PT105083A - Processo para cultura de células estaminais neurais baseado nas ampacinas e/ou outros moduladores de receptores glutamatérgicos ionotrópicos, composições e seu uso em condições do sistema nervoso central - Google Patents

Processo para cultura de células estaminais neurais baseado nas ampacinas e/ou outros moduladores de receptores glutamatérgicos ionotrópicos, composições e seu uso em condições do sistema nervoso central Download PDF

Info

Publication number
PT105083A
PT105083A PT105083A PT10508309A PT105083A PT 105083 A PT105083 A PT 105083A PT 105083 A PT105083 A PT 105083A PT 10508309 A PT10508309 A PT 10508309A PT 105083 A PT105083 A PT 105083A
Authority
PT
Portugal
Prior art keywords
svz
modulators
ampa
cells
compositions
Prior art date
Application number
PT105083A
Other languages
English (en)
Inventor
Joao Jose Oliveira Malva
Fabienne Agasse
Clarissa De Sampaio Schintine
Sara Alves Xapelli
Ana Paula Pereira Da Silva Martins
Ricardo Augusto De Mello Reis
Original Assignee
Univ De Coimbra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ De Coimbra filed Critical Univ De Coimbra
Priority to PT105083A priority Critical patent/PT105083A/pt
Priority to PCT/PT2010/000020 priority patent/WO2010126389A1/en
Publication of PT105083A publication Critical patent/PT105083A/pt

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/498Pyrazines or piperazines ortho- and peri-condensed with carbocyclic ring systems, e.g. quinoxaline, phenazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/02Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0623Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/80Neurotransmitters; Neurohormones
    • C12N2501/84Excitatory amino acids

Abstract

A PRESENTE INVENÇÃO REFERE-SE AO PROCESSO DE CULTURA DE CÉLULAS ESTAMINAIS BASEADO NO USO DAS AMPACINAS E/OU OUTROS MODULADORES DE RECEPTORES GLUTAMATÉRGICOS IONOTRÓPICOS. ESTES COMPOSTOS INDUZEM UMA ACÇÃO PROLIFERATIVA E PRONEUROGÉNICA FORTE E UM EFEITO NA DIFERENCIAÇÃO NEURONAL QUANDO APLICADOS A CULTURAS DE SVZ. NOUTRO ASPECTO DA PRESENTE INVENÇÃO, COMPOSIÇÕES BASEADAS NAS AMPACINAS E/OU OUTROS MODULADORES DE RECEPTORES GLUTAMATÉRGICOS IONOTRÓPICOS SÃO DESCRITOS PARA USO COMO INDUTORES DA PRODUÇÃO DE NEURÓNIOS E/OU DIFERENCIAÇÃO QUANDO APLICADOS A CULTURAS DE SVZ. ALÉM DISSO, A PRESENTE INVENÇÃO REFERE-SE TAMBÉM A COMPOSIÇÕES QUE COMPREENDEM CULTURAS DE CÉLULAS ESTAMINAIS TRATADAS COM AMPACINAS E/OU OUTROS MODULADORES DE RECEPTORES GLUTAMATÉRGICOS IONOTRÓPICOS E O SEU USO COMO MEDICAMENTO PARA TRATAMENTO, PREVENÇÃO E/OU INTENSIFICAÇÃO DE CONDIÇÕES DO SISTEMA NERVOSO CENTRAL (SNC), COMO DOENÇAS CEREBRAIS E/OU CONDIÇÕES CEREBRAIS NÃO PATOLÓGICAS. A PRESENTE INVENÇÃO É APLICÁVEL NAS ÁREAS FARMACOLÓGICAS E MÉDICAS.

