RO130927A0 - Four-cycle internal combustion heat engine using water as a fuel, instead of gasoline or gas-oil - Google Patents
Four-cycle internal combustion heat engine using water as a fuel, instead of gasoline or gas-oil Download PDFInfo
- Publication number
- RO130927A0 RO130927A0 ROA201500672A RO201500672A RO130927A0 RO 130927 A0 RO130927 A0 RO 130927A0 RO A201500672 A ROA201500672 A RO A201500672A RO 201500672 A RO201500672 A RO 201500672A RO 130927 A0 RO130927 A0 RO 130927A0
- Authority
- RO
- Romania
- Prior art keywords
- water
- coke
- cylinder
- engine
- mol
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
Motor termic cu ardere interna in patru timpi care folosește apa drept combustibil in locul benzinei sau motorineiFour-stroke internal combustion engine that uses water as fuel instead of gasoline or diesel
Apa este o substanța compusa formata din hidrogen si oxigen. Hidrogenul este unul dintre cei mai buni combustibili (are o putere calorica de 28450 kcal/kg, dar este si cel mai ușor element fiind mai ușor decât aerul de 14 ori). Hidrogenul fiind gaz se lichefiază la o temperatura de -252°C. Este o sursa inepuizabila, dar pentru obținerea lui se consuma o cantitate mare de energie. Obținerea hidrogenului din apa se poate face cu un consum mare de energie cca. 57,8 kcal/mol.Water is a compound substance made up of hydrogen and oxygen. Hydrogen is one of the best fuels (it has a calorific value of 28450 kcal / kg, but it is also the lightest element being 14 times lighter than air). Hydrogen being a gas liquefies at a temperature of -252 ° C. It is an inexhaustible source, but a large amount of energy is consumed to obtain it. Obtaining hydrogen from water can be done with a high energy consumption of approx. 57.8 kcal / mol.
H2O(g)+ ΔΗ = H2(g)+l/2 02 (g)H2O (g ) + ΔΗ = H2 (g) + l / 2 02 ( g )
ΔΗ =57,8 kcal/mol (entalpie-energia de descompunere a apei)ΔΗ = 57.8 kcal / mol (enthalpy-water decomposition energy)
Aceasta energie se micșorează daca se folosesc diferite substanțe care au un rol de catalizator. O astfel de substanța este cocsul, care este un produs ce se obtune prin distilarea uscata a unor categorii de huila. Cocsul este mult mai puțin recativ decât mangalul si se poate folosi la obținerea hidrogenului prin asa zisul procedeu de gaz de apa”, unde pe langa hidrogen se obține oxid de carbon CO si dioxid de carbon CO2.This energy is reduced if different substances are used which act as a catalyst. One such substance is coke, which is a product obtained by the dry distillation of certain categories of coal. Coke is much less reactive than charcoal and can be used to obtain hydrogen through the so-called water gas process ", where in addition to hydrogen, carbon monoxide CO and carbon dioxide CO2 are obtained.
H2O+C=CO+H2H 2 O + C = CO + H2
2H2O+C=CO2+2H2CO2 + 2H2O = 2H2 + C
Prin conversia in gaz de apa se obțin si alte gaze.By converting it to water gas, other gases are obtained.
CO+H2O<=>CO2+H2CO + H2O CO2 + H2 <=>
Aplicând legea maselor:Applying the law of the masses:
K _ nC02xnH2 nCOxnH2O nco=nHzo (notat m) nco2=nH2 (notat cu n2) nco=nH2o (numărul de moli CO si H2O) nco2=nH2 (numărul de moli CO2 si H2)K _ n C02 xn H2 n CO xn H 2O nco = n H zo (denoted m) nco2 = n H 2 (denoted by n 2 ) nco = nH2o (number of moles CO and H2O) nco2 = n H 2 (number of moles of CO2 and H 2 )
A- 2 Ο 1 5 - - 0 0 6 7 2 ι (-ga- 2015A- 2 Ο 1 5 - - 0 0 6 7 2 ι (-ga- 2015
Ecuația legii maselor devine:The equation of mass law becomes:
|Z_ (nz)| Z_ ( n z)
La temperatura de 686 °C K=l,9 reprzinta raport de proportionalitate n2 ,— — 1,38At a temperature of 686 ° CK = 1,9 it represents the proportionality ratio n 2 , - - 1,38
HiHi
La echilibru cantitatiile de CO2, H2, CO si H2 O sunt prezente in proporții molare de 1,38; 1,38; 1,00;At equilibrium the amounts of CO2, H2, CO and H2 O are present in molar proportions of 1.38; 1.38; 1.00;
1,00.1.00.
Proporțiile molare de CO2 si H2 sunt:The molar proportions of CO 2 and H2 are:
1,38 (2 x 1,38) + (2 x 1,00) X 100 “ 29% 1.38 (2 x 1.38) + (2 x 1.00) X 100 “ 29%
Procentele molare de H2O si CO sunt 21%. Pentru obținerea de H2 in proporție cat mai mare este avantajos sa se lucreze la temperaturi cat mai joase dar nu mai mici de 500°C.The molar percentages of H2O and CO are 21%. In order to obtain H2 in the highest possible proportion, it is advantageous to work at temperatures as low as possible but not lower than 500 ° C.
t=686°C 830°C 936°C 1500°Ct = 686 ° C 830 ° C 936 ° C 1500 ° C
K=l,9 1 0,62 0,25K = 1.9 1 0.62 0.25
La temperaturi mai joase cresc concentrațiile de H2 si CO2. Sufland abur peste stratul de cărbune (cocs) incandescent are loc reacția:At lower temperatures, the concentrations of H2 and CO 2 increase . Blowing steam over the layer of incandescent coal (coke) takes place the reaction:
C+H2O-> CO + H2 ΔΗ = 31,2 kcal/molC + H2O-> CO + H2 ΔΗ = 31.2 kcal / mol
Reacția are loc in acest sens la temperaturi peste 1200°C, sub 1000 °C are loc reacția:The reaction takes place in this sense at temperatures above 1200 ° C, below 1000 ° C the reaction takes place:
C+2H2O-> CO2 + 2H2 ΔΗ = 21,6 kcal/molC + 2H 2 O-> CO 2 + 2H 2 ΔΗ = 21.6 kcal / mol
Concentrația gazului de apa este 40%-44% volume de CO.The concentration of water gas is 40% -44% volumes of CO.
