RO132045A0 - Highly felxible and malleable composite product for cross-linked polyethylene pipes to be used in underfloor heating - Google Patents
Highly felxible and malleable composite product for cross-linked polyethylene pipes to be used in underfloor heating Download PDFInfo
- Publication number
- RO132045A0 RO132045A0 ROA201700070A RO201700070A RO132045A0 RO 132045 A0 RO132045 A0 RO 132045A0 RO A201700070 A ROA201700070 A RO A201700070A RO 201700070 A RO201700070 A RO 201700070A RO 132045 A0 RO132045 A0 RO 132045A0
- Authority
- RO
- Romania
- Prior art keywords
- polyethylene
- cross
- mpa
- pipes
- elongation
- Prior art date
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
PRODUS COMPOZIT PENTRU ȚEVI DIN POLIETILENA RETICULATACOMPOSITE PRODUCT FOR RETICULATED POLYETHYLENE PIPES
CU FLEXIBILITATE SI MALEABILITATE RIDICATAWITH HIGH FLEXIBILITY AND MALEABILITY
FOLOSITE LA ÎNCĂLZIREA IN PARDOSEALAUSED FOR HEATING IN THE FLOOR
'.'FiCIUI, DE STAT PEMRU INVENȚII Șl MĂRCI Cerere de brevet de invenție && c Rl®'.'FILE, STATE FOR INVENTIONS BRAND Patent application && c Rl®
Nr.Nr.
Data depozit....Filing date ....
Autori:authors:
1. Cincu Comeliu,1. Fifth Comeliu,
2. Ghioca Paul,2. Ghioca Paul,
3. Trandafir Cristian-Costel.3. Cristian-Costel rose.
Țevi din polietilena reticulataReticulated polyethylene pipes
Prezenta invenție se refera la obținerea produselor compozite pe baza de polietilena de înalta densitate modificata cu bloc-copolimeri stiren-dienici destinate in principal obținerii de țevi (conducte) cu rezistenta mecanica înalta la temperaturi ridicate (pana la 100 °C). elasticitate ridicata si buna rezistenta la fisurare prin îndoire, proprietăți necesare funcționarii acestor conducte.The present invention relates to obtaining composite products based on high density polyethylene modified with styrene-dienic block copolymers intended mainly to obtain pipes (pipes) with high mechanical resistance at high temperatures (up to 100 ° C). high elasticity and good bending resistance through cracking, properties necessary for the operation of these pipes.
Un domeniu important de aplicabilitate a țevilor din polietilena il reprezintă încălzirea/ racirea cu fluide termice a locuințelor, clădirilor - sedii de instituții sau a halelor industriale, iar un caz particular al acestui domeniu este reprezentat de încălzirea/ racirea prin pardoseala [1].An important area of applicability of polyethylene pipes is heating / cooling with thermal fluids of houses, buildings - premises of institutions or industrial halls, and a particular case of this field is the heating / cooling by the floor [1].
In acest scop se folosesc țevi din polietilena de înalta densitate care este reticulata prin diferite procedee tehnologice (peroxizi, peroxizi si silani, radiații, particule cu energie înalta) pentru creșterea rezistentei mecanice la temperaturi mai ridicate [2], Pentru a împiedica pătrunderea in timp a oxigenului prin pereții conductelor, fapt care ar degrada polimerul si ar susține dezvoltarea florei microbiene in interiorul țevilor, acestea sunt prevăzute la exterior cu un strat bariera de oxigen (țevi compozite).For this purpose, high density polyethylene pipes are used which are cross-linked by different technological processes (peroxides, peroxides and silanes, radiation, high energy particles) to increase the mechanical resistance at higher temperatures [2], to prevent the penetration in time. of oxygen through the walls of pipes, which would degrade the polymer and support the development of microbial flora inside the pipes, these are provided on the outside with an oxygen barrier layer (composite pipes).
