Productive Unit".
“Unitatea Productiva” (vezi Fig. 2) este o unire mecanica dintre trei “Generatori Unitari” dispusi ca spițele unei roti de car pe butucul rotii, unghiul dintre doi “Generatori Unitari” este de 120°. Cilindrul pe care se fixeaza prin lipire cei trei “Generatori Unitari” este rezervorul comun pentru electrolit (vezi Fig.2-(4)), iar el se poate roti in jurul axului propriu dând posibilitatea la fiecare Generator sa funcționeze periodicThe "Productive Unit" (see Fig. 2) is a mechanical union between three "Unit Generators" arranged like the spokes of a chariot wheel on the hub of the wheel, the angle between two "Unit Generators" is 120°. The cylinder on which the three "Unitary Generators" are fixed by gluing is the common tank for the electrolyte (see Fig. 2-(4)), and it can rotate around its own axis, allowing each Generator to operate periodically
Cei trei “Generatori Unitari” identici, sunt legati in paralel. Semnul “+” este legat la o banda din cupru infasurata pe partea din stanga a cilindrului rezervor, iar semnul legat la o banda din cupru infasurata pe partea dreapta a cilindrului rezervor. Doua perii colectoare aluneca pe aceste doua benzi si sunt legate la bornele “+” si respectiv de pe panoul din fata.The three identical "Unit Generators" are connected in parallel. The "+" sign is connected to a copper strip wrapped on the left side of the tank cylinder, and the sign connected to a copper strip wrapped on the right side of the tank cylinder. Two collector brushes slide on these two strips and are connected to the terminals "+" and respectively on the front panel.
Utilizarea unei singure “Unitati Productive” nu este posibila din cauza valorii mici pentru tensiunea produsa. De aceea, am construit trei “Unitati Productive” identice, legate in serie, avand o tensiune globala cuprinsa intre 1,8V si 2,1V. Aceasta tensiune alimentează un convertor de tensiune DC/DC tip 0KY-3501 pentru a avea la ieșirea din convertor o tensiune constanta de 5V (vezi Fig.3)The use of a single "Productive Unit" is not possible due to the small value for the produced voltage. That's why we built three identical "Productive Units", connected in series, with a global voltage between 1.8V and 2.1V. This voltage feeds a DC/DC voltage converter type 0KY-3501 to have a constant voltage of 5V at the output of the converter (see Fig.3)
Montajul electric compus din trei “Unitati Productive” il denumim “Unitate Constructiva”. Montajul din Fig. 3 compusa din trei “Unitati Productive” legate in serie, ce alimentează convertorul de tensiune tip 0KY-3501 poate fi considerat o sursa standard de tensiune constanta de 5V. Prin unirea in serie a doua “Unitati Constructive” se obține o tensiune de 10V standard.We call the electrical installation composed of three "Productive Units" a "Constructive Unit". The assembly in Fig. 3 composed of three "Productive Units" connected in series, which supplies the voltage converter type 0KY-3501 can be considered a standard constant voltage source of 5V. By connecting two "Constructive Units" in series, a standard 10V voltage is obtained.
De asemenea, prin unirea in serie a trei “Unitati Constructive” se obține o tensiune de 15V standardAlso, by connecting three "Constructive Units" in series, a standard 15V voltage is obtained
Instalația construita, conform invenției, a fost folosita pentru incarcarea unor acumulatori de energie electrica, de diferite tipuri, activitate care a dus la următoarele concluzii:The installation built, according to the invention, was used to charge electric energy accumulators of different types, an activity that led to the following conclusions:
- Acumulatorii de energie electrica de tipul Ni-MH, Li-lon si Li-Polymer se pot incarca;- Ni-MH, Li-lon and Li-Polymer electric energy accumulators can be charged;
- Acumulatorul de energie electrica pe baza de Pb nu poate fi incarcat- The Pb-based electric energy accumulator cannot be charged
Utilitati si consumuri specificeUtilities and specific consumptions
Pentru funcționarea instalației pentru obținerea de energie electrica ca urmare a difuziei protonilor liberi (H+) din apa, nu sunt necesare utilitati, deoarece singurul consum constatat este apa distilata, in cantitate de aproximativ 30ml/saptamana, pentru fiecare “Unitate Constructiva.For the operation of the installation for obtaining electrical energy as a result of the diffusion of free protons (H + ) from the water, utilities are not required, because the only consumption found is distilled water, in the amount of approximately 30ml/week, for each "Constructive Unit.