Description

CX546 poderiam induzir a diferenciação de células provenientes da SVZ em neurónios funcionais, foram diferenciadas neuroesferas da SVZ de 6 a 8 dias de cultivo em lâminas cobertas com poli-D-Lisina por 7 dias na presença de AMPA (lOOnM a 50μΜ) ou CX546 (500nM a 150μΜ).
Como mostrado na figura 4 e na figura 6, culturas de SVZ tratadas com AMPA por 7 dias apresentaram um aumento de 3 vezes na percentagem de neurónios funcionais de forma dependente da dose. Em paralelo, o tratamento com CX546 duplicou a percentagem de células neuronais em culturas de SVZ (figura 5 e figura 6).
Em contraste, culturas não tratadas apresentaram um perfil predominante de células imaturas, caracterizado por um aumento na [Ca2+]i em resposta a histamina, mas uma resposta pequena ou nenhuma resposta à estimulação com KC1. 0 perfil de diferenciação de culturas de SVZ induzido pelo tratamento com AMPA ou AMPAcina CX546 foi semelhante ao efeito proneurogénico do neuropeptídeo Y previamente observado (Agasse et al, 2008) ou ainda ao efeito de baixas concentrações do factor de necrose tumoral alfa (Bernardino et al, 2008). O próximo ensaio foi realizado para testar se AMPA e AMPAcina CX546 poderia activar a via de sinalização celular da proteína cinase activada por stress (SAPK)-Jun amino terminal cinase (JNK) em culturas da SVZ, já que foi demonstrado que essa via de sinalização está envolvida no processo de neurogénese (Amura et al, 2005; Agasse et al, 2008; Bernardino et al, 2008) e é activada em resposta a uma variedade de factores incluindo factores de crescimento, citocinas, radiação UV e choque térmico. Como 9 mostrado na figura 7, a adição de AMPA a ΙμΜ ou AMPAcina CX546 5μΜ por 6 horas aumentou o número de ramificações por neuroesferas e o comprimento total de ramificações imunoreactivas JNK de tau-positivo (figura 7), quando comparado com as culturas SVZ de controlo.
Esses resultados mostram que a activação ou a modulação dos receptores AMPA aumentam a axonogénese, diferenciação e a maturação funcional de neurónios em culturas de SVZ.
Como mencionado anteriormente, a activação dos receptores AMPA pode desencadear a proliferação e a diferenciação de neuroblastos pelo aumento da concentração intracelular de cálcio (mensageiro secundário importante para a sinalização celular e funções como divisão celular) e despolarização da membrana / excitabilidade celular.
As propriedades ionotrópicas dos receptores AMPA e sua permeabilidade selectiva ao cálcio em função da ausência da subunidade GluR2, contribui para a hipótese que a activação dos receptores AMPA pode exercer um papel central na proliferação celular e maturação funcional dos neurónios.
Assim, composições baseadas nas ampacinas são interessantes para modular as propriedades de abertura dos canais dos receptores AMPA. Com o aumento da probabilidade de abertura dos receptores AMPA, as ampacinas podem selectivamente aumentar a excitabilidade dos receptores AMPA expostos ao glutamato endógeno local que é libertado de forma transiente, aumentando a excitabilidade dos progenitores neurais, mas sem propriedades tóxicas significativas. 10 1- Processo para a cultura de células estaminais: Células da SVZ são obtidas a partir de cérebros de ratos de laboratório de 1 a 3 dias da linhagem C57B16 e os cérebros são removidos após decapitação e colocados em solução HBSS (Gibco).
Os fragmentos de SVZ são dissecados em secções cerebrais de 450pm, digeridas em tripsina 0,25% e EDTA 0,2mM (Gibco) e dissociados em trituração branda com uma pipeta P1000. A suspensão celular resultante é então diluída em meio de cultura livre de soro, composto de meio de eagle modificado de Dulbeco (DMEM F12), Glutamax (Gibco) suplementado com 100 unidades de penicilina, 100pg/ml de estreptomicina, 1% de B27 (Gibco), lOng/ml de factor de crescimento epidermal EGF (Gibco), lOng/ml de factor de crescimento de fibroblasto básico (FGF-2, Gibco).
As células isoladas são então colocadas em placas de petri numa densidade de lOOml de células por cm2, as neuroesferas resultantes irão desenvolver-se numa atmosfera húmida a 37 °C, com 95% de ar e 5% de C02.
Após 6 a 8 dias, as neuroesferas são recolhidas com uma pipeta Pasteur e depositadas numa lamela previamente tratada com poli-D-lisina em placas de 12 poços para experiências de imageologia de cálcio ou placas de 24 poços para imunocitoquímica e depois preenchidas com lml ou 500μ1 respectivamente, de SFM livre de factores tróficos. 11 2- Avaliação da diferenciação neuronal
