Przedmiotem wynalazku jest sposób wytwarza¬ nia kwasu 6-aminopenicylanowego przez enzyma¬ tyczna hydrolize pod wplywem acylazy penicyli¬ nowej. Kwas 6-aminopenicylanowy jest cennym pólproduktem do otrzymywania nowych penicylin pólsyntetycznych.Znany sposób otrzymywania kwasu 6-aminopeni¬ cylanowego na drodze bezposredniej fermentacji Penicillium chrisogenum, bez prekursorów, jest skomplikowany i malo wydajny.W dotychczas stosowanych metodach enzymatycz¬ nych uzywa sie komórki odpowiednich mikroorga¬ nizmów wytwarzajacych acylaze penicylinowa. Po¬ niewaz komórki te moga byc uzyte tylko jednora¬ zowo i to w stosunkowo wysokim stezeniu nie¬ zbednym dla skrócenia czasu hydrolizy, trzeba ciagle przygotowywac nowe ich porcje. Ekstrakcja produktu hydrolizy, to znaczy kwasu 6-AP, z mie¬ szaniny reakcyjnej jest skomplikowanym proble¬ mem. Otrzymuje sie przy tym kwas wymagajacy powtórnej krystalizacji i czesto zawierajacy sub¬ stancje bialkowe, które o ile nie zostana usuniete, na przyklad przez enzymatyczny rozklad przy u- zyciu enzymów proteolitycznych, wywoluja odczy¬ ny alergiczne po podaniu otrzymanych z niego pe¬ nicylin. Podraza to oczywiscie produkcje i kompli¬ kuje technologie wytwarzania.Nieoczekiwanie stwierdzono, ze enzym, acylaza penicylinowa, osadzona na nosniku o strukturze wlóknistej, zachowuje swoja aktywnosc w ciagu -10 dlugiego okresu uzywania. W czasie prób utrzymy¬ wala ona prawie nie zmniejszona aktywnosc w ciagu 12 miesiecy uzywania.Przedluzona aktywnosc katalizatora enzymatycz¬ nego pozwala uproscic proces oraz obnizyc koszty.Sposób wedlug wynalazku z zastosowaniem en¬ zymu osadzonego na nosniku o strukturze wlókni¬ stej, przynosi wyrazne korzysci polegajace na znacznym polepszeniu jakosci produktu, uproszcze¬ niu operacji technologicznych i obnizeniu kosztów produkcji.Sposób enzymatycznego wytwarzania kwasu 6- -aminopenicylanowego o wzorze 2 polega wedlug wynalazku na tym, ze naturalna penicyline o wzo¬ rze ogólnym 1, w którym R oznacza grupe alkilo¬ wa o 1—10 atomach wegla, grupe alkenylowa o 3—10 atomach wegla, grupe aralkilowa, grupe R'-OCH2- lub grupe R'-SCH2-, w których R' oznacza grupe alkilowa, alkenylowa, fenylowa ewentualnie jednopodstawiona atomem chlorowca, grupa nitrowa, alkilowa, alkenylowa lub alkoksy- lowa, w roztworze wodnym o stezeniu 1^-6% //wa¬ ga/objetosc/ poddaje sie enzymatycznej hydrolizie pod wplywem acylazy penicylinowej osadzonej na polimerycznym nosniku o strukturze wlóknistej, przy wartosci pH okolo 8, w temperaturze do 60°C, korzystnie 37—40°C, i otrzymany produkt hydro¬ lizy wydziela sie. Korzystne jest stosowanie roz¬ tworu soli odpowiedniej penicyliny.Okreslenie penicylina naturalna oznacza penicy- 98 6323 line wytwarzana podczas fermentacji przez Peni- cillium chrisogenum w obecnosci odpowiednich pre¬ kursorów.Enzym, acylaze penicylinowa, mozna otrzymy¬ wac z róznych zródel.W sposobie wedlug wynalazku korzystne jest stosowanie acylazy penicylinowej pochodzacej z ko¬ mórek bakterii Escherichia Coli, zwlaszcza szczepu E. Coli ATCC nr 9637.Nierozpuszczalny katalizator enzymatyczny otrzy¬ muje sie w sposób opisany w patencie wloskim nr 836 462. Wedlug tego patentu wlóknisty nosnik z osadzonym enzymem otrzymuje sie z roztworu polimeru zdolnego do wytwarzania struktury wlók¬ nistej, w którym zdyspergowany jest preparat en¬ zymatyczny. Z uzyskanej w taki sposób emulsji mozna na mokro hub sucho otrzymac wlókna po¬ siadajace wewnatrz bardzo male pory, w^ których osadzony jest enzym osloniety bardzo cienka mem¬ brana zapobiegajaca przechodzeniu enzymu do sro¬ dowiska reakcji ale