RO132470A2 - Preparation process and composition of chitosan derivatives with improved biological potential - Google Patents
Preparation process and composition of chitosan derivatives with improved biological potential Download PDFInfo
- Publication number
- RO132470A2 RO132470A2 ROA201600735A RO201600735A RO132470A2 RO 132470 A2 RO132470 A2 RO 132470A2 RO A201600735 A ROA201600735 A RO A201600735A RO 201600735 A RO201600735 A RO 201600735A RO 132470 A2 RO132470 A2 RO 132470A2
- Authority
- RO
- Romania
- Prior art keywords
- chitosan
- ascorbic acid
- tocopherol
- derivatives
- compared
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/715—Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
- A61K31/716—Glucans
- A61K31/722—Chitin, chitosan
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
invenția se referă la procedeul de obținere, compoziția și activitatea biologică a unor derivați de chitosan Chitosanul cu greutate moleculă medie s-a tuncționalizai prin leacua cu acidui ascorbic (vitamina C) sau α-tocoferolul (vitamina E) în vederea intensificării efecteior biologice antimicrobiene, ținta fiind imprimarea efectului antioxidant noilor derivați obținuți Structura chimică a derivaților noi sintetizați a fost confirmată prin spectroscopie IR. în urma evaluării biologice s-a evidențiat faptul că derivații chitosanului rezultați prezintă un efect antiiadicalic față de radicalii DPPH și ABTS, efectul fiind comparabil cu cel ai acidului ascorbic și net superior α-tocoferolului, utilizat ca antioxidant de referință și totodată activitatea antimicrobiană este îmbunătățită semnificativ.The invention relates to the process for obtaining, composing and biological activity of some chitosan derivatives. Chitosan with medium molecular weight is tuned by ascorbic acid (vitamin C) or α-tocopherol (vitamin E) in order to enhance the antimicrobial biological effect, being the target. printing of the antioxidant effect of the newly obtained derivatives The chemical structure of the newly synthesized derivatives was confirmed by IR spectroscopy. Following the biological evaluation, it was revealed that the resulting chitosan derivatives have an anti-diatonic effect against DPPH and ABTS radicals, the effect being comparable to that of ascorbic acid and net higher α-tocopherol, used as reference antioxidant and at the same time the antimicrobial activity is significantly improved.
Chitosanul, poli-a(l,4)-2-amino-2-deoxi-P-D-glucan, este o polizaharidă naturală, bidroiilă. nontoxică, biocompatibilă și biodegradabilă, ce se obține prin V-deacetilarea achilinei (1). Este caracterizat chimic ca fiind un polimer policationic, constituit din unități de glucozamină și /V-acetil-glucozamină, legate glicozidic în poziția 1-4, conținând grupări amino și hidroxil libere, ceea ce îl face susceptil la o serie de modulări structurale (2). De-a lungul timpului chitosanul a devenit un material cu multiple și importante aplicații biomedicale, interesul cercetătorilor pentru acest biopolimer datorându se proprietăților sale și anume: biocompatibilitate, biodegradabilitate și toxicitatea scăzută (3). Datorită acestor caracteristici, chitosanului i s-au atribuit o serie de aplicații, fie utilizat ca atare, fie prin asociere cu alți polimeri naturali în: industria alimentară, industria farmaceutică, industria lexiisâ, agricultură, industria produselor cosmetice (4). Cel mai cunoscut efect biologic ai chitosanului este cel antimicrobian, fiind activ pe o serie de specii de bacterii dar șl de finei (5). Activitatea antimicrobiană este explicată prin interacțiunile ionice caic au loc între peptidopolizaharidă, ce funcționează ca și polication, și peretele celulei bacteriene ce prezintă sarcină negativă. Complexul format va afecta cationi precum Ca'2, Mg' prezenți în peretele celulei bacteriene, va crește permeabilitatea acestuia diminuându-i astfel funcțiile IU). Totodată este dovedit faptul că chitosanul stimulează creșterea fibroblastelor. afectând totodată activitatea macrofagelor, ceea ce are efect benefic în procesul de cicatrizare a rănilor Acest efect poate fi îmbunătățit prin includerea în structura membranelor polimerice pe bază a 2016 00735Chitosan, poly-α (1,4) -2-amino-2-deoxy-PD-glucan, is a natural polysaccharide, bidroiiil. nontoxic, biocompatible and biodegradable, obtained by V-deacetylation of achiline (1). It is chemically characterized as a polycationic polymer, consisting of glucosamine and / V-acetyl-glucosamine units, glycosidically linked in position 1-4, containing free amino and hydroxyl groups, which makes it susceptible to a series of structural modulations (2 ). Over time, chitosan has become a material with multiple and important biomedical applications, the researchers' interest in this biopolymer due to its properties, namely: biocompatibility, biodegradability and low toxicity (3). Due to these characteristics, chitosan has been assigned a number of applications, either used as such or by association with other natural polymers in: the food industry, the pharmaceutical industry, the lexicon industry, agriculture, the cosmetics industry (4). The most known biological effect of chitosan is the antimicrobial, being active on a number of species of bacteria but also fine (5). Antimicrobial activity is explained by the caic ionic interactions that occur between peptidopolysaccharide, which functions as a polycation, and the bacterial cell wall which has a negative charge. The complex formed will affect cations such as Ca ' 2 , Mg' present in the bacterial cell wall, increasing its permeability thus diminishing its UI functions). It is also proven that chitosan stimulates fibroblast growth. also affecting the activity of macrophages, which has a beneficial effect on the wound healing process. This effect can be enhanced by including in the structure of polymeric membranes based on 2016 00735
18/10/2016 u10/18/2016 and
de chitosan a unor agenți antibacterieni de tipul ciprofloxacină, norfloxacinâ, suJfonamide (7) Un alt efect al chitosanului studiat intens în decursul timpului este cel antioxidant. Acest efect s-a dovedit a fi dependent de gradul de deacetilare și de concentrația polimerului. Grupările amino primare din structura chitosanului joacă un rol important, prin aceea că interacționează cu radicalii liberi formând grupări NH3' (8). Dintre cele patru forme de grupări amino: grupări imino, grupări amino primare, grupări amino secundare și grupări amino cuaternare, cele din urmă au demonstrat o activitate antioxidantă importantă față de radicalii hidroxil. Pentru acest polimer s-au evidențiat și alte efecte terapeutice printre care se numără efectul hipoeolesterolemiant, antiacid și antiulceros, efecte antiinflamatoare. antidiabetice și neuroprotectoare (9, 10).chitosan of antibacterial agents such as ciprofloxacin, norfloxacin, suJfonamide (7) Another effect of chitosan studied intensively over time is that of antioxidant. This effect has been shown to be dependent on the degree of deacetylation and the concentration of the polymer. Primary amino groups in the chitosan structure play an important role, in that they interact with free radicals forming NH 3 'groups (8). Of the four forms of amino groups: imino groups, primary amino groups, secondary amino groups, and quaternary amino groups, the latter demonstrated significant antioxidant activity against hydroxyl radicals. Other therapeutic effects have been highlighted for this polymer, including the effect of hypo-cholesterol, antacid and anti-ulcer, anti-inflammatory effects. antidiabetic and neuroprotective (9, 10).