48%-50% volume de H2.48% -50% volume of H 2 .
(C.D.Nenitescu, Chimie Generala, 17-4.6, pag.375)(C.D.Nenitescu, General Chemistry, 17-4.6, p.375)
Din descompunerea apei se obține hidrogenul care este un foarte bun combustibil (cu putere calorica de 28450 Kcal./kg.)precum si oxigenul care in cazul de fata poate fi un bun oxidant pentru hidrogen. Pentru aceasta trebuie sa facem ca reacția dintre carbonul din cocs si oxigenul rezultat din descompunerea apei sa nu aiba loc, aceasta presupunând anumite condiții care sunt:From the decomposition of water is obtained hydrogen which is a very good fuel (with a calorific value of 28450 Kcal./kg.) as well as oxygen which in this case can be a good oxidant for hydrogen. For this we must make the reaction between the carbon in the coke and the oxygen resulting from the decomposition of water not take place, this implying certain conditions which are:
^-2015-- 006721 β -00- 2015^ -2015-- 006721 β -00- 2015
- existenta unui catalizator care este cocsul- the existence of a catalyst which is coke
- existenta unei scântei electrice ce face ca oxigenul obtinut sa nu se combine cu carbonul din cocs ci printr-un proces de detonare sa se combine cu hidrogenul.- the existence of an electric spark that makes the oxygen obtained not to combine with the carbon in the coke but through a detonation process to combine with hydrogen.
Aceste condiții se pot obține in incinta unui motor termic cu ardere interna in patru timpi, ele depinzând de existenta unei camere închise in care sa aiba loc reacția de descompunere a apei in hidrogen si oxigen intr-un timp foarte scurt. Tot in acest spațiu trebuie sa existe si un dispozitiv care sa producă scânteie electrica la timpul potrivit, adica imediat după ce s-a produs injecția apei in cilindru. Pentru a ușura descompunerea apei in hidrogen si oxigen, aceasta se indroduce in cilindru cu ajutorul unui injector care face ca apa introdusa sa fie aproape sub forma de vapori, lucru ce usureaza procesul de descompunere a apei prin faptul ca energia de descompunere scade de la 68,3Kcal/mol la 57,8Kcal/mol. Astfel intr-un kilogram de apa suni 0,11 kg. de hidrogen si 0,89kgoxigen care este oxidantul necesar pentru arderea hidrogenului. Cocsul folosit derept catalizator este macinat si adus la granulația de 40 de microni, pentru a putea fi aspirat in cilindru si după ce participa la descompunerea apei sa poata fi evacuat din cilindru fara a produce stricăciuni.These conditions can be obtained inside a four-stroke internal combustion engine, depending on the existence of a closed chamber in which the reaction of decomposition of water into hydrogen and oxygen in a very short time. Also in this space there must be a device that produces an electric spark at the right time, ie immediately after the injection of water into the cylinder. To facilitate the decomposition of water into hydrogen and oxygen, it is introduced into the cylinder with the help of an injector that makes the introduced water almost vaporized, which facilitates the process of water decomposition by the fact that the decomposition energy decreases from 68 , 3Kcal / mol to 57.8Kcal / mol. Thus in a kilogram of water you sound 0.11 kg. of hydrogen and 0.89 kg of oxygen which is the oxidant needed to burn hydrogen. The coke used as a catalyst is ground and brought to a granulation of 40 microns, so that it can be sucked into the cylinder and after participating in the decomposition of water can be discharged from the cylinder without causing damage.
Condiția de temperatura se poate obține intr-un motor termic cu ardere interna cu piston. Creșterea temperaturii in cilindru se face pana când aceasta atinge valoarea de 1300°C, temperatura suficienta ca reacția de descompunere a apei sa inceapa in sensul:The temperature condition can be obtained in a piston internal combustion engine. The temperature in the cylinder is increased until it reaches the value of 1300 ° C, sufficient temperature for the water decomposition reaction to start in the direction:
C+H2O^ CO + H2 ΔΗ = 31,2 kcal/molC + H 2 O ^ CO + H 2 ΔΗ = 31.2 kcal / mol
Pe moment ce se sufla apa de către injector, temperatura cocsului scade si de la 1000°C reacția ia următoarea formaAs the water is blown by the injector, the coke temperature drops and from 1000 ° C the reaction takes the following form.
C+H2O->CO2+2H2 ΔΗ = 21,6 kcal/mol si continua pana când temperatura atinge aprox. 570°C. Aceasta reacție are loc cu degajarea de oxigen necesara funcționarii motorului.C + H 2 O-> CO 2 + 2H 2 ΔΗ = 21.6 kcal / mol and continue until the temperature reaches approx. 570 ° C. This reaction takes place with the release of oxygen necessary for the operation of the engine.