z drugiej strony pozwalajaca na oddzialywanie katalityczne.Do polimerów na których mozna osadzac enzym naleza miedzy innymi polimery estrów i azotanów celulozy, poliolefiny, polimery i kopolimery otrzy¬ mywane z akrylonitrylu, akrylanów, metakrylanów, estrów winylowych, chlorku winylu, chlorku wi- nylidenu, styrenu oraz poliamidy, butyral poliwi- nylu i podobne.Nosnik z osadzonym enzymem, po zakonczeniu procesu koagulacji i nadaniu struktury wlóknistej, przemywany jest w celu usuniecia zaabsorbowa¬ nych zanieczyszczen bialkowych, które moglyby przedostac sie do srodowiska. Tak przygotowany katalizator moze byc uzywany do katalizowania reakcji. Otrzymuje sie w ten sposób produkt o wysokiej czystosci pozbawiony calkowicie zanie¬ czyszczen bialkowych stwarzajacych niebezpieczen¬ stwo wywolywania odczynów alergicznych. Kata¬ lizator enzymatyczny moze byc uzywany w spo¬ sób periodyczny, wtedy po hydrolizie penicyliny mieszanine reakcyjna usuwa sie i zastepuje swie¬ za porcja.Ten sam katalizator enzymatyczny mozna wy¬ korzystywac w procesie ciaglym stosujac kolumne.W procesach ciaglych dla unikniecia trudnosci z utrzymywaniem stalego pH na róznych poziomach kolumny stosuje sie buforowany roztwór penicyli¬ ny. Buforowany roztwór penicyliny przepuszcza sie przez kolumne wypelniona katalizatorem enzy¬ matycznym. Utrzymuje sie przy tym wartosc pH= =8 dodajac w sposób automatyczny roztwór zasa¬ dy. Zachowujac odpowiednia szybkosc przeplywu i stosujac odpowiednia ilosc katalizatora otrzymu¬ je sie po wyjsciu z kolumny mieszanine o wyso¬ kim stopniu hydrolizy.Nastepujace przyklady ilustruja sposób wedlug wynalazku nie ograniczajac jednak zakresu jego stosowania.. Przyklad I. '20 g trójoctanu celulozy /Fluka/ rozpuszczono podczas mieszania w 280 ml chlorku metylenu /C. Erba/. Osobno przygotowano roztwór enzymu dodajac 60 g /wilgotny produkt/ komórek otrzymanych z fermentacji E. Coli na odpowiedniej pozywce w obecnosci kwasu fenylooctowego, do 632 4 0,01 molarnego buforu fosforanowego o pH 7,0.Otrzymany material ogrzewano w ciagu 3 minut w temperaturze 50°C a nastepnie stracano siar¬ czanem amonu przy pH 5,5 zbierajac frakcje wy- tracajaca sie przy 25—75% nasycenia. Frakcje te rozpuszczono w 0,01 m buforze fosforanowym o pH 8,0 zawierajacym 30% objetosciowych glicery¬ ny. Otrzymany roztwór enzymu dodano do roztwo¬ ru trójoctanu celulozy i emulgowano mieszajac energicznie w ciagu 30 minut w temperaturze 0°C a nastepnie otrzymana emulsje wlano do malego pojemnika i w temperaturze —6°C cisnieniem azo¬ tu wyciskano wlókna, które koagulowano w . to¬ luenie, w temperaturze pokojowej. Otrzymane wlókna suszono w ciagu jednej godziny pod zmniej¬ szonym cisnieniem celem usuniecia toluenu. 37 g otrzymanego katalizatora umieszczono w kolumnie szklanej o wymiarach 70X3 cm, zaopa¬ trzonej w plaszcz termostatyczny i przemywano woda oraz gliceryna do zaniku protein. Wtedy przepuszczano w zamknietym obiegu 600 ml 2% roztworu wodnego soli potasowej penicyliny G /Sauibb/, utrzymujac pH 8 przy pomocy ciaglego dodawania 0,5n roztworu NaOH. Kolumne termo- statowano w temperaturze 37°C. Po pieciu godzi¬ nach gdy zuzycie NaOH spadlo do 1/20 zuzycia po¬ czatkowego, mieszanine reakcyjna oziebiono do 3°C, zakwaszono do pH 3,0 przy pomocy 33,5 ml 2n kwasu solnego i ekstrahowano 2X200 ml octa- nu butylu. W pierwszym ekstrakcie zawartosc pe¬ nicyliny, oznaczana metoda hydroksylaminowa, wynosila 298 mg zas w drugim/2 mg. W stosunku do 12 g uzytej penicyliny wydajnosc konwersji na kwas 6-AP wyniosla wiec 97%. W produkcie nie stwierdzono chromatograficznie produktów