în vederea imprimării și unei activității antioxidante chitosanului s-a recurs la derivatizarea acestuia utilizând doi antioxidanți - acidul ascorbic (vitamina C) și α-locoferoiul (vitamina E)In order to print and an antioxidant activity of chitosan was resorted to its derivatization using two antioxidants - ascorbic acid (vitamin C) and α-locopheroid (vitamin E)
Acidul ascorbic (vitamina C) este un reprezentant important al vitaminelor hidrosolubile cu importante efecte biologice, intervenind totodată ca și coenzimă și agent reducător într-o multitudine de procese biochimice (11). Astfel, intervine în biosinteza colagenului, a unor neurotrasmițători (adrenalină, noradrenatină, serotoninâ), in metabolismul glucozei, al acidului folie și al unor aminoacizi, în îndepărtarea radicalilor liberi de ox'gtn. in regenerarea vitaminei E la nivel membranar, etc. (11, 12). La rândul ei vitamina E, aparține grupei de vitamine liposolubile, sub această denumire reunindu-se o familie de tocoferoii, cel mai activ fiind α-tocoferolul. Cel mai important efect al vitaminei E este cel antioxidant împiedicând oxidarea acizilor grași nesaturați, a vitaminei A, a carotenoidelor și a unor tioenzime. în organism împiedică peroxidarea acizilor grași ceea ce are drept rezultat protejarea fosfolipidelor membranare (11, 13).Ascorbic acid (vitamin C) is an important representative of water-soluble vitamins with important biological effects, also acting as coenzyme and reducing agent in a variety of biochemical processes (11). Thus, it intervenes in the biosynthesis of collagen, some neurotransmitters (adrenaline, norepinephrine, serotonin), in the metabolism of glucose, folic acid and some amino acids, in the removal of ox'gtn free radicals. in the regeneration of vitamin E at the membrane level, etc. (11, 12). Vitamin E, in turn, belongs to the group of fat-soluble vitamins, under this name a family of tocopherols, the most active being α-tocopherol. The most important effect of vitamin E is the antioxidant that prevents the oxidation of unsaturated fatty acids, vitamin A, carotenoids and thioenzymes. In the body it prevents peroxidation of fatty acids which results in the protection of membrane phospholipids (11, 13).
Scopul invenției de față este sinteza unor noi derivați de chitosan cu proprietăți antioxidante și antimicrobiene îmbunătățite. Pentru obținerea derivaților descriși în invenția de față s-au utilizat următoaiele materiale:The aim of the present invention is the synthesis of novel chitosan derivatives with improved antioxidant and antimicrobial properties. The following materials were used to obtain the derivatives described in the present invention:
Chitosan eu greutate moleculară medie (CETM), achiziționat de la firma SigmaChitosan I medium molecular weight (CETM), purchased from Sigma
Aldrich, cu Mw = 190,000-300,000 g/mol, grad de deacetilare de 75-85 % și vâscozitate 200-800 cP;Aldrich, with Mw = 190,000-300,000 g / mol, 75-85% degree of deacetylation and 200-800 cP viscosity;
vitamina C (acid ascorbic), achiziționat de la firma Sigma Aldrich, formulă moleculatâVitamin C (ascorbic acid), purchased from Sigma Aldrich, a molecular formula
CxHsO(„ masă moleculară 176.12, reactiv ACS cu puritate >99%;C x HsO ("molecular weight 176.12, ACS reagent with purity>99%;
a 2016 00735to 2016 00735
18/10/201610/18/2016
- vitamina E (α-tocoferol), achiziționat de la firma Sigma Aldrich, formulă moleculară C29H50O2, masa moleculară 430.71, reactiv ACS, puritate >95.5%, dcnsitaie la 20°C de 0.950 g/ mL;- Vitamin E (α-tocopherol), purchased from Sigma Aldrich, molecular formula C29H50O2, molecular weight 430.71, ACS reagent, purity> 95.5%, dcnsite at 20 ° C of 0.950 g / mL;
- acid monocloracetic, achiziționai de la firma Sigma Aldrich, formulă moleculară CICH2COOH, masă moleculară 94.50, reactiv ACS cu puritate >99.0%.- monochloroacetic acid, purchased from Sigma Aldrich, molecular formula CICH2COOH, molecular mass 94.50, ACS reagent with purity> 99.0%.