Motor: D2156HMN8Engine: D2156HMN8
Nr. cilindri: 6Nr. cylinders: 6
Alezajul cilindrilor (mm): 121Cylinder bore (mm): 121
Cursa pistonului (mm): 130Piston stroke (mm): 130
Cilindrea (cm3): 10350Cylinder (cm 3 ): 10350
Raport de compresie: 17 <*-2015-- 0 0 6 7 2 1 8 -08- 2015Compression ratio: 17 <* - 2015-- 0 0 6 7 2 1 8 -08- 2015
Consum specific de motorina (g/CPh): 165Specific diesel consumption (g / CPh): 165
Ci(cilindrea unui cilindru-cm3): 1725 n=turatia (rot/min)=2200 nc=numar de cicli=1100Ci (cylinder capacity of a cylinder-cm 3 ): 1725 n = speed (rpm) = 2200 n c = number of cycles = 1100
1100 x60=66000 cicli/h de piston1100 x60 = 66000 piston cycles / h
66000 x6=396000 nr. cicli total66000 x6 = 396000 nr. total cycles
765x215=35475 g/h765x215 = 35475 g / h
35475/396000=0,08958g consum/ciclu piston35475/396000 = 0.08958g piston consumption / cycle
0, 08958 g motorina/ciclu piston0, 08958 g diesel / piston cycle
18g H20.................................2gH2 Cantitatea de hidrogen existenta intr-un gram de apa lg H?O.....................................XgH?18g H20 ................................. 2gH2 The amount of hydrogen in a gram of water lg H ? A ..................................... XgH?
X=0,llgH2 puterea calorifica in kcal/kg si kj/kgX = 0, llgH 2 calorific value in kcal / kg and kj / kg
H C=28947Kca!/kg=120000 kj/kgH C = 28947 Kca / kg = 120000 kj / kg
Motorina C=10167 Kcal/kg=42500 kj/kgDiesel C = 10167 Kcal / kg = 42500 kj / kg
Benzina C= 10465 Kcal/kg =43744 kj/kgGasoline C = 10465 Kcal / kg = 43744 kj / kg
0,08958g motorina........................................42500k]/kg Cantitatea de hidrogen necesara pentru un ciclu-piston0.08958g diesel ........................................... 42500k] / kg Quantity of hydrogen required for a piston cycle
X..............................................................................121000kl/kgX ................................................. ............................. 121000kl / kg
X=0,03146gH2 X = 0.03146gH 2
2g h2 18g H2O Cantitatea de apa necesara unui ciclu-piston2g h 2 18g H2O The amount of water required for a piston cycle
0.03146gH?_...............................XgH;O0.03146gH ? _............................... XgH; A
X=0,28314 g H2O «-2015-- 0 0 6 7 2 1 ί -09- 2015X = 0.28314 g H 2 O «-2015-- 0 0 6 7 2 1 ί -09- 2015
0,28314g Η2Ο pentru 0,03146g H2 0.28314g Η 2 Ο for 0.03146g H 2
2g H2.................................................lmol H2 Echivalenta intre 0,1 lg H2 si X mol H2 care ii corepund2g H 2 ............................................... ..lmol H 2 Equivalence between 0.1 lg H 2 and X mol H 2 corresponding to it
0.11 gH2..........................................X mol H?0.11 gH 2 .......................................... X mol H?
X=O,O55 mol H2 X = O, O55 mol H 2
Λ- 2 0 1 5 -- 0 0 6¾Λ- 2 0 1 5 - 0 0 6¾
8 -09- 20158 -09- 2015
2gH2.......................................................ISgFhO Cantitatea de apa necesara pentru un ciclu piston2gH2 ................................................. ...... ISgFhO The amount of water required for a piston cycle
0.03146gH?...........................................XeHzO0.03146gH? ........................................... XeHzO
X=0,28314gH2OX = 0.28314gH 2 O
Deci motorul D2156HMN8 consuma 0,08958g motorina/ciclu piston, echivalent cu 0,03146gH2 ce se pot obține din 0,28314 grame de apa. Cocsul existent in cilindru este sub forma de pulbere nu se compactează, cărbunii pamantosi si lignitii amorfi pot fi brichetați fara liant insa cu presiuni mari (cca.1200-1600 kgf/cm2) si după o uscare prealabila la umiditatea hidroscopica.”So the D2156HMN8 engine consumes 0.08958g diesel / piston cycle, equivalent to 0.03146gH2 that can be obtained from 0.28314 grams of water. The existing coke in the cylinder is in the form of a powder that does not compact, the earthy coals and amorphous lignites can be briquetted without binder but with high pressures (approx. 1200-1600 kgf / cm 2 ) and after a preliminary drying at the hydroscopic humidity. ”
Cărbunii bruni superiori, huilele, antracitul si lignitii lemnosi nu pot fi brichetați decât cu ados de liant, in acest caz brichetarea se poate executa la presiuni mai scăzute (100-300 kgf/cm2).The upper brown coals, coal, anthracite and woody lignites can only be briquetted with the addition of binder, in this case the briquetting can be performed at lower pressures (100-300 kgf / cm 2 ).
Nica Toma, Brichetarea cărbunilor si a altor materiale.Nica Toma, Briquetting of coal and other materials.
Pulberea de cocs poate fi presata si isi modifica volumul conform ISO 3923-1 si ISO 3923-2 care indica densitatea aparenta.The coke powder can be pressed and change its volume according to ISO 3923-1 and ISO 3923-2 which indicate the apparent density.
ISO 3953 - indica densitatea de scuturareISO 3953 - indicates shaking density
ISO 4490 - indica capacitatea de curgereISO 4490 - indicates flow capacity
ISO 3927 - indica presabilitateaISO 3927 - indicates presability
Cu acest motor se poate obține din apa hidrogenul care in prezenta scânteii electrice arde violent si duce la funcționarea lui.With this engine, hydrogen can be obtained from water, which in the presence of electric sparks burns violently and leads to its operation.
^2015-- 006721 8 -09- 2015^ 2015-- 006721 8 -09- 2015
Acest motor face transformarea energiei chimice a apei in energie termica care după aceea se transforma in energie mecanica. Motorul este alcătuit din următoarele parti componente (in general) prezentate in figurile 1 si 2.This engine transforms the chemical energy of water into thermal energy which is then transformed into mechanical energy. The engine consists of the following components (generally) shown in Figures 1 and 2.