Para avaliar a diferenciação neuronal das culturas de células da SVZ, as neuroesferas são desenvolvidas por 7 dias a 37 °C na ausência ou na presença de AMPA 1, 5 e 50μΜ ou CX546 5, 50 e 150μΜ (ambas de Tocris). 3- Imageologia de cálcio
Para determinar o padrão de diferenciação das células de SVZ, foram analisadas variações nos níveis intracelulares de Ca2+ após a estimulação com 50mM KC1 e ΙΟΟμΜ de histamina (sigma) como relatado anteriormente (Agasse et al, 2008a) . A despolarização de KCl leva a um aumento dos níveis intracelulares de Ca2+ enquanto a estimulação com histamina leva a um aumento dos níveis intracelulares de Ca2+ em células imaturas. Culturas de células de SVZ são adicionadas com 5μΜ de Fura 2AM (molecular probes) por 40 minutos a 37 graus, 0,1% de BSA livre de ácido gordo e 0,02% de ácido plurónico F127 em Krebs (132mM).
Após 10 minutos de preenchimento das lamelas montadas numa câmara RC20 numa plataforma Ph3 (Warner) no estágio de um microscópio invertido de fluorescência Axiovert 200 (Cari Zeiss).
As células são continuamente perfundidas com solução de Krebs e estimuladas aplicando lOOprn de histamina ou alta concentração de solução de Krebs com potássio (50mM KCl), substituição iso-osmótica de NaCl. As soluções são adicionadas às células por um sistema de alta pressão (95%ar 5%C02) (Automate Scientific Berkely CA). A concentração intracelular de [Ca2+]i é avaliada pela quantificação da razão de fluorescência emitida a 510nm 12 seguindo de excitação alternada (750ms) a 340nm e 380nm usando um aparelho Lambda DG4 (Sutter Instruments, Novato, CA) e um sistema de filtros a 510nm antes da aquisição de fluorescência com uma objectiva de 40x e uma câmara digital Coll Snap (Roper scientific, Tucson, AZ). Os valores adquiridos são processados com o software Metafluor (Universal Imaging, Downingtown, PA) . Os valores de histamina/KCl para a razão de Fura-2 são calculados para determinar a extensão maturação neural das culturas. 4- Avaliação imunocitoquimica
Após fixação, por uma hora em paraformaldeido 4%, as células são permeabilizadas e os sítios não específicos são bloqueados durante l,5h com 0,25% Triton X-100 (Sigma) e 6% de albumina de soro bovino (BSA, Sigma) dissolvidos em PBS. As células são então incubadas durante a noite a 4 graus com anticorpo monoclonal anti NeuN de rato (1:200), (Chemicon), anticorpo policlonal de coelho da forma anti fosforilada da proteína cinase activada por stress (anti-p-SAPK-cjun-NH2-terminal cinase) (JNK) (1:100) e anticorpo monoclonal de ratos anti-tau (1:500) (Cell Signaling, Danvers, MAT) . De seguida as lamelas são lavadas em PBS e incubadas durante lh a temperatura ambiente com os anticorpos secundários apropriados: anticorpo de cabra e anticorpo de rato Alexa Fluor 594 (1:200), anticorpo de coelho Alexa Fluor 488 (1:200) (todos da Molecular Probes). Após lavagem com PBS as preparações celulares são incubadas durante 5 min a temperatura ambiente com Hoechst 33342 (2pg-ml, molecular Probes) em solução de PBS contendo 0,25% de BSA para marcação do núcleo. Finalmente, as preparações são montadas utilizando um meio de fluorescência Dakocitomação. As imagens de fluorescência são então 13 registadas numa câmara digital acoplada a um microscópio Axioscop (Cari Zeiss). 5- Ensaio de proliferação
Para investigar o efeito de AMPA ou de CX546 na proliferação celular, as células de SVZ foram expostas a ΙΟμΜ de BrdU (Sigma-Aldrich) durante as 4 horas finais de cada tratamento de AMPA ou CX546. Então, as células foram fixadas em paraformaldeido 4% durante 30 minutos e lavadas durante 30 min em 0,15M PBS à temperatura ambiente. O BrdU é então revelado e marcado seguindo-se sucessivas passagens em 1% triton X-100, 0,1M de HC1 gelado em tampão borato a 37°C (0,1M, Na2B407.10H2O, pH8,5), e incubado com o
anticorpo de rato anti BrdU associado a uma IgG marcada Alexa Fluor 594 (1:200 Sigma) durante a noite a 4 graus. A contra marcação do núcleo e a montagem é realizada como descrito previamente. 6- Análise de dados estatísticos
Em todas as experiências, a condição experimental é realizada pelo menos 3 vezes. Para as experiências de SCCI, a percentagem de células foi calculada com base num campo por cada lamela, contendo cerca de 100 células. A percentagem das células NeuN imunoreactivas são calculadas a partir das contagens celulares de 5 campos independentes em cada lamela com uma objectiva de 40X (cerca de 200 células por campo). Como nenhuma diferença significativa foi encontrada entre os controlos, os dados correspondentes foram retirados de amostras e expressos como média ± desvio padrão. A significância estatística das diferenças foi examinada por ANOVA seguido de um pós teste de Bonferroni para múltiplas comparações ou teste t ímpar. 14