Producerea de deșeuri si poluarea mediuluiWaste production and environmental pollution
Instalația pentru obținerea de energie electrica ca urmare a difuziei protonilor liberi (H+) din apa nu produce nici un deseu, deoarece singurele produse ce se obțin in funcționare sunt atomii de hidrogen H+ ce trec din electrolit prin catodul de plumb si moleculele oxigen O2 ce sunt adsorbite pe anodul de grafit si sunt eliminate in atmosfera.The installation for obtaining electrical energy as a result of the diffusion of free protons (H+) from the water does not produce any waste, because the only products that are obtained in operation are the hydrogen atoms H + that pass from the electrolyte through the lead cathode and the oxygen molecules O2 that they are adsorbed on the graphite anode and are eliminated in the atmosphere.
De asemenea, instalația construita conform invenției nu poluează in nici un fel mediul.Also, the installation built according to the invention does not pollute the environment in any way.
Recuperarea si reciclarea componentelor instalației după scoaterea din funcționare a instalației construite conform convențieiRecovery and recycling of plant components after decommissioning the plant built according to the convention
După oprirea definitiva a instalației construite conform invenției se pot recupera si recicla componentele din care este construita, in afara de convertorul DC-DC tip OKY - 3501, care se incadreaza in categoria generala de componente electronice.After the final shutdown of the installation built according to the invention, the components from which it is built can be recovered and recycled, except for the DC-DC converter type OKY - 3501, which falls under the general category of electronic components.
La incarcarea acumulatorilor electrici utilizând instalația construita, conform invenției, ne-am întâlnit cu o situație dificil de explicat, prin faptul ca timpul de încărcare al acumulatorului dedus prin calcul este de cel puțin 10 ori mai mare decât timpul de încărcare determinat experimental. Pentru explicație am presupus ca intensitatea curentului electric produs are doua componente, una de forma continua si care este masurata si cealalta de forma pulsata cu frecventa foarte mare si care nu poate fi masurata cu aparatele obișnuite. Pentru verificarea ipotezei, am utilizat Analizorul de spectre de 1GHz, tip Rhode-Schwarz. Pe ecranul Analizorului de spectre apar doua peak-uri simetrice, centrate pe frecventele de 360,02 MHz si 360,1 MHz, ambele situate in domeniul microundelor (vezi Fig. 4). Aceste peak-uri apar si in fond, fara prezenta instalației conform invenției, singura deosebire fiind intensitatea peak-urilor de fond masurata in dBm este foarte mica in raport cu cele înregistrate in prezenta instalației (vezi Fig.5).When charging electric accumulators using the installation built according to the invention, we encountered a difficult situation to explain, in that the accumulator charging time deduced by calculation is at least 10 times higher than the experimentally determined charging time. For the sake of explanation, I assumed that the intensity of the electric current produced has two components, one of continuous form and which is measured and the other of pulsed form with very high frequency and which cannot be measured with ordinary devices. To verify the hypothesis, we used the 1GHz Spectrum Analyzer, Rhode-Schwarz type. On the Spectrum Analyzer screen, two symmetrical peaks appear, centered on the frequencies of 360.02 MHz and 360.1 MHz, both located in the microwave field (see Fig. 4). These peaks also appear in the background, without the presence of the installation according to the invention, the only difference being the intensity of the background peaks measured in dBm is very small compared to those recorded in the presence of the installation (see Fig.5).
Descrierea figurilor anexateDescription of the attached figures
Figura 1, pagina 7 arata o secțiune in plan vertical, pentru un “Generator Unitar”Figure 1, page 7 shows a vertical section for a "Unitary Generator"
Carcasa din plexiglasPlexiglas case
2j Catod din foaie de Pb2j Pb sheet cathode
3) Granule din grafit poros3) Porous graphite granules
Electrod din grafit pentru semnul +Graphite electrode for the + sign
Contact electric din Cu ) Soluție din NajSiOs in apaElectrical contact made of Cu) Solution of NajSiOs in water
Figura 2, pagina 8 arata o secțiune in plan vertical, pentru o “Unitate Productiva”Figure 2, page 8 shows a vertical section for a "Productive Unit"
Generator Unitar Nr.1Unitary Generator No.1
GeneratorUnitarNr.2Unit Generator No. 2
3) Generator Unitar Nr.33) Unitary Generator No. 3
4) Tub de plexiglas ce joaca rolul de rezervor pentru electrolit4) Plexiglas tube that acts as a tank for the electrolyte
Figura 3, pagina 9 arata schema de legare electrica in serie a trei “Unitati Productive” pentru formarea unei “Unitati Constructive”, care alimentează un convector de tensiune DC-DC tip OKY - 3501 care produce la ieșire o tensiune de 5V.Figure 3, page 9 shows the electrical connection diagram in series of three "Productive Units" for the formation of a "Constructive Unit", which feeds a DC-DC voltage convector type OKY - 3501 which produces a voltage of 5V at the output.