Figura 1 (schema generala a motorului):Figure 1 (general diagram of the engine):
- roti ale mecanismului de distribuție (1)- wheels of the distribution mechanism (1)
- mecanismul biela-manivela (2)- crank mechanism (2)
- pistonul (4)- piston (4)
- cilindrul (3)- cylinder (3)
- chiuloasa (8)- cylinder head (8)
- supapa de evacuare(7)- exhaust valve (7)
- galeria de evacuare (6)- exhaust manifold (6)
- injectorul (9)- injector (9)
- supapa de admisie (10)- inlet valve (10)
- galeria de admisie (11)- intake manifold (11)
- recuperatorul de cocs (5)- coke recuperator (5)
- rezervorul de cocs (12)- coke tank (12)
- pompa de injecție (14)- injection pump (14)
- pompa de alimentare cu roata dintata (13)- gear pump (13)
- bujia incandescenta (16)- glow plug (16)
Figura 2 (chiulasa):Figure 2 (cylinder head):
- bujii (2 si 5)- spark plugs (2 and 5)
- injector (3)- injector (3)
- supapa de evacuare (4)- exhaust valve (4)
- supapa de admisie (6)- inlet valve (6)
- chiuloasa (1)- cylinder head (1)
4-2015-- 0 0 6 7 2 1 8 -08- 20154-2015-- 0 0 6 7 2 1 8 -08- 2015
Pistonul 4 se mișca alternativ intre punctul mort interior PM1 si punctul mort exterior PME in cilindrul 3. Pistonul este legat de ansamblul biela-manivela prin intermediul caruia se face transformarea mișcării liniar alternative in mișcare de rotatie. Partea din fata a cilindrului este închisa de către chiuloasa in care sunt montate injectorul 9 care are rol de a injecta apa in cilindru si bujiile 2 si 5 care au rol de aproduce scânteia electrica. Tot pe chiuloasa sunt montate cele doua supape de evacuare 7 si de admisie 10. Chiuloasa mai are doua degajări ce formează galeria de admisie 11 si galeria de evacuare ¢. Pe partea cu supapa de evacuare se afla galeria de evacuare 6 care face legătură cu recuperatorul de particule 5. Acesta poate fi un recuperator de tip ciclon care are rol de a recupera integral pulberea de cocs care a avut rol de catalizator si care este evacuata de către motor după ce a ajutat la funcționarea lui.The piston 4 moves alternately between the inner dead center PM1 and the outer dead center PME in the cylinder 3. The piston is connected to the connecting rod-crank assembly by means of which the alternative linear motion is transformed into rotational motion. The front of the cylinder is closed by the cylinder head in which are mounted the injector 9 which has the role of injecting water into the cylinder and the spark plugs 2 and 5 which have the role of producing the electric spark. Also on the cylinder head are mounted the two exhaust valves 7 and the inlet 10. The cylinder head has two more recesses that form the intake manifold 11 and the exhaust manifold ¢. On the side with the exhaust valve is the exhaust gallery 6 which connects to the particle recuperator 5. This may be a cyclone-type recuperator which has the role of fully recovering the coke powder which acted as a catalyst and which is discharged by to the engine after helping to operate it.
Invenția mea isi propune eliminarea CO si CO2 care sunt doi poluanti foarte puternici pentru mediul înconjurător. Eliminarea celor doi compuși (CO si CO2) se poate obține prin folosirea unei scântei electrice si folosindu-ne de proprietatea cocsului care este mult mai puțin reactiv decât cărbunele de lemn.My invention aims to eliminate CO and CO2 which are two very strong pollutants for the environment. The elimination of the two compounds (CO and CO2) can be obtained by using an electric spark and using the property of coke which is much less reactive than charcoal.
In urma celor afirmate reacția chimica ia următoarea forma:Following the above, the chemical reaction takes the following form:
C+2H2O=C+2H+O2C + 2H2 O + O2 = C + 2H
Aceasta reacție poate avea loc in cilindrul unui motor termic cu patru timpi si este valabila pentru un foarte scurt timp. Hidrogenul si oxigenul amestecate formează asa zisul gaz detonant. Apa este introdusa in cilindru prin injecție când cocsul a atins o temperatura de 1300 eC.This reaction can take place in the cylinder of a four-stroke heat engine and is valid for a very short time. Mixed hydrogen and oxygen form the so-called detonating gas. Water is introduced into the cylinder by injection when the coke has reached a temperature of 1300 e C.
In momentul imediat următor terminării injecției de apa in cilindru se produce o scânteie electrica care va aprinde gazul detonant care va arde violent cu degajare de energie. Cantitatea de energie este mai mare decât cea folsita la descompunerea apei si reacția ia următoarea forma:Immediately after the end of the water injection in the cylinder, an electric spark occurs which will ignite the detonating gas which will burn violently with the release of energy. The amount of energy is higher than that used to decompose the water and the reaction takes the following form:
2H2+O2+COCS=2H2O+COCS+ 2H2 + O2 = 2H2 O + COX COX
Din cele descrise mai sus rezulta ca avem de a face cu un motor care consuma un combustibil foarte ieftin si nu este poluant, eliminând in aer numai vapori de apa. Cocsul folosit drept catalizator in desfasurarea reacției de descompunere a apei este recuperat conform invenției mele de un recuperator de tip ciclon.From the above described it results that we are dealing with an engine that consumes a very cheap fuel and is not polluting, eliminating only water vapor in the air. The coke used as a catalyst in the development of the water decomposition reaction is recovered according to my invention by a cyclone type recuperator.