Na presente invenção, é descrito um processo para a cultura de células de SVZ com ampacinas e/ou outros moduladores dos receptores de glutamato ionotrópicos.
Noutro aspecto da presente invenção, são descritas composições compreendendo a cultura de SVZ tratadas com ampacinas e/ou outros moduladores de receptores glutamatérgicos ionotrópicos, de acordo com esse processo.
Outros moduladores de receptores glutamatérgicos ionotrópicos podem ser seleccionados a partir do grupo: (±)-ácido sólido-2 amino-4 fosfonobutírico, (±) AMPA hidrobromdo, (±) hidrocloreto de cetamina,(±)-MK-801 hidrogeno maleato, (2S,4R)-4-ácido metilglutâmico, 1-ácido hidrocloreto aminociclopropanocarboxílico,1-naftilacetil espermina trihidrocloridico, 2,6-Difluor-4-[2-(tio-(fenil-sulfonil-amino)-etil]-fenoxi-acetamida, 6,7-Dicloroquinoxalina-2,3-diona, ácido D-Homocisteínasulfínico, ácido DL-2-amino-5-fosfonopentanóico, ácido DL-2-amino-7-fosfonoheptanóico, L cisteina hidrocloreto monohidrato, ácido L-Homocisteico, AT PO, ATPA, complexo CNBQX-HBC, CX54 6, ciclotiazida, N-(3,3-difenilpropil)glicinamida, PEAQX tetrasódio hidrato, ácido γ-D-glutamilaminometilsulfónico e outros.
Os compostos na presente Aniracetam, levetiracetam Nebracetam, Dimiracetam, da família racetam podem estar compreendidos invenção, tais como Piracetam, Oxiracetam, Pramiracetam, fenilpiracetM, Etiracetam, , Nefiracetam, Nicoracetam, Rolziracetam, Fasoracetam, Imuracetam, Coluracetam,
Brivaracetam, Seletracetam, Rolipram e outros. 15
As células estaminais usadas na presente invenção podem ser adultas ou exclusivamente de origem não-humana.
Outras substâncias activas podem ser adicionadas à composição básica para aumentar e/ou potenciar o efeito das ampacinas e/ou outros moduladores de receptores glutamatérgicos ionotrópicos.
Assim, em outro aspecto da presente invenção, a composição baseada em células de SVZ tratadas com ampacinas e/ou outros moduladores de receptores glutamatérgicos ionotrópicos pode incluir outras substâncias activas, como substâncias activas com efeito neurológico e/ou antibióticos. Essas substâncias activas podem ser seleccionadas a partir do grupo: haloperidol, flufenazina, perfenazina, cloropromazina, molidona, pimozida, trifluperazina, tioridazina, clozapina, risperidona, olanzepina, sertindola, ziprasidona, seroquel, zotepina, amilsulpride, iloperidona e outros. Nesse sentido, compostos com o efeito inibitório da acetilcolinesterase podem também ser seleccionados.
Além do mais, as composições descritas podem ainda incluir, veículos, suportes e excipientes farmacológicos aceitáveis e/ou outras substâncias activas comummente aceitáveis e usadas na farmacologia, como corantes, conservantes, estabilizadores, aromatizantes, etc, seleccionados de forma adequada ao método de administração escolhido.
Em outro aspecto da presente invenção, as composições descritas podem ser apresentadas em forma de tabletes, cápsulas, ampolas, líquido e gel e/ou formulações de libertação controlada. 16
As composições de culturas de SVZ da presente invenção são usadas para prevenir, reparar e ou intensificar as condições do Sistema Nervoso Central. Essas condições estão relacionadas não somente a condições patológicas, mas também condições não patológicas como o aumento das capacidades cognitivas, como manutenção e aumento da capacidade de memória.
Condições patológicas na presente invenção incluem condições crónicas como a depressão crónica.
Outras situações patológicas que se incluem na presente invenção são: condições cognitivas, depressão aguda, disfunções psiquiátricas, esquizofrenia, condições neurodegenerativas como as doenças de Parkinson e Alzheimer, acidente vascular cerebral e/ou outras condições neuropáticas na qual ocorre perda neuronal.
Condições não patológicas compreendem, por exemplo, situações nas quais o desempenho cognitivo é insuficiente, como a manutenção da vitalidade, memória, etc.
As composições que compreendem as células estaminais da presente invenção podem ser usadas em técnicas de transplante para reparar condições ou injúrias do SNC, para prevenir perdas de capacidades cognitivas e/ou aumentar as capacidades relacionadas com o desempenho neuronal.
Noutro aspecto da presente invenção é descrito o uso das composições de ampacinas no tratamento de células estaminais neurais. 17
Descrição das figuras