In procesul de reticulare a polietilenei are loc modificarea multor proprietăți fizicomecanice ale polimerului: creste rezistenta la tracțiune (atat limita curgerii cat si rezistenta la rupere), creste stabilitatea la temperaturi ridicate, creste rigiditatea, scade solubilitatea, scade alungirea la rupere, scade rezistenta la sfasiere, etc.[3],In the process of crosslinking polyethylene, many physico-mechanical properties of the polymer are modified: tensile strength increases (both flow limit and rupture resistance), stability increases at high temperatures, increases rigidity, decreases solubility, decreases elongation at break, decreases resistance to stamps, etc. [3],
a 2017 00070to 2017 00070
09/02/201702/09/2017
Scăderea alungirii la rupere, creșterea rigidității, scăderea rezistentei la soc prin reticulare reprezintă dezavantaje in tehnologia de aplicare a tuburilor de polietilena, in special la incalzirea/racirea prin pardoseala. Sunt cunoscute cazuri când se recurge chiar la încălzirea tuburilor pentru a imprima o anumita raza de curbura mai mica necesara aplicării, fapt care are consecințe grave aupra calitatii tuburilor si a fiabilității acestora.The decrease of the elongation at break, the increase of the rigidity, the decrease of the resistance to the shock by means of cross-linking represent disadvantages in the technology of application of the polyethylene tubes, especially when heating / cooling by the floor. There are known cases when it is resorted to even the heating of the tubes to print a certain radius of curvature less necessary for the application, which has serious consequences on the quality of the tubes and their reliability.
Cel mai cunoscut procedeu de ameliorare a acestor proprietăți deficitare consta in elasticizarea fazei amorfe (zona unde se produc microfracturi atunci când produsul este supus la eforturi mecano-termice) prin aliere in topitura cu elastomeri, cu precădere elastomeri termoplastici de tipul bloc-copolimerilor stiren-dienici.The best known process for improving these deficient properties consisted of the elasticization of the amorphous phase (the area where microfractures occur when the product is subjected to mechanical-thermal stresses) by alloying with elastomers, especially thermoplastic elastomers of the type of styrene block-copolymers. diene.
Studiile de modificare prin aliere in topitura a polietilenei de înalta densitate cu acești elastomeri termoplastici au stabilit ca efectul maxim de elasticizare se realizează atunci când domeniile de bloc-copolimeri stiren-dienici dispersate in matricea poliolefmica au dimensiuni nanometrice cuprinse intr-un interval optim pentru a prelua si disipa efficient energia, evitând distrugerea compozitului atunci când materialul este supus la eforturi mecanice sau a tensiunilor ce apar când reperul este supus modelării prin îndoire.Modification studies by high-density polyethylene melting with these thermoplastic elastomers have established that the maximum elasticity effect is achieved when the styrene-diene block-copolymer domains dispersed in the polyolefin matrix have nanometric dimensions in an optimal range for efficiently retrieve and dissipate energy, avoiding the destruction of the composite when the material is subjected to mechanical stresses or stresses that appear when the benchmark is subjected to bending.
Dimensiunile domeniilor elastomere sunt controlate de natura si structura elastomerului, de raportul polietilena/ elastomer, dar mai ales de vascozitatea in topitura ale polietilenei si elastomerului la temperatura de compoundare.The dimensions of the elastomeric domains are controlled by the nature and structure of the elastomer, by the polyethylene / elastomer ratio, but especially by the melt viscosity of the polyethylene and elastomer at the compounding temperature.
Pentru obținerea de compozite ale polietilenei de înalta densitate cu proprietăți performante ale elasticitatii, alungirii la rupere, rezistentei la soc si fisurare, dozajul de bloccopolimeri stiren-dienici variaza intre 10-15%. Ținând cont ca prețul bloc-copolimerilor stirendienici este de 3-4 ori mai mare decât al polietilenei de înalta densitate, procentul ridicat de elastomeri termoplastici in compozit constituie un dezavantaj economic important.In order to obtain high density polyethylene composites with high elasticity properties, elongation at break, shock resistance and cracking, the dosage of styrene-dienic block copolymers varies between 10-15%. Given that the price of styrene block copolymers is 3-4 times higher than that of high density polyethylene, the high percentage of thermoplastic elastomers in composite constitutes a major economic disadvantage.