Procedeul de obținere a unor noi derivați de chitosan cu proprietăți antioxidante si anlimicrobiene îmbunătățite, conform invenției, constă într-o primă etapă de activarea chitosanuiui sub formă de O-carboximetil chitosan după care acesta reacționează cu cei doi compuși bioactivi Vitamina C sau Vitamina E în prezența acidului sulfuric care are rol de catalizator.The process of obtaining novel chitosan derivatives with improved antioxidant and anlimicrobial properties according to the invention consists of a first step of activating chitosan in the form of O-carboxymethyl chitosan, after which it reacts with the two bioactive compounds Vitamin C or Vitamin E in the presence of sulfuric acid which acts as a catalyst.
Pentru obținerea O-carboximetil chitosanuiui, chitosanul în concentrație de 10% (m/v) s-a adus într-o soluție de hidroxid de sodiu 40% și s-a menținut la frigider pentru 24 h Ulterior chitosanul a fost supus reacției cu acidul monocloracetic, raportul dintre acidul monocloracetic și chitosan fiind de 1:6. Reacția a avut loc în mediu de etanol, la tetnpevatma camerei, timp de 24 h (Fig. 1). Din amestecul rezultat produsul de reacție s-a precipitat cu acetonă, după care s-a purificat prin dializă (14).In order to obtain O-carboxymethyl chitosan, chitosan in a concentration of 10% (m / v) was brought into a 40% sodium hydroxide solution and kept in the refrigerator for 24 h. Later, chitosan was reacted with monochloracetic acid, the ratio between the monochloracetic acid and chitosan being 1: 6. The reaction took place in ethanol medium at room temperature for 24 h (Fig. 1). From the resulting mixture the reaction product was precipitated with acetone, after which it was purified by dialysis (14).
Fig.l. Reacția de sinteză a O-carboximetilchitosanului (OCMC)Fig Synthesis reaction of O-carboxymethylchitosan (OCMC)
In continuare se dau detalii privind procedeul de obținere a celor doi derivați la care face referire invenția, chitosan-acid ascorbic și chitosan-a-tocoferol.The details of the process for obtaining the two derivatives referred to in the invention, chitosan-ascorbic acid and chitosan-a-tocopherol, are given below.
Exemplul 1: Procedeu de obținere a derivatului chitosan-acid ascorbic (Pitaminu C)Example 1: Process for obtaining chitosan-ascorbic acid derivative (Pitaminu C)
O-carboximetil chitosanul (OCMC) (1 g, 0,01 moli) s-a amestecat cu 20 mL acetonă, după care în suspesia rezultată s-a adăugat acidul ascorbic (3.53 g, 0.02 moli) și 3-4 picături de acid sulfuric concentrat cu rol de catalizator (Fig. 2). Amestecul rezultat s-a agitat mecanic ia 10'C timp de 24 h, după care compusul rezultat s-a separat din amestecul de reacție prin filtrare Purificarea s-a realizat prin dializă.O-carboxymethyl chitosan (OCMC) (1 g, 0.01 mol) was mixed with 20 mL acetone, then ascorbic acid (3.53 g, 0.02 mol) and 3-4 drops of concentrated sulfuric acid were added to the resulting suspension. of catalyst (Fig. 2). The resulting mixture was mechanically stirred at 10 ° C for 24 h, after which the resulting compound was separated from the reaction mixture by filtration. Purification was performed by dialysis.
a 2016 00735to 2016 00735
18/10/2016 &10/18/2016 &
Fig.2. Sinteza derivatului chitosan-acid ascorbic.Fig.2. Synthesis of the chitosan-ascorbic acid derivative.
Exemplul 2: Procedeu de obținere a derivatului chitosan-a-tocoferol (Vitamina E)Example 2: Process for obtaining chitosan-a-tocopherol derivative (Vitamin E)
O-carboximetil chitosanul (OCMC) (1 g, 0,01 moli) s-a amestecat cu 20 mL acetonă, după caic in suspesia rezultată s-a adăugat a-tocoferol (4,31 g, 0.02 moli) și 3-4 pic de acid sulfuric concentrat cu rol de catalizator (Fig. 3). Amestecul rezultat s-a încălzii pe baie de apă sub reflux timp de 10 h, după care compusul rezultat s-a separat din amestecul de reacție prin precipitare cu acetonă. Purificarea s-a realizat prin dializă.O-carboxymethyl chitosan (OCMC) (1 g, 0.01 mol) was mixed with 20 mL of acetone, after which the resulting suspension was added α-tocopherol (4.31 g, 0.02 mol) and 3-4 pic of sulfuric acid concentrated as a catalyst (Fig. 3). The resulting mixture was heated on a water bath under reflux for 10 hours, after which the resulting compound was separated from the reaction mixture by precipitation with acetone. Purification was performed by dialysis.
K3CK 3 C
Fig. 3. Sinteza derivatului chitosan-a-tocopherol.Fig. 3. Synthesis of chitosan-a-tocopherol derivative.
Metode de caracterizare a derivaților de chitosanMethods for characterization of chitosan derivatives
Spectroscopia FTIRFTIR spectroscopy
Spectrele in infraroșu ale derivaților de chitosan sintetizați au fost înregistrate utilizând un spectrometru FT-IR ABB Bohmem MB-3000 (Canada), după 32 scanări pe o scară de la 4000-500 cm'1, cu o rezoluție spectrală de 4 cm'1. Interpretarea spectrelor s-a realizat folosind a 2016 00735The infrared spectra of the synthesized chitosan derivatives were recorded using an FT-IR spectrometer ABB Bohmem MB-3000 (Canada), after 32 scans on a scale from 4000-500 cm ' 1 , with a spectral resolution of 4 cm' 1 . Spectra interpretation was performed using 2016 00735
18/10/2016 <7 programul Horizon MBTM FTIR Software și GRAMS 32 Software (Galactic Industry C orporation, Salem, NH), Version 6.00.10/18/2016 <7 Horizon MBTM FTIR Software and GRAMS 32 Software (Galactic Industry C orporation, Salem, NH), Version 6.00.