Figura 1: Culturas de células progenitoras derivadas da SVZ expressam subunidades de receptores AMPA GluRl e GluR2 em condições de proliferação (linha de cima) e em condições de diferenciação (linha de baixo). Linha de cima: microscopia confocal de neuroesferas processadas para o protocolo de centrifugação (Cytospin). Linha de baixo: neuroesferas: cultivadas em condições de diferenciação na presença de poli-D-lisina e na ausência de factores de crescimento.
Figura 2: AMPA e CX546 estimulam a proliferação celular em culturas de SVZ sob condições de diferenciação. Azul: marcação com Hoechst 33342; Vermelho: marcação anti BrdU em células em divisão.
Figura 3: AMPA e AMPAcina CX546 aumentam a diferenciação neuronal em culturas de SVZ cultivadas em condições proliferativas. A diferenciação neuronal foi avaliada pela quantificação do número de células imunopositivas para o marcador neuronal NeuN.
Figura 4: A exposição de culturas de células progenitoras derivadas da SVZ a AMPA resulta num efeito proneurogénico robusto. 0 efeito proneurogénico mediado por receptores AMPA é sensível à inibição do composto GYK52466. A exposição a AMPA induz o aumento do número de células com respostas neuronais com uma diminuição paralela do número de células que respondem à histamina. A inibição dos receptores AMPA com o uso do composto GYK52466 mudou o perfil de resposta para níveis comparados aos do controlo. 18
Figura 5: A exposição de culturas de células da SVZ a AMPAcina CX546 resulta num robusto efeito proneurogénico. Esse efeito proneurogénico mediado por receptores AMPA é sensível à inibição com o composto GYK52466. A exposição a ampacina induz o aumento do número de células que respondem ao KC1, com um efeito paralelo de diminuição do número de células que respondem ao estímulo com histamina. A inibição dos receptores AMPA com o uso do composto GYK52466 mudou o perfil de resposta para níveis comparados aos do controlo.
Figura 6: A exposição de culturas de SVZ a AMPA ou a moduladores dos receptores de AMPA como as AMPAcinas CX546 resulta numa robusta diferenciação neuronal. A exposição a AMPA aumenta o número de células que respondem ao KC1 com efeito paralelo de diminuição da resposta ao estímulo com histamina.
Figura 7: A incubação de culturas de SVZ com AMPA ou AMPAcina CX546 por 6 horas resultou num aumento do número de ramificações JNK+ que migravam a partir das neuroesferas. Além disso, foi observado um robusto aumento no comprimento total de ramificações marcadas para JNK.
Exemplos
Exemplo 1: Estabelecimento de culturas de SVZ: Células da SVZ foram obtidas a partir de cérebros de ratos de 1 a 3 dias de idade da linhagem C57B1/6. Os cérebros foram removidos após decapitação e colocados em solução de HBSS .
Fragmentos de SVZ foram dissecados e cortados em secções coronais de 450pm, digeridos em tripsina 0,25% e 0,265mM de 19 EDTA e foram dissociados por trituração suave com uma pipeta P1000. A suspensão celular foi diluída em meio de cultura sem soro (D-MEM-F12 Glu-MAX-I, Gibco) suplementado com 100 U/ml de penicilina, 100 pg/ml de estreptomicina (Gibco), 1% de B27 (Gibco), 10 ng/ml de factor de crescimento epidermal (EGF; Gibco), e 10 ng/ml factor de crescimento de fibroblasto (FGF-2; Gibco) .
As células individuais foram então colocadas em placas de Petri na densidade de 3000 células/cm2.
As neuroesferas resultantes foram cultivadas em câmara humidificada a 37 °C, contendo 95% de ar e 5% de C02.
Após 6 a 8 dias de cultivo, as neuroesferas foram recolhidas e colocadas em placas de 12 poços ou 24 poços em lamelas tratadas com poli-D-lisina para experiências de imunocitoquímica e cobertas com lml ou 500μ1 de meio na ausência de factores tróficos.
Exemplo 2: Diferenciação neuronal em culturas de SVZ tratadas com AMPAcina CX546 nas concentrações de 0,8 a 500μΜ. As culturas de SVZ foram isoladas e diferenciadas de acordo com o exemplo 1 e preparadas para imageologia de cálcio após 7 dias de incubação na presença de CX546 (0,8 a 500μΜ) e de acordo com os procedimentos da "Descrição Geral da Invenção -3. Imageologia de Cálcio de Células Individuais". 20 A avaliação da resposta neuronal ao cálcio (relação Histamina/KCl abaixo de 0,8) resulta numa percentagem que varia entre 15 a 45%.
Exemplo 3: Diferenciação neuronal de culturas de SVZ na ausência de ampacina ou outros moduladores de receptores glutamatérgicos ionotrópicos. As culturas de SVZ foram isoladas e diferenciadas de acordo com o exemplo 1 e preparadas para imageologia de cálcio na ausência de CX546 de acordo com os procedimentos da "Descrição Geral da Invenção -3. Imageologia de Cálcio de Células Individuais". A avaliação da resposta neuronal ao cálcio (relação Histamina/KCl abaixo de 0,8) resulta numa percentagem que varia entre 5 a 12%.