Prezenta invenție înlătură dezavantajele tehnice menționate (rigiditatea compozitelor manifestata in principal prin scăderea alungirii la rupere si a rezistentei la soc) si a dezavantajului economic, soluția tehnica descrisa in continuare reducând cantitatea de bloc-copolimeri stirendienici pana la maximum 2,5 %, conducând concomitent la obținerea de compozite ale polietilenei de înalta densitate cu valori superioare ale rezistentei la rupere, rezistentei la soc si ale alungirii la rupere.The present invention removes the mentioned technical disadvantages (the rigidity of the composites mainly manifested by the decrease of the elongation at break and of the shock resistance) and of the economic disadvantage, the technical solution described below reducing the quantity of styrene-block copolymers up to a maximum of 2.5%, leading concomitantly. when obtaining high density polyethylene composites with higher values of breaking resistance, shock resistance and breaking elongation.
a 2017 00070to 2017 00070
09/02/201702/09/2017
Procedeul, conform invenției, consta in obținerea in prima etapa a unui compozit al polietilenei de înalta densitate prin modificarea in topitura cu bloc-copolimeri stiren-dienici in proporție de 50:50 (g/g). La aceasta compoziție se realizează o dispersie omogena a bloccopolimerului stiren-dienic sub forma de domenii cu dimensiuni optime de elasticizare a polietilenei de înalta densitate, mai ales atunci când vascozitatile in topitura ale polietilenei si elastomerului sunt comparabile ca valoare. In plus, acest raport este favorabil unei bune amestecări a granulelor celor 2 componenți cu densități diferite (polietilena/ elastomer) in buncărul de alimentare al extruderului de granulare.The process according to the invention consisted in obtaining in the first stage a high density polyethylene composite by modifying it in the melt with 50:50 (g / g) styrene-block copolymers. In this composition, a homogeneous dispersion of the styrene-dienic block copolymer is realized in the form of domains with optimal elasticity dimensions of high density polyethylene, especially when the melt viscosities of polyethylene and elastomer are comparable in value. In addition, this ratio is favorable for a good mixing of the granules of the 2 components of different densities (polyethylene / elastomer) in the feed hopper of the granulation extruder.
Acest compozit este utilizat in continuare pentru alierea in topitura a polietilenei de înalta densitate împreuna cu alti aditivi (peroxizi, stabilizatori) si formarea tuburilor de polietilena care reticuleaza in procesul de formare dar care isi menține o flexibilitate si elasticitate ridicate, efect datorat prezentei elastomerului termoplastic.This composite is further used for the high melting of high density polyethylene together with other additives (peroxides, stabilizers) and the formation of polyethylene tubes that cross-link in the formation process but maintain a high flexibility and elasticity, due to the presence of thermoplastic elastomer. .
In fig. 1 se prezintă, schematic, fluxul tehnologic de obținere a țevilor de polietilena reticulata si aditivata cu elastomer termoplastic in proporție de 2...4 %, avand flexibilitate si maleabilitate ridicata, conform invenției.In FIG. 1 shows, schematically, the technological flow for obtaining the cross-linked and additive polyethylene pipes with thermoplastic elastomer in the proportion of 2 ... 4%, having high flexibility and malleability, according to the invention.
țeavapipe
Extruder țeava PEPE pipe extruder
Fig. 1. Schema fluxului tehnologicFig. 1. Scheme of the technological flow
a 2017 00070to 2017 00070
09/02/201702/09/2017
Pentru exemplificarea invenției s-a utilizat o polietilena de înalta densitate Tipelin FSA high density polyethylene Tipelin FS was used to exemplify the invention
471-02 recomandata de producător pentru reticulare cu peroxizi. In tabelul 1 sunt prezentate principalele proprietăți ale acestui sortiment de polietilena.471-02 recommended by the manufacturer for peroxide cross-linking. Table 1 presents the main properties of this polyethylene assortment.
Tab.l Proprietățile polietilenei folosite in exemplele din brevetTab.l Properties of polyethylene used in patent examples
In calitate de elastomer termoplastic s-au utilizat bloc-copolimeri stiren-izopren-stiren si stiren-butadiena-stiren (Europrene SOL T 166) cu principalele proprietăți prezentate in tabelul 2.As a thermoplastic elastomer, styrene-isoprene-styrene and styrene-butadiene-styrene block copolymers (Europrene SOL T 166) were used with the main properties presented in table 2.