Funeționalizarea chitosanului în urma reacției cu acidul ascorbic (Vitamina S) și a-tocoferolul (Vitamina E) este confirmată prin apariția în spectru atât a benzilor de absorbție caracteristice chitosanului, respectiv unității glucozaminice, cât și componentei vitaminice (Fig. 4, 5 și 6)The functionalization of chitosan following the reaction with ascorbic acid (Vitamin S) and α-tocopherol (Vitamin E) is confirmed by the appearance in the spectrum of both absorption bands characteristic of chitosan, respectively of the glucosamine unit, as well as of the vitamin component (Figs. 4, 5 and 6). )
Astfel, în spectrul chitosanului și derivaților săi funcționalizați (chitosan-acid ascorbic, chiiosan-<z-tocopherol) au fost identificate benzile caracteristice grupări» amidiee, datorate vibrațiilor δΟΟ (amida I) în domeniul 1565-1665 cnf1 și δΝΗ (amida îl) în domeniul 13951456 cm'1 Totodată în regiunea 3320-3400 cnf1 s-a identificat o bandă largă atribuită vibrației de valență a grupărilor OH alcoolice atât din structura chitosanului cât și din cea a vitaminei C.Thus, in the spectrum of chitosan and its functionalized derivatives (chitosan-ascorbic acid, chiososan- <z-tocopherol), the characteristic bands of amide groups, due to vibrations δΟΟ (amide I) in the range 1565-1665 cnf 1 and δΝΗ (amide I) have been identified. ) in the domain 13951456 cm ' 1 At the same time, in the region 3320-3400 cnf 1 , a broad band attributed to the valence vibration of the alcoholic OH groups from both chitosan and vitamin C structures was identified.
Fig.4. Spectrul IR al chitosanului (1), OCMC (2), ascorbic acid (3 ) chitosan-acid ascorbic (4).Figure 4. IR spectrum of chitosan (1), OCMC (2), ascorbic acid (3) chitosan-ascorbic acid (4).
Fig.5. Spectrul IR alchitosanului (1), OCMC (2), tz-tocofeiol (6).Figure 5. IR spectrum of alkyitosan (1), OCMC (2), tz-tocopherol (6).
a 2016 00735to 2016 00735
18/10/201610/18/2016
Fig. 6. Spectrul IR al chitosanului (CMCHT), chitosan-acid ascorbic (VC-CHT), chitosan a~ tocoferol (VE-CHT).Fig. 6. IR spectrum of chitosan (CMCHT), chitosan ascorbic acid (VC-CHT), chitosan α-tocopherol (VE-CHT).
Evaluarea activității antioxidanteEvaluation of antioxidant activity
Activitatea antioxidantă al derivaților de chitosan, a fost evaluată utilizând două teste in vitro si anume capacitatea de inhibare a radicalilor liberi DPPH și ABI S.The antioxidant activity of chitosan derivatives was evaluated using two in vitro assays, namely the inhibition ability of free radicals DPPH and ABI S.
Capacitatea de inhibare a radicalilor liberi DPPH (1, l-difenil-2 -pici ilhidrazii) a fost evaluată conform metodei descrise în literatură (15). Probele au fost dizolvate în acid acetic 2% pentru a se obține o soluție de concentrație 10 mg/mL. Din această soluție stoc s-au măsurat 50 pL, 100 pL și 200 pL la care s-au adăugat diferite volume din soluția metanoîică de DPPH 0,1 mM (2950 pL, 2900 pL, 2800 pL). Amestecul obținui a fost menținut !a întuneric timp de 30 de minute după care s-a citit absorbanța la 517 nm. Ca antioxidant standard s-au utilizat acidul ascorbic și α-tocoferolul în aceeași concentrație cu cea a probelor. Determinările au fost făcute utilizând o probă martor, respectiv soluția metanoîică de DPPH Toate determinările s-au realizat în triplicat. Capacitatea de inhibare a radicalilor liberi a fost calculată conform următoarei formule:The inhibition capacity of DPPH free radicals (1, 1-diphenyl-2-piperylhydrazia) was evaluated according to the method described in the literature (15). The samples were dissolved in 2% acetic acid to obtain a 10 mg / mL concentration solution. From this stock solution, 50 pL, 100 pL and 200 pL were measured, to which different volumes of 0.1 mM DPPH methanolic solution (2950 pL, 2900 pL, 2800 pL) were added. The mixture was maintained in the dark for 30 minutes after which the absorbance was read at 517 nm. As a standard antioxidant, ascorbic acid and α-tocopherol were used at the same concentration as the samples. The determinations were made using a control sample, respectively the methanolic solution of DPPH. All determinations were performed in triplicate. The free radicals inhibition capacity was calculated according to the following formula:
Inhibiție % =[(AM-AP)/ AM] X 100 (6) in care. AM = absorbanța martorului la 517 nm;Inhibition% = [(AM-AP) / AM] X 100 (6) in which. AM = control absorbance at 517 nm;
AP ~ absorbața probei la 517 nm.AP ~ sample absorbance at 517 nm.
Rezultatele obținute (Fig. 7) au evidențiat făptui că prin fiincționalizarea realizată s-a imprimat chitosanului (1) o activitate foarte bună antioxidantă, derivații rezultați, chitosan-The obtained results (Fig. 7) showed that the chitosan (1) has a very good antioxidant activity, the resulting derivatives, chitosan-
a 2016 00735to 2016 00735
18/10/2016 acid ascorbic (4) și chitosan-a-tocoferol (6), prezentând un efect antiradicaiic față de DPP11 foarte intens față de chitosan (1) și respectiv O-carboximetil-chitosan (2), utilizai ca intermediar în sinteza celor doi derivați. în condiții experimentale identice valorile procentelor de inhibiție înregistrate pentru chitosan au variat între 0,99-3,63%.10/18/2016 ascorbic acid (4) and chitosan-a-tocopherol (6), having an antiradical effect against DPP11 very intense against chitosan (1) and O-carboxymethyl chitosan (2) respectively, used as an intermediate in synthesis of the two derivatives. under identical experimental conditions the percentages of inhibition recorded for chitosan ranged from 0.99 to 3.63%.