Referências: *Abrous DN and Wojtowicz JM. "Neurogenesis and hippocampal memory system", in: Adult neurogenesis; Edited by FH Gage, G Kempermann and Song H; Cold Spring Harbor Laboratory Press,New York (2008). *Ambrósio AF, Silva AP, Malva JO, Mesquita JF, Carvalho AP and Carvalho CM.Role of desensitization of AMPA receptors on the neuronal viability and on the [Ca2+]i changes in cultured rat hippocampal neurons. Eur J Neurosci 2000, 12:2021-2031. *Amura CR, Marek L, Winn RA, Heasley LE. Inhibited neurogenesis in JNKl-deficient embryonic stem cells. Mol Cell Biol. 2005 25:10791-10802. *Agasse F, Bernardino L, Silva B, Ferreira R, Grade S and Malva JO. Response to histamine allows the functional identification of neuronal progenitors, neurons, 21 astrocytes, and immature cells in subventricular zone cell cultures. Rejuvenation Res 2008a, 11:187-200. *Agasse F, Bernardino L, Kristiansen H, Christiansen SH, Ferreira R, Silva B, Grade S, Woldbye DP and Malva JO. Neuropeptide Y promotes neurogenesis in murine subventricular zone. Stem Cells 2008b, 26:1636-1645. *Bernardino L, Agasse F, Silva B, Ferreira R, Grade S and Malva JO. Tumor necrosis factor-alpha modulates survival, proliferation, and neuronal differentiation in neonatal subventricular zone cell cultures. Stem Cells 2008,23 26:2361-71.
*Galvão RP, Garcia-Verdugo JM, Alvarez-Buylla A. Brainderived neurotrophic factor signaling does not stimulate subventricular zone neurogenesis in adult mice and rats. J
Neurosci. 2008, 28:13368-13383. *Ge S, Pradhan DA, Ming GL and Song H. GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci 2007, 30: 1-8. *Gray W and Laskowski A. "Glia and hippocampal neurogenesis in the normal, aged and epileptic brain", in: Interaction between neurons and glia in aging and disease; Edited by JO Malva, AC Rego, RA Cunha and CR Oliveira; Springer, New York (2007). *Greger IH, Ziff EB and Penn AC. Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci 2007, 30: 407-416. *Jang M-H, Song H and Ming G-l. "Regulation of adult neurogenesis by neurotransmitters", in: Adult neurogenesis; Edited by FH Gage, G Kempermann and Song H; Cold Spring Harbor Laboratory Press, New York (2008). *Jourdi H, Hamo L, Oka T, Seegan A, Baudry M. BDNF mediates the neuroprotective effects of positive AMPA receptor 22 modulators against MPP(+)-induced toxicity in cultured hippocampal and mesencephalic slices. Neuropharmacology. 2009, 56,876-85. **Kempermann G, Jessberger S, Steiner B and Kronenberg G. Milestones of neuronal development in the adult hippocampus.Trends in Neurosci 2004, 27: 447-452.24 *Kempermann G, Song H and Gage FH. "Neurogenesis in the adult hippocampus", in: Adult neurogenesis; Edited by FH Gage, G Kempermann and Song H; Cold Spring Harbor Laboratory Press, New York (2008). *Lynch G. Glutamate-based therapeutic approaches: ampakines. Current Opinion in Pharmacology 2006, 6: 82-88. * Lynch G and Gall CM. Ampakines and the threefold path to cognitive enhancement. Trends Neurosci 2006, 29: 554-562.
* Ogier M, Wang H, Hong E, Wang Q, Greenberg ME, Katz DM (October 2007). "Brain-derived neurotrophic factor expression and respiratory function improve after ampakine treatment in a mouse model of Rett syndrome". J. Neurosci. 27 (40): 10912 7. *Pencea V, Bingaman KD, Wiegand SJ, Luskin MB. Infusion of brain- derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci. 2001, 21:6706-6717. *Platel JC, Dave KA and Bordey A. Control of neuroblast production and migration by converging GABA and glutamate signals in the postnatal forebrain. J Physiol 2008, 586: 3739-3743. *Sahay A, Hen R and Duman RS. "Hippocampal neurogenesis: depression and antidepressant responses", in: Adult neurogenesis; Edited by FH Gage, G Kempermann and Song H; Cold Spring Harbor Laboratory Press, New York (2008) .25 23 *Simmons DA, Rex CS, Palmer L, Pandyarajan V, Fedulov V, Gall CM, Lynch G. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington's disease knockin mice. Proc Natl Acad Sei USA. 2009, 106:4906-4911. *Tozuka Y, Fukuda S, Namba T, Seki T and Hisatsune T. GABAergic Excitation Promotes Neuronal Differentiation in Adult Hippocampal Progenitor Cells. Neuron 2005, 47 :803- 815 *Wezenberg E, Verkes RJ, Ruigt GS, Hulstijn W and Sabbe BG. Acute effects of the ampakine farampator on memory and Information processing in healthy elderly volunteers. Neuropsychopharmacology 2007, 32: 1272-1283.
Lisboa, 21 de Março de 2011 24