Motorul termic cu ardere interna in patru timpi are următoarele parti componente ce sunt aratate in figura 3. Pinion distribuție 1 ce se afla pe arborele cotit al motorului si de la care pleaca mișcarea care se transmite la celelalte piese in mișcare prin intermediul lanțurilor de transmisie 9, 43 si 47. Arborele cotit 2 este in legătură cu brațul maneton 3, axul maneton 4, biela 5, boitul piston 6, or 2 Ο 1 5 - - 0 0 6 7 2 1 8 -08- 2015The four-stroke internal combustion engine has the following component parts which are shown in figure 3. Distribution pinion 1 which is located on the crankshaft of the engine and from which starts the movement which is transmitted to the other moving parts by means of transmission chains 9 , 43 and 47. The crankshaft 2 is connected to the crankshaft arm 3, the crankshaft 4, the connecting rod 5, the piston pin 6, or 2 Ο 1 5 - - 0 0 6 7 2 1 8 -08- 2015
Jî' pistonul 14. Toate acestea formează ansamblul biela- manivela care are rolul de a transforma mișcarea alternativa de du-te vino in mișcare de rotatie. La aceasta transformare mai participa segmentul 8 care are rol de ungere a suprafețelor in mișcare si segmenții 12 de etanșare care au rolului de a nu permite trecerea hidrogenului si oxigenului din cilindrul 39 in baia de ulei. Segmenții de etanșare sunt in număr de patru. Din sistemul de alimentare al motorului fac parte supapa de alimentare 25 cu bucșa de etanșare 26 si scaunul supapei 24 si tija impingatoare cu tachietii 38, culbutorii 28 si 21, axele culbutorilor 29 si 22 si galeria de admisie a supapei de admisie 37.Jî 'piston 14. All this forms the connecting rod-crank assembly which has the role of transforming the reciprocating motion into a rotating motion. In this transformation also participates the segment 8 which has the role of lubricating the moving surfaces and the sealing segments 12 which have the role of not allowing the passage of hydrogen and oxygen from the cylinder 39 in the oil bath. There are four sealing segments. The engine supply system includes the supply valve 25 with the sealing sleeve 26 and the valve seat 24 and the push rod with the lugs 38, the rockers 28 and 21, the axles of the rockers 29 and 22 and the intake manifold of the intake valve 37.
Pentru acționarea supapei de admisie este arborele de distribuție 41 cu cama 40 care este acționat de lanțul 43 si care tot prin lanț actioneaza roata 10. La evacuarea cocsului si a vaporilor de apa se folosește supapa de evacuare 17 care împreuna cu scaunul 16, bucșa de etanșare 19, tija impingatoare 13, culbutorul 21, axul culbutor 22, arcul de revenire a supapei 20, galeria de evacuare 18 formează sistemul de evacuare ce este in legătură cu recuperatorul de tip ciclon ce asigura recuperarea cocsului in rezervor. In partea din fata, adica in chiuloasa, se gaseste montat un injector 23 cu care se injectează sub forma de particule cat mai fine apa care constituie combustibilul pentru acest motor.For the actuation of the intake valve is the distribution shaft 41 with the cam 40 which is driven by the chain 43 and which also drives the wheel 10. Through the evacuation of coke and water vapor the exhaust valve 17 is used which together with the seat 16, the bushing seal 19, pusher rod 13, rocker arm 21, rocker arm shaft 22, valve return spring 20, exhaust manifold 18 form the exhaust system which is connected to the cyclone type recuperator which ensures the recovery of coke in the tank. In the front part, ie in the cylinder head, there is an injector 23 mounted with which the water that constitutes the fuel for this engine is injected as fine particles as possible.
Injectorul se gaseste montat in centrul cercului ce are circumferința egala cu a cilindrului in interiorul caruia se mișca pistonul 14. Tot in chiuloasa dar nu se vad, sunt montate cele doua bujii care se găsesc pe un diametru perpendicular pe cel pe care se afla cele doua supape, de admisie si de evacuare. Pe axul de distribuție ce actioneaza supapa de evacuare se afla montata pompa de injecție ce alimentează injectorul 23. Actionata de către axul de distribuitie al supapei de admisie se afla montata pompa de alimentare de tip cu roata dintata care aduce cocsul in galeria de admisie a supapei de admisie. Din sistemul de distribuție mai fac parte roata intermediara 44 ce asigura raportul de transmisie ½ (intre pinionul 1 si roata intermediara 44). Tot pe axul 46 al rotii intermediare se gaseste roata 45 care prin intermediul lanțului 43 transmite mișcarea la roata 42. Mișcarea de rotatie de la pinionul 1 la roata intermediara 44 se face cu lanțul 47. In timpul funcționarii, pistonul se mișca intre PMI (punctul mort interior), PME (punctul mort exterior). Motorul propus de mine este un hibrid intre un motor cu aprindere prin scânteie MAS si un motor cu aprindere prin compresie MAC.The injector is mounted in the center of the circle that has the same circumference as the cylinder inside which the piston moves 14. Also in the cylinder head but not visible, are mounted the two spark plugs that are on a diameter perpendicular to the two valves, intake and exhaust. On the distribution shaft that actuates the exhaust valve is mounted the injection pump that feeds the injector 23. Actuated by the distribution shaft of the intake valve is mounted the feed pump type with gear that brings the coke in the valve intake gallery of admission. The distribution system also includes the intermediate wheel 44 which ensures the transmission ratio ½ (between pinion 1 and the intermediate wheel 44). Also on the axis 46 of the intermediate wheel is the wheel 45 which through the chain 43 transmits the movement to the wheel 42. The rotational movement from pinion 1 to the intermediate wheel 44 is done with the chain 47. During operation, the piston moves between PMI (point dead center), PME (outer dead center). The engine I proposed is a hybrid between a MAS spark ignition engine and a MAC compression ignition engine.