Pentru derivatul chitosan-acid ascorbic (4) procentul de inhibiție a radicalilor DPPH a variat între 96,60% și 99,47% în timp de pentru chitosan-a-tocoferol (6). aceste valori s-au situat în intervalul 17,31-49,78%, depinzând de concentrația din proba testată. Totodată valorile obținute în cazul derivatului chitosan-acid ascorbic au fost comparabile cu cele obținute în cazul acidului ascorbic (97,81-99,82%) și superioare a-tocoferolului (86,8097,62%) folosite ca și substanțe de referințăFor chitosan-ascorbic acid derivative (4) the percentage inhibition of DPPH radicals varied between 96.60% and 99.47% while for chitosan-a-tocopherol (6). these values were in the range 17.31-49.78%, depending on the concentration in the tested sample. At the same time, the values obtained in the case of the chitosan-ascorbic acid derivative were comparable to those obtained for the ascorbic acid (97.81-99.82%) and higher of the-tocopherol (86.8097.62%) used as reference substances.
Fig.7. Efectul antiradicaiic față de radicalul DPPH (%) pentru chitosan (1). O-carboximetilchitosan (2), acid ascorbic (3), chitosan-ascorbic (4), a-tocoferol (5), chitosan-a-tocoferol (6).Figure 7. Antiradical effect against DPPH radical (%) for chitosan (1). O-Carboxymethylchitosan (2), ascorbic acid (3), chitosan-ascorbic (4), a-tocopherol (5), chitosan-a-tocopherol (6).
câmpooiâtecâmpooiâte
Capacitatea de inhibare a radicalului cation ABl fi / Generarea radicalului cation ABTS’ s· a realizat prin tratarea soluției apoase de acid 2,2-azino-bis (3-elilbenzotiazoiin-6-su!tonic) (7 mM) cu persulfat de amoniu (2,45 mM). Amestecul rezultat a fost păstrat la întuneric timp de 12-16 ore pentru a favoriza formarea radicalilor ABTS’1, rezultând soluția stoc înainte de începerea experimentului soluția stoc de ABTS se diluează cu alcool etilic concentra! în vederea obținerii unei soluții cu absorbanța de 0,700±0,020 la lungimea de undă 734 nm. Probele s-au dizolvat în acid acetic 2% pentru a se obține o soluție stoc de concentrație 10 mg/mL. Din soluția stoc s-au măsurat 10 pL, 15 pL, 25 pL și 50 pi, la care .s-au adăugat diferite volume din soluția de ABTS (1990 pL, 1985 pL, 1975 pL, 1950) (16). AmesteculThe ability to inhibit the cation radical ABl / Generation of the cation radical ABTS 'was achieved by treating the aqueous 2,2-azino-bis (3-elylbenzothiazoyin-6-sulfonic acid) solution (7 mM) with ammonium persulfate. (2.45 mM). The resulting mixture was kept in the dark for 12-16 hours to favor the formation of ABTS ' 1 radicals, resulting in the stock solution before the start of the experiment the stock solution of ABTS was diluted with concentrated ethyl alcohol! in order to obtain a solution with absorbance of 0.700 ± 0.020 at wavelength 734 nm. The samples were dissolved in 2% acetic acid to obtain a stock solution of 10 mg / mL concentration. 10 pL, 15 pL, 25 pL and 50 pi were measured from the stock solution, to which different volumes were added from the ABTS solution (1990 pL, 1985 pL, 1975 pL, 1950) (16). The mixture
a 2016 00735to 2016 00735
18/10/2016 rezultat s-a lăsat în repaus 6 minute, după care absorbanta s-a citit la λ ·' 734 nm, față de martor (alcool etilic concentrat).18/10/2016 the result was left to stand for 6 minutes, after which the absorbance was read at λ · 734 nm, compared to the control (concentrated ethyl alcohol).
Activitatea antioxidantâ a probelor analizate, exprimată ca procent de inhibiție (1%) a radicalului cation ABTS’ a fost exprimată procentual cu ajutorul următoarei formule 1 % (Ao-At/Ao) x 100 (8) în care,The antioxidant activity of the analyzed samples, expressed as a percentage of inhibition (1%) of the ABTS 'cation radical, was expressed as a percentage using the following formula 1% (Ao-At / Ao) x 100 (8) in which,
Ao - valoarea absorbantei soluției etanolice de ABTS ' ;Al - the absorbance value of the ethanol solution of ABTS ';
Ai = valoarea absorbanței probei, citită la 6 minute după adăugarea soluției de AB l'S . Toate determinările au fost efectuate în triplicat iar acidul ascorbic, și vitamina F au fost utilizate ca substanțe de referință (martor pozitiv) și prelucrate în mod similar prorelor testateAi = the absorbance value of the sample, read 6 minutes after adding the solution of AB l'S. All determinations were performed in triplicate and ascorbic acid, and vitamin F were used as reference substances (positive control) and processed in a similar way to the test proofs.