rozkla¬ du.Warstwe wodna o objetosci 800 ml, wolna od resztek penicyliny i kwasu fenylooctowego, zalka- lizowano do pH 7,0 przy pomocy 33 ml 2n NaOH 40 i nastepnie zatezono pod zmniejszonym cisnieniem, w temperaturze 37°C, do objetosci 110 ml. Zate- zony roztwór kwasu 6-AP oziebiono do tempera¬ tury 0°C i pH doprowadzono do 4,2 przy pomocy 3n kwasu solnego. Wytracony kwas odsaczono i 45 wysuszono pod zmniejszonym cisnieniem, w tempe¬ raturze 45°C, do stalej wagi, otrzymujac 6,6 g pro¬ duktu. W lugach macierzystych /130 ml/ pozosta¬ lo jeszcze 0,4% kwasu 6-AP. Czystosc krystalicz¬ nego produktu, oznaczana metoda hydroksylami- 5o nowa, wynosila 97,5%. Widmo w podczerwieni, badania chromatograficzne oraz badanie skrecal- nosci wykazaly, iz jest to praktycznie czysty pro¬ dukt.Postepujac w identyczny sposób wykonano w cia- 55 gu 6 miesiecy 100 preparatyk kwasu 6-AP, wyko¬ rzystujac ciagle ten sam katalizator enzymatycz¬ ny i nie stwierdzajac widocznego zmniejszenia je¬ go aktywnosci.Przyklad II. Powtarzajac postepowanie z M przykladu I przygotowano katalizator enzymatycz¬ ny z komórek E. Coli oczyszczajac go jednak 15- -krotnie w porównaniu z katalizatorem z poprzed¬ niego przykladu, doprowadzilo to do 10-krotnego zwiekszenia aktywnosci. W kolumnie o wymiarach 65 jak w przykladzie I /objetosc 480 ml/ umieszczo-98 632 no 37 g katalizatora enzymatycznego, który prze¬ mywano woda i gliceryna do zaniku protein. W zbiorniku o pojemnosci 5 1 przygotowano 3 litry 2% roztworu wodnego soli potasowej penicyliny G. Stosujac pompe perystaltyczna roztwór penicy¬ liny przepuszczono przez kolumne z szybkoscia 500 ml/min mieszajac jednoczesnie energicznie roz¬ twór w zbiorniku celem zabezpieczenia jednorod¬ nosci podczas hydrolizy. Wartosc pH wynoszaca stale 8,0 utrzymywano przy pomocy pH-statu do¬ dajac 0,5N wodny roztwór Na OH. Kolumne ter¬ mostatowano w temperaturze 37°C. Rejestracja zuzycia roztworu NaOH pozwalala na sledzenie kinetyki hydrolizy.Po 2 godzinach i 10 minutach zuzycie NaOH spadlo do 5°/o poczatkowego, hydrolize wtedy za¬ konczono. Zuzycie 0,5N roztworu wynioslo 310 ml.Otrzymano do dalszego przerobu 3 300 ml wodnego roztworu zawierajacego kwas 6-AP, resztke peni- cyMny oraz powstaly podczas hydrolizy kwas fe¬ nylooctowy. Roztwór ten umieszczono w szescio- litrowym zbiorniku zaopatrzonym w mieszadlo, o- chlodzono do temperatury 5°C, zakwaszono IN kwasem solnym do pH 3 a nastepnie dodano 1 100 nil octanu butylu i mieszano w ciagu 15 minut dodajac IN kwasu solnego by utrzymac niezmie¬ niona wartosc pH. Mieszanine pozostawiono w cia¬ gu 20 minut w temperaturze 5°C do dekantacji.Otrzymano trzy warstwy: wodna, organiczna i emulsje octanu w wodzie. Po rozdzieleniu faz w rozdzielaczu emulsje rozdzielono przez odwirowa¬ nie. Polaczone warstwy wodne ekstrahowano po¬ wtórnie 1 100 ml octanu butylu. Lacznie podczas obu ekstrakcji zuzyto 180 ml IN kwasu solnego.Pierwszy ekstrakt octanowy zawieral, wedlug o- znaczenia hydroksylaminowego, 3 mM/litr penicy¬ liny, w drugim zas ekstrakcie nie stwierdzono o- oecnosci penicyliny.Warstwe wodna zalkalizowano do pH 6,9 przy pomocy 165 ml IN roztworu NaOH a nastepnie za- tezono pod zmniejszonym cisnieniem do 1/8 ob¬ jetosci zachowujac nastepujace warunki: tempe¬ ratura lazni 45°C, temperatura czynnika chlodza¬ cego —5°C, cisnienie 1 mm Hg, czas zatezenia — godzin.Pozostalosc ochlodzono do temperatury 2°C i pH doprowadzono przy pomocy 6N kwasu solnego do 4,2. Wypadl wtedy krystaliczny osad kwasu 6-AP, który po odsaczeniu suszono pod zmniejszonym cisnieniem /0,5 mm Hg, 45°C/ do stalej