Tabelul 2. Proprietăți ale elastomerilor termoplastici utilizațiTable 2. Properties of the thermoplastic elastomers used
Modificarea polietilenei de înalta densitate cu bloc-copolimeri din tab. 2 s-a realizat pe un malaxor Brabender in laborator la 120-140 °C sau pe un extruder industrial Cincinnati, cu dublu snec care a efectuat si granularea amestecului.Modification of high density polyethylene with block copolymers in the tab. 2 was performed on a Brabender mixer in the laboratory at 120-140 ° C or on a Cincinnati industrial extruder, with double screw which also performed the granulation of the mixture.
a 2017 00070to 2017 00070
09/02/201702/09/2017
Din materialul malaxat in Brabender sau din granulele formate in granulatorul industrialFrom the material mixed in Brabender or from the granules formed in the industrial granulator
Cincinnati au fost obținute placi groase de 1 mm si 4 mm prin presare la 170 °C, timp de 15 minute la o presiune de 200 N/m2. Din plăcile cu grosimea de 1 mm s-au decupat epruvete tip haltera care au servit la determinarea proprietăților fizico-mecanice prin tracțiune, iar din cele cu grosimea de 4 mm s-au uzinat epruvete necesare determinării rezistentei la soc.Cincinnati thick plates of 1 mm and 4 mm were obtained by pressing at 170 ° C for 15 minutes at a pressure of 200 N / m 2 . From the plates with a thickness of 1 mm were cut dumbbells that were used to determine the physical-mechanical properties by traction, and from those with a thickness of 4 mm were used samples necessary to determine the resistance to shock.
In continuare se prezintă exemplele de realizare a invenției.The following are examples of embodiments of the invention.
Exemplul 1Example 1
Malaxorul Brabender a fost alimentat cu polietilena de înalta densitate si compound polietilena/ SIS 1 (50:50) in raport gravimetric 96:4, peroxid Trigonox 311 - 0,3%.Brabender mixer was supplied with high density polyethylene and polyethylene / SIS 1 compound (50:50) in gravimetric ratio 96: 4, Trigonox peroxide 311 - 0.3%.
După omogenizare in malaxor, proprietățile compoundului sunt:After mixing in the mixer, the properties of the compound are:
Rezistenta la tracțiune, MPa ... 25Tensile strength, MPa ... 25
Alungirea la rupere, % ... 680Elongation at break,% ... 680
Modul de elasticitate, MPa ... 622Elasticity mode, MPa ... 622
Rezistenta la soc Izod pe epruvete crestate, 20 °C, KJ/m2 ...16Izod shock resistance on notched test tubes, 20 ° C, KJ / m 2 ... 16
Exemplul 2Example 2
S-a procedat ca in exemplul 1 dar raportul polietilena/ SIS 1 (compound 50:50) a fost 92:8. Se obțin următoarele proprietăți pentru polietilena reticulata:It was proceeded as in example 1 but the ratio polyethylene / SIS 1 (compound 50:50) was 92: 8. The following properties are obtained for polyethylene cross-linking:
Rezistenta la tracțiune. MPa ... 24Traction resistant. MPa ... 24
Alungirea la rupere. % ... 780Elongation at break. % ... 780
Modul de elasticitate, MPa ... 600Elasticity mode, MPa ... 600
Rezistenta la soc Izod, pe epruvete crestate 20 °C, KJ/m2 ...19,4Resistance to Izod shock, on specimens 20 ° C, KJ / m 2 ... 19.4
Exemplul 3Example 3
S-a procedat ca in exemplul 1 dar s-a înlocuit elastomerul SIS 1 cu SIS 2. Caracteristicile polietilenei reticulate aditivate sunt:It was proceeded as in example 1 but the elastomer SIS 1 was replaced with SIS 2. The characteristics of the additive crosslinked polyethylene are:
Rezistenta la tracțiune, MPa ... 24Tensile strength, MPa ... 24
Alungirea la rupere, % ... 620Elongation at break,% ... 620
Modul de elasticitate, MPa ... 580Elasticity mode, MPa ... 580
Rezistenta la soc Izod, pe epruvete crestate 20 °C, KJ/m2 ... 18Resistance to Izod shock, on specimens 20 ° C, KJ / m 2 ... 18
Exemplul 4Example 4
S-a procedat ca in exemplul 3 dar raportul polietilena/ SIS 2 (compound 50:50) a fost de 92:8. Se obțin următoarele caracteristici pentru produsul reticulat:It was proceeded as in example 3 but the ratio polyethylene / SIS 2 (compound 50:50) was 92: 8. The following characteristics are obtained for the cross-linked product:
Rezistenta la tracțiune, MPa ... 24Tensile strength, MPa ... 24
Alungirea la rupere, % ... 560Elongation at break,% ... 560
a 2017 00070to 2017 00070
09/02/201702/09/2017
Modul de elasticitate, MPa ... 500Elasticity mode, MPa ... 500
Rezistenta la soc Izod pe epruvete crestate. 20 °C, KJ/m2 ...22,6Resistance to Izod shock on recessed specimens. 20 ° C, KJ / m 2 ... 22.6
Exemplul 5Example 5
Extruderul de tip monosnec a fost alimentat cu polietilena, compound polietilena/ SBS (50:50) in raport gravimetric 96:4. peroxid Trigonox 311 - 0,3% si a fost operat la temperature corespunzătoare zonelor cilindrului cuprinse intre 150 °C - 190 °C. Materialul extrudat a prezentat următoarele caracteristici:The single-type extruder was fed polyethylene, polyethylene / SBS compound (50:50) in 96: 4 gravimetric ratio. Trigonox peroxide 311 - 0.3% and was operated at temperatures corresponding to the cylinder areas between 150 ° C - 190 ° C. The extruded material had the following characteristics:
Rezistenta la tracțiune, MPa ... 23Tensile strength, MPa ... 23
Alungirea la rupere. % ...510Elongation at break. % ... 510
Modul de elasticitate. MPa ... 480Elasticity mode. MPa ... 480
Rezistenta la soc Izod. pe epruvete crestate 20 °C, KJ/m2 ...16,5Resistance to shock Izod. on notched specimens 20 ° C, KJ / m 2 ... 16.5
Exemplul 6Example 6
S-a procedat ca in exemplul 5 dar raportul polietilena/ SBS (compound 50:50) a fost de 92:8. Proprietățile materialului reticulat si aditivat sunt:It was proceeded as in example 5 but the ratio polyethylene / SBS (compound 50:50) was 92: 8. The properties of the cross-linked and additive material are:
Rezistenta la tracțiune. MPa ... 23Traction resistant. MPa ... 23
Alungirea larupere. % ... 580Elongation of larvae. % ... 580
Modul de elasticitate, MPa ... 550Elasticity mode, MPa ... 550
Rezistenta la soc Izod pe epruvete crestate, 20 °C, KJ/m2 ...20,2Izod shock resistance on notched test tubes, 20 ° C, KJ / m 2 ... 20.2
Principalul avantaj este obținerea unui material compozit pentru extrudarea țevilor folosite la încălzirea in pardoseala cu rezistenta mecanica ridicata cu 10% superioara produselor existente, Al doilea avantaj il reprezintă flexibilitatea mărită, rezistenta superioara la șoc si alungire la rupere cu 50% mai mare decât materialele existente. Compozitele polietilena de înalta densitate modificata cu bloc-copolimeri stiren-dienici si reticulata, obținute conform invenției prezintă o foarte buna elasticitate si maleabilitate la formare. Comparând alungirea la rupere si modulul de elasticitate ale produsului finit obtinut conforrrt invenției (țevi de polietilena de înalta densitate si reticulate cu peroxizi si modificata cu elastomeri termo-plastici) cu cele ale produselor similar existente pe piața dar nemodificate cu elastomeri (alungire la rupere 310% - 350% si modul de elasticitate 360 MPa - 450 MPa), rezultatele prezentate in exemplele date arata superioritatea produsului obtinut conform acestei invenții.The main advantage is to obtain a composite material for the extrusion of pipes used for underfloor heating with high mechanical strength by 10% higher than the existing products, the second advantage is the increased flexibility, superior resistance to shock and elongation at break by 50% greater than the existing materials. . High density polyethylene composites modified with styrene-crosslinked and cross-linked block copolymers, obtained according to the invention, have a very good elasticity and malleability when forming. Comparing the elongation at break and the modulus of elasticity of the finished product obtained according to the invention (high density polyethylene pipes and cross-linked with peroxides and modified with thermo-plastic elastomers) with those of similar products existing on the market but not modified with elastomers (elongation at break 310 % - 350% and the modulus of elasticity 360 MPa - 450 MPa), the results presented in the given examples show the superiority of the product obtained according to this invention.