/(-2015-- 00672t # -Μ- ΜΗ/ (- 2015-- 00672t # -Μ- ΜΗ
Funcționareworking
Motorul termic cu ardere interna in patru timpi ce folosește apa drept combustibil funcționează după următoarea diagrama care este o diagrama teoretica.The four-stroke internal combustion engine that uses water as fuel works according to the following diagram which is a theoretical diagram.
Timpul 1Time 1
Admisia (porțiunea AB)Admission (portion AB)
Timpul 2Time 2
Compresia, injecția, scânteia, explozia (porțiunea BC1)Compression, injection, spark, explosion (part BC1)
Timpul 3Time 3
Detenta (porțiunea C1D)Expansion (portion C1D)
Timpul 4Time 4
Evacuarea (porțiunea DA)Evacuation (portion DA)
Timpul 1 -Admisia (porțiunea AB)Time 1 -Admission (portion AB)
Acest timp se desfasoara in intervalul in care pistonul se afla poziționat intre punctul mort interior PM1 si punctul mort exterior PME, timp in care supapa de admisie este deschisa. In galeria supapei de admisie se afla cocsul adus de către pompa volumica de alimentare. Pompa este cu roata dintata care are dantura divizata după ciclul de funcționare a motorului (a se vedea desenul prezentat in figura 5).This time takes place in the interval in which the piston is positioned between the inner dead center PM1 and the outer dead center PME, during which time the intake valve is open. In the gallery of the intake valve is the coke brought by the volumetric supply pump. The pump is with a gear that has split teeth after the engine operating cycle (see drawing shown in figure 5).
- pe durata timpului 1 roata este lisa cu diametrul exterior maxim ca sa nu poata aduce cocs in galeria de admisie- during time 1 the wheel is smooth with the maximum outer diameter so that it cannot bring coke into the intake gallery
- pe durata timpului 2 roata are unu sau doi dinți care aduc cocsul in galeria de admisie- during time 2 the wheel has one or two teeth that bring the coke into the intake manifold
- pe durata timpilor 3 si 4 roata este lisa; in acest interval de timp cocsul existent in galeria de admisie este încălzit cu ajutorul bujiei incandescente existente in galeria de admisie. Odata terminat timpul 4, cocsul existent in galeria de admisie si încălzit este admis in cilindru.- during times 3 and 4 the wheel is smooth; during this time the coke existing in the intake manifold is heated by means of the incandescent spark plug existing in the intake manifold. Once time 4 is over, the existing coke in the intake manifold and heated is admitted into the cylinder.
In momentul când pistonul a ajuns in PME timpul 1 se sfarseste si incepe timpul 2.When the piston has reached the PME time 1 ends and time 2 begins.
Timpul 2-Compresia, injecția, scânteia, explozia (porțiunea BC1) ^-2015-- 006721 I -Μ- 2015Time 2-Compression, injection, spark, explosion (portion BC1) ^ -2015-- 006721 I -Μ- 2015
Acest timp începe când pistonul se afla la PME si începe sa se deplaseze spre PML Din acest moment începe compresia cocsului din cilindru care este sub forma de pulbere. Prin compresia cocsului creste presiunea in cilindrul 39. Aceasta se intampla datorita faptului ca procesul de compresie are loc intr-o incinta închisa (cele doua supape de admisie si evacuare 25,17 fiind închise)This time begins when the piston is at PME and begins to move towards PML From this moment begins the compression of the coke from the cylinder which is in the form of powder. By compressing the coke, the pressure in cylinder 39 increases. This is due to the fact that the compression process takes place in a closed enclosure (the two inlet and outlet valves 25,17 being closed)
Ca urmare a creșterii presinii in cilindru creste si temperatura particulelor de cocs, temperatura creste pana in jurul valorii de 1300 eC, moment in care in cilindru se injectează apa cu ajutorul injectorului 23. Apa injectată in cilindru sub forma de particule foarte fine se transforma in vapori datorita temperaturii înalte din cilindru.Vaporii formați se ciocnesc cu particulele de cocs si are loc următoarea reacție chimica:As the pressure in the cylinder increases, the temperature of the coke particles also increases, the temperature rises to around 1300 e C, at which point the water is injected into the cylinder using the injector 23. The water injected into the cylinder in the form of very fine particles is transformed. in vapors due to the high temperature in the cylinder. The vapors formed collide with the coke particles and the following chemical reaction takes place:
2H2O+COCS=2H2+O2+COCS+ 2H2O = 2H2 + O2 + COX COX
Aceasta reacție are loc cu un consum de energie de numai 21,6 kcal/mol. Reacția are loc in puunctul S de pe diagrama de funcționare si este valabila numai un timp foarte, foarte scurt. Oxigenul format nu are timp sa se combine cu cocsul care este mult mai puțin reactiv decât cărbunele de lemn.This reaction takes place with an energy consumption of only 21.6 kcal / mol. The reaction takes place in point S on the operation diagram and is valid only for a very, very short time. The oxygen formed does not have time to combine with coke which is much less reactive than charcoal.
Pentru a împiedica formarea CO si CO2 in punctul S al diagramei de funcționare se produce de către cele doua bujii o scânteie electrica care aprinde amestecul de hidrogen si oxigen care explodează si degaja o cantitate mare de energie. Cantitatea de energie este egala cu 57,8 kcal/mol, aceasta fiind egala cu energia de formare a apei.In order to prevent the formation of CO and CO2 in the S point of the operating diagram, an electric spark is produced by the two spark plugs, which ignites the mixture of hydrogen and oxygen, which explodes and releases a large amount of energy. The amount of energy is equal to 57.8 kcal / mol, this being equal to the energy of water formation.