Claims (12)

  1. REIVINDICAÇÕES 1- Processo de cultura de células da SVZ caracterizado por compreender a presença de pelo menos uma Ampacina e/ou outros moduladores de receptores ionotrópicos glutamatérgicos.
  2. 2- Processo, de acordo com a reivindicação anterior, caracterizado por os moduladores de receptores glutamatérgicos ionotrópicos serem AMPA.
  3. 3- Processo, de acordo com qualquer uma das reivindicações anteriores, caracterizado por a concentração de AMPA ser de pelo menos ΙμΜ.
  4. 4- Processo, de acordo com a reivindicação 1, caracterizado por a Ampacina ser CX546.
  5. 5- Processo, de acordo com qualquer uma das reivindicações anteriores caracterizado por a concentração da Ampacina CX546 ser de pelo menos 5μΜ.
  6. 6- Composições caracterizadas por compreenderem células da SVZ tratadas de acordo com o processo descrito nas reivindicações anteriores.
  7. 7- Composições, de acordo com a reivindicação anterior, caracterizadas por compreenderem ainda outras substâncias activas, preferencialmente substâncias activas com efeito neurológico.
  8. 8- Composições, de acordo com as reivindicações 6 a 7, caracterizadas por compreenderem ainda veículos, suportes 1 excipientes e/ou outras substâncias farmacologicamente aceitáveis e usadas em farmacologia.
  9. 9- Composições, de acordo com as reivindicações 6 a 8, caracterizadas por apresentarem a forma de tabletes, cápsulas, ampolas, liquido, gel e/ou outras formulações de libertação controlada.
  10. 10- Composições, de acordo com as reivindicações de 6 a 9,caracterizadas por serem usadas como medicamento.
  11. 11- Composições, de acordo com as reivindicações de 6 a 9, caracterizadas por serem usadas para o tratamento ou prevenção de distúrbios do SNC.
  12. 12- Composições, de acordo com as reivindicações de 6 a 9, caracterizadas por serem usadas como estimulantes do SNC. Lisboa, 21 de Março de 2011 2
PT105083A 2009-04-28 2009-04-28 Processo para cultura de células estaminais neurais baseado nas ampacinas e/ou outros moduladores de receptores glutamatérgicos ionotrópicos, composições e seu uso em condições do sistema nervoso central PT105083A (pt)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PT105083A PT105083A (pt) 2009-04-28 2009-04-28 Processo para cultura de células estaminais neurais baseado nas ampacinas e/ou outros moduladores de receptores glutamatérgicos ionotrópicos, composições e seu uso em condições do sistema nervoso central
PCT/PT2010/000020 WO2010126389A1 (en) 2009-04-28 2010-04-28 Process for treating neural stem cells based on ampakines and/or other modulators of ionotropic glutamate receptors, compositions thereof and their use in cns conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PT105083A PT105083A (pt) 2009-04-28 2009-04-28 Processo para cultura de células estaminais neurais baseado nas ampacinas e/ou outros moduladores de receptores glutamatérgicos ionotrópicos, composições e seu uso em condições do sistema nervoso central