Al treilea avantaj este reprezentat de scăderea energiei de extrudare prin flexibilitatea ridicata a produselor compozite.The third advantage is the reduction of the extrusion energy by the high flexibility of the composite products.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ROA201700070A RO132045A0 (en) | 2017-02-09 | 2017-02-09 | Highly felxible and malleable composite product for cross-linked polyethylene pipes to be used in underfloor heating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ROA201700070A RO132045A0 (en) | 2017-02-09 | 2017-02-09 | Highly felxible and malleable composite product for cross-linked polyethylene pipes to be used in underfloor heating |
Publications (1)
Publication Number | Publication Date |
---|---|
RO132045A0 true RO132045A0 (en) | 2017-07-28 |
Family
ID=59380981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ROA201700070A RO132045A0 (en) | 2017-02-09 | 2017-02-09 | Highly felxible and malleable composite product for cross-linked polyethylene pipes to be used in underfloor heating |
Country Status (1)
Country | Link |
---|---|
RO (1) | RO132045A0 (en) |
-
2017
- 2017-02-09 RO ROA201700070A patent/RO132045A0/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102782036B (en) | Flexible pipe and the method for the formation of this material | |
TWI513717B (en) | Acrylic resin composition and molded body | |
EP3425003B1 (en) | Elastomer composition and medical container stopper formed by molding same | |
CN111333795A (en) | Hydrogenated block copolymer, resin composition, and article obtained using same | |
CN109790339B (en) | Elastomer composition, water-crosslinkable elastomer composition, and method for producing same | |
TW200936682A (en) | Soft elastomeric films | |
EP3162847A1 (en) | Thermoplastic elastomer composition having improved vibration insulation and heat resistance, and molded product formed therefrom | |
KR102493656B1 (en) | Modified polypropylene and polymer blends thereof | |
JP6060700B2 (en) | Method for producing thermoplastic elastomer composition and method for producing composite molded body | |
JP2024500681A (en) | Polyolefin compositions containing recycled polyolefins | |
TW201728733A (en) | Thermoplastic elastomer composition, member, weather seal, and corner member for weather seal | |
JP6839597B2 (en) | Thermoplastic elastomer composition, its use and manufacturing method | |
RO132045A0 (en) | Highly felxible and malleable composite product for cross-linked polyethylene pipes to be used in underfloor heating | |
CN101845169B (en) | Waterproof rolled material and preparation method thereof | |
JP3503352B2 (en) | Thermoplastic elastomer composition | |
EP1338619A1 (en) | Method for manufacturing olefinic thermoplastic elastomer composition | |
JP6686629B2 (en) | Thermoplastic elastomer composition for extrusion molding | |
JP6512054B2 (en) | Method for producing resin composition | |
JP2019127528A (en) | Thermoplastic elastomer composition | |
JP2015086246A (en) | Polyolefin-based elastomer composition and manufacturing method therefor | |
JP5473852B2 (en) | Process for producing olefinic thermoplastic elastomer composition | |
JP5204074B2 (en) | Film comprising elastomer composition for production of melt spread and method for producing the same | |
WO2009078854A1 (en) | Polyolefin pipes | |
JP4192007B2 (en) | Thermoplastic elastomer composition having a high coefficient of friction and anti-slip member comprising the same | |
Xu et al. | Glass fibers reinforced poly (ethylene 2, 6‐naphthalate)/ethylene propylene diene monomer composites: Structure, mechanical, and thermal properties |