Figura 4, pagina 10 prezintă forma spectrala data de Analizorul de spectre de 1GHz tip Rhode-Schwarz pentru curentul electric generat de instalația construita, in intervalul de frecventa 359 - 361 MHz.Figure 4, page 10 shows the spectral shape given by the Rhode-Schwarz type 1GHz Spectrum Analyzer for the electric current generated by the built facility, in the frequency range 359 - 361 MHz.
Figura 5, pagina 10 prezintă forma spectrala data de Analizorul de spectre de 1GHz tip Rhode-Schwarz pentru fond (in absenta instalației), masurat in intervalul de frecventa 359-361 MHz.Figure 5, page 10 shows the spectral shape given by the 1GHz Rhode-Schwarz spectrum analyzer for the background (in the absence of the installation), measured in the frequency range 359-361 MHz.
Figura 6, pagina 11 arata imaginea fotografica pentru o “Unitate Productiva”.Figure 6, page 11 shows the photographic image for a "Productive Unit".
Figura 7, pagina 12 arata imaginea fotografica pentru o “Unitate Constructiva”.Figure 7, page 12 shows the photographic image for a "Constructive Unit".
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ROA202300695A RO138065A0 (en) | 2023-11-15 | 2023-11-15 | Plant for producing electric energy as result of diffusion of free protons (h+) in water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ROA202300695A RO138065A0 (en) | 2023-11-15 | 2023-11-15 | Plant for producing electric energy as result of diffusion of free protons (h+) in water |
Publications (1)
Publication Number | Publication Date |
---|---|
RO138065A0 true RO138065A0 (en) | 2024-03-29 |
Family
ID=90458856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ROA202300695A RO138065A0 (en) | 2023-11-15 | 2023-11-15 | Plant for producing electric energy as result of diffusion of free protons (h+) in water |
Country Status (1)
Country | Link |
---|---|
RO (1) | RO138065A0 (en) |
-
2023
- 2023-11-15 RO ROA202300695A patent/RO138065A0/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bak et al. | Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions | |
CN103035409B (en) | Graphene combination electrode and its preparation method and application | |
KR100806168B1 (en) | Preparation method of hydrogen energy by photocatalytic water splitting using electric field of solar cells | |
CN101608316A (en) | A kind of device for producing hydrogen through decomposing water | |
CN109617215A (en) | A kind of distributed photovoltaic power generation hydrogen energy-storage system and method | |
CN109216742A (en) | A kind of light charging redox flow batteries | |
Zhang et al. | Photoinduced Cu+/Cu2+ interconversion for enhancing energy conversion and storage performances of CuO based Li-ion battery | |
CN103401045A (en) | Flow-battery energy storage system with photoelectric effect | |
JP2017206731A5 (en) | Water electrolysis cell and bipolar electrode water electrolysis cell | |
CN103560014A (en) | Counter electrode for dye-sensitized battery, preparation method of counter electrode and dye-sensitized battery | |
US8692517B2 (en) | Non-diffusion liquid energy storage device | |
Li et al. | Enhancing the photoelectrocatalytic performance of metal-free graphdiyne-based catalyst | |
Yi et al. | A two-step approach towards solar-driven water splitting | |
CN110289444A (en) | It is a kind of to use liquid metal gallium for the aluminium ion battery of cathode | |
RO138065A0 (en) | Plant for producing electric energy as result of diffusion of free protons (h+) in water | |
Liu et al. | The anodic films on lead alloys containing rare-earth elements as positive grids in lead acid battery | |
CN107572545A (en) | A kind of titanium boride for lithium-sulfur cell chemistry trapping polysulfide and preparation method and application | |
CN107394159A (en) | A kind of composite fibre negative material and preparation method thereof | |
CN108988456A (en) | A kind of device and its application using soil power generation | |
CN209313513U (en) | A kind of device to be generated electricity using soil | |
CN209200758U (en) | A kind of distributed photovoltaic power generation hydrogen energy-storage system | |
RO135685A0 (en) | Natural electric power generator | |
Zhao et al. | Developing a Multifunctional Cathode for Photoassisted Lithium–Sulfur Battery | |
CN207217670U (en) | A kind of photocatalysis microbiological fuel cell | |
Han et al. | Physical basis of multi-energy coupling-driven water oxidation |