Publications (1)

Publication Number Publication Date
PT105083A true PT105083A (pt) 2011-07-25

Family

ID=42429079

Family Applications (1)

Application Number Title Priority Date Filing Date
PT105083A PT105083A (pt) 2009-04-28 2009-04-28 Processo para cultura de células estaminais neurais baseado nas ampacinas e/ou outros moduladores de receptores glutamatérgicos ionotrópicos, composições e seu uso em condições do sistema nervoso central

Country Status (2)

Country Link
PT (1) PT105083A (pt)
WO (1) WO2010126389A1 (pt)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE253909T1 (de) 1992-07-24 2003-11-15 Univ California Arzneimittel die den durch ampa rezeptoren vermittelten synaptischen response erhöhen
PT1026950E (pt) 1997-10-27 2006-06-30 Cortex Pharma Inc Tratamento da esquizofrenia com ampaquinas e neurolepticos
AUPR540301A0 (en) * 2001-06-01 2001-06-28 Walter And Eliza Hall Institute Of Medical Research, The A method of purification of cells
CA2554600A1 (en) 2004-01-26 2005-08-11 Cortex Pharmaceuticals Inc. Enhancement of ampakine-induced facilitation of synaptic responses by cholinesterase inhibitors
WO2008100168A1 (en) 2007-02-16 2008-08-21 Universidade De Coimbra Method for the functional identification of new neurons, neural progenitors, astrocytes and immature cells from stem cell cultures and uses thereof

Also Published As

Publication number Publication date
WO2010126389A1 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
Semkova et al. Clenbuterol protects mouse cerebral cortex and rat hippocampus from ischemic damage and attenuates glutamate neurotoxicity in cultured hippocampal neurons by induction of NGF
Schlett Glutamate as a modulator of embryonic and adult neurogenesis
Chen et al. Brain‐derived neurotrophic factor stimulates proliferation and differentiation of neural stem cells, possibly by triggering the Wnt/β‐catenin signaling pathway
Noble et al. Glia are a unique substrate for the in vitro growth of central nervous system neurons
Bruel-Jungerman et al. Cholinergic influences on cortical development and adult neurogenesis
US6759242B1 (en) Low oxygen culturing of neural crest stem cells and methods of use
Li et al. ProBDNF inhibits proliferation, migration and differentiation of mouse neural stem cells
US20140065227A1 (en) Neural stem cells derived from induced pluripotent stem cells
Marei et al. Human olfactory bulb neural stem cells expressing hNGF restore cognitive deficit in Alzheimer's disease rat model
Haring et al. Hippocampal serotonin levels influence the expression of S100β detected by immunocytochemistry
Liour et al. Differentiation of radial glia‐like cells from embryonic stem cells
Jirsova et al. Cold jet: a method to obtain pure Schwann cell cultures without the need for cytotoxic, apoptosis-inducing drug treatment
DE60035191T2 (de) Materialien und methoden zur entwicklung von dopaminergen neuronen
Wang et al. Brain‐derived neurotrophic factor promotes the migration of olfactory Ensheathing cells through TRPC channels
Wang et al. Long-term survival, axonal growth-promotion, and myelination of Schwann cells grafted into contused spinal cord in adult rats
Jasmin et al. Genetic ablation of caveolin-1 increases neural stem cell proliferation in the subventricular zone (SVZ) of the adult mouse brain
Jafari et al. Investigating the effects of adult neural stem cell transplantation by lumbar puncture in transient cerebral ischemia
Deng et al. Vitamin E isomer δ-tocopherol enhances the efficiency of neural stem cell differentiation via L-type calcium channel
US8895302B2 (en) Directed differentiation of primate pluripotent stem cells into functional basal forebrain cholinergic neurons (BFCNs) and medium spiny gabaergic projection neurons
McKay et al. Retinal pigment epithelial cell transplantation could provide trophic support in Parkinson's disease: results from an in vitro model system
US6214334B1 (en) Compositions and methods for producing and using homogenous neuronal cell transplants to treat neurodegenerative disorders and brain and spinal cord injuries
US20110182853A1 (en) Platelet derived growth factor (pdgf)-derived neurospheres define a novel class of progenitor cells
Calafiore et al. Progenitor cells from the adult mouse brain acquire a neuronal phenotype in response to β-amyloid
Chauvet et al. Aged median eminence glial cell cultures promote survival and neurite outgrowth of cocultured neurons
Cortés et al. Transgenic GDNF positively influences proliferation, differentiation, maturation and survival of motor neurons produced from mouse embryonic stem cells

Legal Events

Date Code Title Description
BB1A Laying open of patent application

Effective date: 20110720

FC3A Refusal

Effective date: 20131001