Rezultatele obținute (Fig. 8) au evidențiat faptul că activitatea antiradicalică față de AB I S” a derivărilor de chitosan (chitosan-acid ascorbic, chitosan-a-tocoferol) este foarte bună. în condiții experimentale identice valorile procentelor de inhibiție înregistrate pentru chitosan au variat între 9,50-31,56%, valori ce nu îl încadrează în categoria substanțelor ci: activitate antioxidantâ, în schimb derivații de chitosan obținuți conform invenției au valon ale aclivității antiradicalice față de ABTS” foarte mariThe results obtained (Fig. 8) showed that the antiradical activity towards AB I S "of the chitosan derivatives (chitosan-ascorbic acid, chitosan-a-tocopherol) is very good. under identical experimental conditions, the values of the percentages of inhibition recorded for chitosan ranged between 9.50-31,56%, values that do not fit it in the category of substances but: antioxidant activity, instead chitosan derivatives obtained according to the invention have a value of antiradical root aclivity of ABTS "very large
Pentru derivatul chitosan-acid ascorbic (4) procentul de inhibiție a radicalilor ABTS’ a variat între 66,06% și 99,07% în timp de pentru chitosan-a-tocoferol (6), aceste valori s-au situat în intervalul 30,86-54,90%, depinzând de concentrația din proba testată. Totodată valoarea obținută în cazul derivatului chitosan-acid ascorbic la concentrația de 250 gg ini (99,07%) a fost comparabilă cu cea obținută în cazul acidului ascorbic (99,87%) și utocofetolului (98,85%) la aceeași concentrație, folosite ca și substanțe de referințăFor the chitosan-ascorbic acid derivative (4) the percentage inhibition of ABTS 'radicals varied between 66.06% and 99.07% while for chitosan-a-tocopherol (6), these values were in the range 30 , 86-54.90%, depending on the concentration in the tested sample. At the same time, the value obtained for the chitosan-ascorbic acid derivative at the concentration of 250 gg ini (99.07%) was comparable to that obtained for ascorbic acid (99.87%) and utocofetol (98.85%) at the same concentration, used as reference substances
Lato
Fig. 8. Efectul antiradicalic față de radicalul cation ABTS” (%) pentru chitosan (I), O carboximetil-chitosan (2), acid ascorbic (3), chitosan-acid ascorbic (4), a-iocolerol (5 chitosan-a-tocoferol (6) , a 2016 00735Fig. 8. Antiradical effect against the ABTS cation radical (%) for chitosan (I), carboxymethyl chitosan (2), ascorbic acid (3), chitosan-ascorbic acid (4), α-iocolerol (5 chitosan-a- tocopherol (6), to 2016 00735
18/10/201610/18/2016
Ieste antimicrobiene - Testele antimicrobiene au fost efectuate în conformitate cu metodele standard ISO 16649-2 SR / 2007 - Microbiologia produselor alimentare și animale Protocolul experimental pentru testarea eficienței antimicrobiane și antifungice utilizând, culturi bacteriene tip ATCC de Escherichia coli 25922; Salmonella typhymurium 14028; 1,isteria monocytogenes 7644; și fungice ca Candida albicans 90028 utilizând metoda difuzimetrică (17).Antimicrobial Outcomes - Antimicrobial tests were performed according to standard methods ISO 16649-2 SR / 2007 - Microbiology of food and animal products The experimental protocol for testing the antimicrobial and antifungal efficacy using ATCC bacterial cultures of Escherichia coli 25922; Salmonella typhymurium 14028; 1, hysteria monocytogenes 7644; and fungus such as Candida albicans 90028 using diffusimetric method (17).
Tehnica de lucru constă în următoarele etape: sterilizarea mostrelor; contaminare cu bacterii de cultură ATCC, inoculare și incubare efectuată 24 și 48 de ore la 44°C; identificarea germenilor ținta. Sterilizarea probelor a fost realiazată la autoclav la 110' C, 0,5 ban timp de 20 min S-au preparat suspensii din tulpinile ATCC în ser fiziologic peptonat, cu o turbiditate de 0,5 Mc Farland. Plăcile cu mediu Miieller Hinton s-au însămânțat prin dispersie cu tamponul steril din fiecare suspensie ATCC. S-au lasat plăcile să se usuce întredeschise timp de 3-5 min., până când lichidul inoculat s-a absorbit în mediu, pentru ca suprafața mediului să fe uscată. Discurile din hârtie de filtru Whatman no.4, cu diametrul de 5 mm s-au umectat in ser fiziologic peptonat apoi s-au impregnat cu cate 0,005 g din probele de analizai; ca martor negativ s-a folosit discul de hârtie de filtru umectat in ser fiziologic peptonat. Cu ajutorul unor pense sterilizate, discurile cu probe și martorul s-au așezat pe suprafața mediului inoculat cu tulpinile ATCC pe diagonale, respectiv centrul plăcii; S-au incubat la termostat plăcile la 57 • C timp de 24h; S-au măsurat diametrele zonelor de inhibiție totala pentru tulpina de testat, inclusiv diametrul discului, cu ajutorul riglei, pe spatele plăcii cu mediul însămânțai, i i lumina reflectată, pe un fond întunecat.The working technique consists of the following steps: sterilizing the samples; contamination with ATCC culture bacteria, inoculation and incubation carried out 24 and 48 hours at 44 ° C; identification of the target germs. Sterilization of the samples was performed in the autoclave at 110 ° C, 0.5 bans for 20 min. Suspensions were prepared from the ATCC strains in peptonate saline, with a turbidity of 0.5 Mc Farland. Miieller Hinton medium plates were seeded by dispersion with sterile buffer from each ATCC suspension. The plates were allowed to dry open for 3-5 minutes, until the inoculated liquid was absorbed into the medium to allow the surface of the environment to dry. The discs made of Whatman no.4 filter paper, 5 mm in diameter, were soaked in peptonated physiological serum and then impregnated with 0.005 g of the analysis samples; as a negative control the filter paper wetted in the peptonate physiological serum was used. With the help of sterilized pens, the sample discs and the witness were placed on the surface of the medium inoculated with the ATCC stems on diagonals, respectively the center of the plate; The plates were incubated at 57 • C for 24 h at thermostat; The diameters of the total inhibition zones for the test strain, including the diameter of the disc, were measured using the ruler, on the back of the plate with the seed medium, and the reflected light on a dark background.
Rezultatele sunt prezentate în Tabelul 1.The results are presented in Table 1.