2H2+O2=2H2O+57,8 kcal/mol2H2 + O2 = 2H2O + 57.8 kcal / mol
Punctul S este foarte aproape de punctul E si se poate regla din ruptorul distribuitor ce alimentează cele doua bujii si care este acționat de arborele de distribuție a supapei de evacuare 11. Odata cu producerea scânteii are loc explozia amestecului de hidrogen si oxigen si pistonul, datorita inerției pe care o are, parcurge spațiul SCI ajungând in PM1.Point S is very close to point E and can be adjusted from the distributor breaker that supplies the two spark plugs and which is driven by the distribution valve of the exhaust valve 11. Once the spark occurs, the mixture of hydrogen and oxygen and the piston explode. of the inertia it has, it traverses the SCI space reaching PM1.
Din acest moment începe timpul 3.From this moment time 3 begins.
Timpul 3- Detenta (porțiunea C1D)Time 3- Relaxation (portion C1D)
Acest timp are loc in intervalul cat pistonul este situat intre PMI si PME pe diagrama de functinare intre CI si D. In acest timp pistonul este împins de către vaporii de apa si particulele de cocs care se afla la presiune si temperatura maxima. In PME vaporii de apa si particulele de cocs sunt la presinue si temperatura minime. Prin aceasta mișcare energia termica a vaporilor de apa si particulelor de cocs este transformata in energie mecanica, aceasta facandu-se prin intermediul mecanismului biela-manivela care transforma mișcarea liniara de du-te vino a pistonului in mișcare ¢(- 2 0 1 5 -- 0 0 6 7 2 ι a -oa- 2οβThis time occurs in the interval when the piston is located between PMI and PME on the operating diagram between CI and D. During this time the piston is pushed by water vapor and coke particles which are at maximum pressure and temperature. In SMEs, water vapor and coke particles are at minimum temperatures and temperatures. Through this movement the thermal energy of water vapor and coke particles is transformed into mechanical energy, this being done through the connecting rod-crank mechanism that transforms the linear reciprocating motion of the piston into motion ¢ (- 2 0 1 5 - - 0 0 6 7 2 ι a -oa- 2οβ
de rotatie. Datorita faptului ca asupra pistonului se exercita o acțiune a vaporilor de apa si particulelor de cocs, timpul 3 este numit si timp motor. Asupra pistonului actioneaza o energie egala cu diferența dintre cele doua reacții:rotation. Due to the fact that the piston exerts an action of water vapor and coke particles, time 3 is also called engine time. An energy equal to the difference between the two reactions acts on the piston:
2H2O+COCS+A H= 2H2+O2 Δ H =21,6 kcal/mol2H2O + COCS + A H = 2H2 + O2 Δ H = 21.6 kcal / mol
2Η2+θ2=2Η2θ+ΔΗ Δ H = -57,8 kcal/mol2Η2 + θ2 = 2Η2θ + Δ Δ H = -57.8 kcal / mol
Δ H = - 36,2 kcal/molΔ H = - 36.2 kcal / mol
Diferența dintre cele doua reacții este apreciabila si poate fi transformata in energie mecanica ce poate fi folosita in diferite scopuri.Odata pistonul ajuns in PME timpul 3 ia sfarsitsi începe timpul 4.The difference between the two reactions is appreciable and can be transformed into mechanical energy that can be used for different purposes. Once the piston reaches the PME time 3 and time 4 begins.
Timpul 4 - Evacuarea (porțiunea DA)Time 4 - Evacuation (portion DA)
Acesta se desfasoara in intervalul cat pistonul se deplasează in PME si PMI. In acest interval de timp supapa de evacuare se deschide si începe evacuarea cocsului si vaporilor de apa formați in cilindru in timpul 2. Evacuarea se face progresiv prin intermediul supapei de evacuare a cărei deschidere este comandata de o cama. Evacuarea se face pana când pistonul ajunge la PMI, punct in care supapa de evacuare se închide si ciclul motor se reia din nou. Vaporii de apa si particulele de cocs vor trece prin recuperatorul de particule de tip ciclon care are rolul de a recupera cocsul folosit in procesul de descompunere al apei desfasurat in cilindru. Din cele prezentate mai sus rezulta ca cocsul folosit de către motor nu se consuma, el fiind folosit numai in calitate de catalizator care face ca reacția de descompunere a apei H2O=H2+l/2 02 sa aiba loc cu un consum de energie mai mic decât energia obtinuta la arderea violenta a hidrogenului in oxigen. Din cele prezentate rezulta ca vorbim despre un motor nepoluant care folosește un combustibil foarte ieftin care se gaseste in cantitati mari pe suprafața pământului. Cocsul fiind recuperat se poate folosi de un număr infinit de ori, aceasta depinzând de performantele recuperatorului.It takes place in the interval as the piston moves in PME and PMI. During this time, the drain valve opens and begins the evacuation of coke and water vapor formed in the cylinder during 2. The evacuation is done progressively through the drain valve whose opening is controlled by a cam. Exhaust is done until the piston reaches PMI, at which point the exhaust valve closes and the engine cycle resumes. Water vapor and coke particles will pass through the cyclone-type particle recuperator which has the role of recovering the coke used in the water decomposition process carried out in the cylinder. From the above it results that the coke used by the engine is not consumed, it being used only as a catalyst that makes the water decomposition reaction H2O = H2 + l / 2 02 to take place with a lower energy consumption. than the energy obtained by the violent combustion of hydrogen into oxygen. From the presented results that we are talking about a clean engine that uses a very cheap fuel that is found in large quantities on the surface of the earth. The coke being recovered can be used an infinite number of times, depending on the performance of the recuperator.