Tabelul 1. Diametrul zonei de inhibiție a dezvoltării bacteriilor și fungului de călre chitosan (1) și a derivații sintetizați, chitosan -acid ascorbic (2) și chitosan-a-tocoferol P).Table 1. Diameter of the inhibition zone of bacterial and fungal growth of chitosan (1) and synthesized derivatives, chitosan-ascorbic acid (2) and chitosan-a-tocopherol P).
a 2016 00735to 2016 00735
18/10/201610/18/2016
Din datele obținute se poate remarca o intensificare semnificativă a activității antimicrobiene a chitosanului prin modificarea lui cu cele două vitamine, activitatea cea mai intensă fiind manifestată de derivatul cu Vitamina C iVC-CUTl ? cărui acrivitaie antimicrobiană este dublă față de cea a chitosanului a 2016 00735From the data obtained can we notice a significant intensification of the antimicrobial activity of chitosan by modifying it with the two vitamins, the most intense activity being manifested by the derivative with Vitamin C iVC-CUTl? whose antimicrobial properties are double that of 2016's chitosan 00735
18/10/201610/18/2016
BIBLIOGRAFIEBIBLIOGRAPHY
1. Charles E. Carraher Jr. Polymer Chemistry, 7th ed. Florida 2008, p.41.1. Charles E. Carraher Jr. Polymer Chemistry, 7th ed. Florida 2008, p.41.
2. Batista MKS, Pinto LF, Gomes CAR, Gomes P. Novei highly-soluble pcptide-chitosan polymers: Chemical synthesis and spectral characterization. Carbohydrate Polymers2006; 64: 299-305.2. Batista MKS, Pinto LF, Gomes CAR, Gomes P. Novei highly-soluble pcptide-chitosan polymers: Chemical synthesis and spectral characterization. Carbohydrate Polymers2006; 64: 299-305.
3. Feng Y, Xia W. Preparation, characterization and antibacterial activity of watersoluble O-fumaryl-chitosan. Carbohydrate Polymers20\ 1,83: 1169-11733. Feng Y, Xia W. Preparation, characterization and antibacterial activity of watersoluble O-fumaryl-chitosan. Carbohydrate Polymers20 \ 1,83: 1169-1173
Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbioiogy2b\C 144: 51-63.Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: A state of the art review. International Journal of Food Microbioiogy2b \ C 144: 51-63.
Guiping M, Dongzhi Y, Yingshan Z, et al. Preparation and characterization of wateisoluble N- alkylated chitosan. Carbohydrate Polymers2QQ8; 74: 121-126.Guiping M, Dongzhi Y, Yingshan Z, et al. Preparation and characterization of wateisoluble N- alkylated chitosan. Carbohydrate Polymers2QQ8; 74: 121-126.
6. Li P, Zhou C, Rayatpisheh S, et al. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Advaced Materia!s20\2; 24: 4130-4137.6. Li P, Zhou C, Rayatpisheh S, et al. Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity. Advaced Matter! S20 \ 2; 24: 4130-4137.
7. Ozturk E, Agalar C, Keșeci K, Denkbas EB. Preparation and characterization of ciprofloxacin-loaded alginate/chitosan sponge as wound dressing material. Journal oi Applied Polymer Science2006; 101:1602-1609.7. Ozturk E, Agalar C, Keșeci K, Denkbas EB. Preparation and characterization of ciprofloxacin-loaded alginate / chitosan sponge as wound dressing material. Journal oi Applied Polymer Science2006; 101: 1602-1609.
Xie W, Xu P, Liu Q. Antioxidant activity of water-soluble chitosan denvatives. Bioorganic and Medicinal Chemistry Letters2W) 1; 11: 1699-1701.Xie W, Xu P, Liu Q. Antioxidant activity of water-soluble chitosan denvatives. Bioorganic and Medicinal Chemistry Letters2W) 1; 11: 1699-1701.
9. Lee H.W , Park Y.S.,Choi J-W.,Yi S.,Shin W.-S., Antidiabetic efîects of chitosan oligosaccharides in neonatal streptozotocin-induced noninsulin-depcndeni diabeles mellitus in rats, Biological andPharmaceuticalBul/edn2QQ3;26(fi)A 100-1103 . Yao H.T., Huang S.Y., Chiang M.T., A comparative study on hvpoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats, Food and Chemical I'oxieo/ogy2QQS, 46:15251534.9. Lee H.W., Park Y.S., Choi J.W., Yi S., Shin W.-S., Antidiabetic effects of chitosan oligosaccharides in neonatal streptozotocin-induced noninsulin-dependent diabetes mellitus in rats, Biological andPharmaceuticalBul / edn2QQ3; 26 (fi) A 100-1103. Yao H.T., Huang S.Y., Chiang M.T., A comparative study on hvpoglycemic and hypocholesterolemic effects of high and low molecular weight chitosan in streptozotocin-induced diabetic rats, Food and Chemical I'oxieo / ogy2QQS, 46: 15251534.
11. Cristea AN. (editor), Tratat de farmacologie, ediția 1, EdituraMedicială.. București. 2005, p. 813, 84311. Christ the AN. (editor), Treatise on pharmacology, edition 1, EdituraMedicială .. Bucharest. 2005, pp. 813, 843
12. Daud Z.A.M., Ismail A., Sarmadi B., Ascorbic acid: physiology and health effects, Peference Module in Food Science, from Encyclopedia of Food and Health, 2016, 266-274 a 2016 0073512. Daud Z.A.M., Ismail A., Sarmadi B., Ascorbic acid: physiology and health effects, Peference Module in Food Science, from Encyclopedia of Food and Health, 2016, 266-274 to 2016 00735
18/10/201610/18/2016
13. Atkinson J., Epand R.F., Epand R.M., Tocopherols and tocotrienols in membranes: A criticai review, Free Radical Biology and Medicine, 2006, 44(5): 739-764.13. Atkinson J., Epand R.F., Epand R.M., Tocopherols and tocotrienols in membranes: A critical review, Free Radical Biology and Medicine, 2006, 44 (5): 739-764.
14. Zheng M., Han B., Yang Y. Liu W.,Synthesis, characterization and biological safety of O-carboxymethyl chitosan used to treat Sarcoma 180 turnor, Carbohydrate Polymers 2011, 86(1): 231-238.14. Zheng M., Han B., Yang Y. Liu W., Synthesis, characterization and biological safety of O-carboxymethyl chitosan used to treat Sarcoma 180 turnor, Carbohydrate Polymers 2011, 86 (1): 231-238.
. Dragostin O M., LupascuF, Vasile C., MaresM., NastasaV., Moraru R.F , Pieptu D...Profire L., Synthesis and Biological Evaluation of New 2-Azetidinones with Sulfonamide Structures,Molecules20\3, 18(4), 4140-4157.. Dragostin O M., LupascuF, Vasile C., MaresM., NastasaV., Moraru RF, Peptide D ... Profire L., Synthesis and Biological Evaluation of New 2-Azetidinones with Sulfonamide Structures, Molecules20 \ 3, 18 (4) , 4140-4157.
16. Lupascu F.G., Dragostin O.M., Foia L., Lupascu D., Profire L , The Synthesis and the Biological Evaluation of New Thiazolidin-4-one Derivatives Containirig a Xanthinc Moiety, A/o/ecw/es 2013, 18(8): 9684-9703.16. Lupascu FG, Dragostin OM, Foia L., Lupascu D., Profire L, The Synthesis and the Biological Evaluation of New Thiazolidin-4-one Derivatives Containirig a Xanthinc Moiety, A / o / ecw / es 2013, 18 (8) ): 9684-9703.
17. Performance Standard for Antimicrobial Disk Susceptibility Tests, Approved Standard17. Performance Standard for Antimicrobial Disk Susceptibility Tests, Approved Standard
Eleventh Edition. CLSI document M2- AII, 2012; SR EN ISO 7218/2014Eleventh Edition. CLSI document M2- AII, 2012; SR EN ISO 7218/2014
a 2016 00735to 2016 00735
18/10/201610/18/2016
PROCEDEU DE OBȚINERE SI COMPOZIȚIA UNOR DERIVAȚI DEMETHOD FOR OBTAINING AND COMPOSITION OF SOME DERIVATIVES OF
J 9 1J 9 1
CHITOSAN CU POTENȚIAL BIOLOGIC ÎMBUNĂTĂȚITCHITOSAN WITH IMPROVED BIOLOGICAL POTENTIAL
REVENDICĂRI
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ROA201600735A RO132470B1 (en) | 2016-10-18 | 2016-10-18 | Chitosan derivatives with improved biological potential and process for preparing them |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ROA201600735A RO132470B1 (en) | 2016-10-18 | 2016-10-18 | Chitosan derivatives with improved biological potential and process for preparing them |
Publications (2)
Publication Number | Publication Date |
---|---|
RO132470A2 true RO132470A2 (en) | 2018-04-27 |
RO132470B1 RO132470B1 (en) | 2023-05-30 |
Family
ID=62016302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ROA201600735A RO132470B1 (en) | 2016-10-18 | 2016-10-18 | Chitosan derivatives with improved biological potential and process for preparing them |
Country Status (1)
Country | Link |
---|---|
RO (1) | RO132470B1 (en) |
-
2016
- 2016-10-18 RO ROA201600735A patent/RO132470B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
RO132470B1 (en) | 2023-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100509859C (en) | Chemically modified polyaminosaccharide by a hydrocarbyl sultone compound | |
EP1483299B1 (en) | Cell wall derivatives from biomass and preparation thereof | |
EP2695622B1 (en) | A chitosan wound dressing and its method of manufacturing | |
Paul et al. | Physical, chemical and biological studies of gelatin/chitosan based transdermal films with embedded silver nanoparticles | |
CN110003359A (en) | A kind of hydrophily high substituted degree modification of chitosan preparation method and applications | |
D'souza et al. | Basella alba stem extract integrated poly (vinyl alcohol)/chitosan composite films: A promising bio-material for wound healing | |
CN105837837B (en) | A kind of preparation method of the medical chitosan temperature-sensitive hydrogel containing nano silver | |
Thi et al. | Self-antibacterial chitosan/Aloe barbadensis Miller hydrogels releasing nitrite for biomedical applications | |
CN113813396B (en) | Kanamycin grafted cellulose-based antibacterial material and preparation method thereof | |
Artun et al. | Preparation of nanocomposite based on chitosan-PDCOEMA containing biosynthesized ZnO: Biological and thermal characterization | |
Mania et al. | Investigation of an elutable N-propylphosphonic acid chitosan derivative composition with a chitosan matrix prepared from carbonic acid solution | |
RO132470A2 (en) | Preparation process and composition of chitosan derivatives with improved biological potential | |
CN105126149B (en) | A kind of medical recombination chitosan application | |
CN111154010B (en) | Medical cationic polymer biopolymer material, preparation method and application | |
CN113944007A (en) | Food antiseptic and fresh-keeping electrospun fiber liner and preparation method and application thereof | |
CN114391550A (en) | Water-soluble chlorhexidine antibacterial agent and preparation method and application thereof | |
Hamdan et al. | Extraction, characterization and bioactivity of chitosan from farms shrimps of Basra province by chemical method | |
Umamaheswari et al. | Effectiveness of Copper nanoparticles loaded microsponges on Drug release study, Cytotoxicity and Wound healing activity | |
CN105749334A (en) | Novel antibacterial nano silver temperature-sensitive hydrogel and preparation method thereof | |
WO2024209353A1 (en) | Novel formulations for biobased nanostructured films and coatings | |
RU2455007C1 (en) | Method for producing gel-forming dextrane phosphates | |
Kulka et al. | Materials based on chitosan enriched with zinc nanoparticles for potential applications on the skin | |
RAJAKUMARI et al. | CHARACTERISATION OF PREPARED CEFIXIME AND METRONIDAZOLE WITH CHITOSAN NANOPARTICLE FOR PHARMACEUTICAL APPLICATION. | |
Basir | SYNTHESIS AND CHARACTERIZATION OF BIO-POLYMERIC BASED NANOCOMPOSITES FOR BIOMEDICAL APPLICATIONS | |
Ramos | Development of wound healing biomaterials based on bacterial exopolysaccharides |