q- 2 o 1 5 - - 0 0 6 7 2 i î -n-asq- 2 o 1 5 - - 0 0 6 7 2 i î -n-as
AnexaAppendix
Alegând un raport de compresie cuprins intre 20-22 cocsul existent in camera de admisie (sub forma de pulbere) este încălzit de către bujia incandescenta (poziția 16, figura 1)pana ta temperatura oteSOO 2C, după care pe durata timpului 1 este admis in cilindru. Pe durata timpului 2, cocsul este comprimat de cca. 20 de ori astfel incat temperatura cocsului va atinge valoare de aprox. 1300 2C in momentul in care pistonul se afla in punctul E al diagramei de funcționare. Acest proces de încălzire pe timpul comprimării puberii de cocs este un proces adiabatic ce face ca temperatura T2 sa poata ajunge la 1300 2C (echivalent cu 1573 K). Încălzirea se produce conform formulei:By choosing a compression ratio between 20-22 the existing coke in the intake chamber (in powder form) is heated by the glow plug (position 16, figure 1) to your temperature oteSOO 2 C, after which time 1 is allowed in the cylinder. During time 2, the coke is compressed by approx. 20 times so that the coke temperature will reach a value of approx. 1300 2 C when the piston is at point E of the operating diagram. This heating process during the compression of the coke puberty is an adiabatic process that makes the temperature T 2 can reach 1300 2 C (equivalent to 1573 K). Heating occurs according to the formula:
T’=T‘@’’1 T '= T ' @ '' 1
Ti = temperatura cocsului la intrare in cilindruTi = coke temperature at the inlet to the cylinder
T2 = temperatura cocsului când pistonul este in punctul ET 2 = coke temperature when the piston is at point E
Vi = volumul cilindrului când P este PMEVi = cylinder volume when P is PME
V2 = volumul cilindrului când P este PMIV 2 = cylinder volume when P is PMI
Q γ = coeficient adiabatic γ = — C„ = căldură molara la presiune constanta cv Q γ = adiabatic coefficient γ = - C „= molar heat at constant pressure c v
Cv = căldură molara la volum constant γ = 1,438C v = molar heat at constant volume γ = 1.438
In acest moment se injectează apa sub forma de picaturi foarte fine ce încep sa se descompună in hidrogen si oxigen, procesul de descompunere a apei avand loc odata cu racirea pulberii de cocs. Cantitatea de hidrogen creste odata cu scăderea temperaturii cocsului pana in jurul temperaturii de 600 2C.At this point, water is injected in the form of very fine drops that begin to decompose into hydrogen and oxygen, the process of decomposing the water taking place with the cooling of the coke powder. The amount of hydrogen increases with the decrease of the coke temperature to around the temperature of 600 2 C.
Cocsul nu apuca sa se combine cu oxigenul pentru ca cocsul este mult mai puțin reactiv decât cărbunele de lemn (mangal). Când temperatura ajunge la 600 2C se produce scânteia care detonează amestecul hidrogen-oxigen.Coke does not manage to combine with oxygen because coke is much less reactive than charcoal. When the temperature reaches 600 2 C the spark that detonates the hydrogen-oxygen mixture occurs.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ROA201500672A RO130927A0 (en) | 2015-09-18 | 2015-09-18 | Four-cycle internal combustion heat engine using water as a fuel, instead of gasoline or gas-oil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ROA201500672A RO130927A0 (en) | 2015-09-18 | 2015-09-18 | Four-cycle internal combustion heat engine using water as a fuel, instead of gasoline or gas-oil |
Publications (1)
Publication Number | Publication Date |
---|---|
RO130927A0 true RO130927A0 (en) | 2016-02-26 |
Family
ID=55357577
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ROA201500672A RO130927A0 (en) | 2015-09-18 | 2015-09-18 | Four-cycle internal combustion heat engine using water as a fuel, instead of gasoline or gas-oil |
Country Status (1)
Country | Link |
---|---|
RO (1) | RO130927A0 (en) |
-
2015
- 2015-09-18 RO ROA201500672A patent/RO130927A0/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI387681B (en) | Internal combustion engine | |
JP2020073794A (en) | Internal combustion engine, method of generating power by using non-fossil fuel-type internal combustion engine, and vehicle | |
EP2690280B1 (en) | Injection device | |
JP6670002B2 (en) | Internal combustion engine | |
US6606973B2 (en) | Rotary engine | |
JP4052847B2 (en) | Gas engine with fuel reformer | |
RO130927A0 (en) | Four-cycle internal combustion heat engine using water as a fuel, instead of gasoline or gas-oil | |
US2376479A (en) | Internal-combustion engine and combustion mixture therefor | |
GB1439440A (en) | Internal combustion engine operative on encapsulated fuels | |
CN104196619A (en) | Later-compression-stroke carbon filling type carbon powder engine | |
CN104040136B (en) | I/C engine cylinder and piston | |
Kannan et al. | Experimental study of carbide as an alternate fuel using in internal combustion engine | |
CN1216231C (en) | Method for eliminating pollution of IC engine tail gas and increasing IC power | |
RO126224A2 (en) | Internal combustion 4-cycle heat engine using water as a fuel, instead of gasoline or gas-oil | |
RU2441168C2 (en) | Four stroke internal combustion engine | |
RO132495A2 (en) | Gas turbine | |
FR2571095A1 (en) | Double thrust motor | |
CN116498432A (en) | Piston type internal combustion engine | |
BE1013140A6 (en) | Heat compressor and rotary engine | |
CN101994579B (en) | Twice air intake and exhaust based high compression ratio combustion engine and operating method thereof | |
RU2349772C2 (en) | Method of internal combustion engine operation | |
RU2549744C2 (en) | Operation of four-stroke ice running of hydrogen with pre-cooling of fuel mix by air cryogenic component | |
JP2021147344A (en) | Reactor and multi-cylinder internal combustion engine | |
CN101338699A (en) | Explosive internal-combustion engine | |
JP2016133026A (en) | Otto cycle engine using acetylene as fuel |