wagi. O- trzymano 32,4 g kwasu 6-AP. Lugi pokrystaliza- cyjne /450 ml/ zawieraly, wedlug oznaczenia hy¬ droksylaminowego, 180 nM/litr kwasu 6-AP, co stanowi 0,39% wagowych. Krystaliczny kwas 6-AP, oznaczony metoda hydroksylaminowa, wykazywal wobec standartu czystego produktu, czystosc wy¬ noszaca 98,5. Tak wiec z 161 mM penicyliny otrzy¬ mano 32,4X0,985 216 - = 147 mM kwasu 6-AP.Zakladajac wysoka czystosc surowca wyjsciowe¬ go uzyskano 91,4% wydajnosci kwasu 6-AP. Pod¬ czas nastepnych prób hydrolizy stosowano lugi z poprzednich krystalizacji zwiekszajac w ten spo¬ sób wydajnosc do 95%.Przyklad III. Powtarzajac postepowanie z przykladu I przygotowano nierozpuszczalny katali- zator enzymatyczny ze 100 g grzybni /waga wil¬ gotna/ z fermentacji Penicillium chrysogenum. 30 g katalizatora umieszczono w kolumnie o wymiarach 70X3 cm, termostatowanej w temperaturze 37°C.Przepuszczano 600 ml wodnego roztworu soli pota- sowej penicyliny V, utrzymujac pH 8,0. Po 5—7 godzinach uzyskiwano okolo 90% hydrolizy wyjs¬ ciowej penicyliny V. Wykonano szereg kolejnych hydroliz nie obserwujac dostrzegalnego zmniejsze¬ nia sie aktywnosci enzymatycznej.Przyklad IV. 16 g etylocelulozy /typ N-200, produkcji firmy Hercules/ rozpuszczono -w 184 g toluenu. Osobno przygotowano roztwór enzymu mieszajac 60 g /waga wilgotnego materialu/ ko¬ mórek otrzymanych z fermentacji E. Coli, które PO odsaczeniu, rozpuszczeniu i straceniu siarczanem amonu rozpuszczono w 30 ml gliceryny. Otrzyma¬ ny roztwór dodano do roztworu polimeru i emul¬ gowano mieszajac energicznie w temperaturze 0°C w ciagu 30 minut a otrzymana emulsje wlano do malego zbiornika i w temperaturze* —6°C pod cisnieniem azotu wyciskano wlókna, które koagu- lowano w eterze naftowym w temperaturze 20°C.Stosujac 30 g katalizatora enzymatycznego i po¬ stepujac podobnie jak w przykladzie I otrzymywa- no po 5 godzinach hydrolizy zawsze prawie taka sama, wynoszaca 5,15 g, ilosc kwasu 6-AP.Przyklad V. Powtarzajac postepowanie z przykladu IV przygotowano nierozpuszczalny ka¬ ta1izator enzymatyczny stosujac polimetyloglutami- nian /typ PLG-30, produkcji firmy Kjowa Hakko Kogyo Co. Ltd./. Koagulacje prowadzono w tolue¬ nie w temperaturze pokojowej. Stosujac 30 g tak przygotowanego katalizatora enzymatycznego otrzy¬ mano okolo 6 g kwasu 6-AP po 5 godzinach hy- 40 drolizy. PLThe present invention relates to a method of producing 6-aminopenicillanic acid by enzymatic hydrolysis under the influence of penicillin acylase. 6-aminopenicillanic acid is a valuable intermediate for the preparation of new semi-synthetic penicillins. The known method of obtaining 6-aminopenicillanic acid by direct fermentation of Penicillium chrisogenum, without precursors, is complicated and inefficient. So far used enzymatic methods use cells of appropriate microorganisms. ¬nisms producing penicillin acylase. Since these cells can only be used once and at a relatively high concentration necessary to shorten the hydrolysis time, new portions of them must be constantly prepared. Extraction of the hydrolysis product, ie, 6-AP acid, from the reaction mixture is a complicated problem. The result is an acid that requires recrystallization and often contains protein substances which, if not removed, for example by enzymatic decomposition with the use of proteolytic enzymes, develop allergic reactions upon administration of the pecillins obtained therefrom. This, of course, expands the production and complicates the production technology. It has been surprisingly found that the enzyme penicillin acylase, deposited on a fiber-structured carrier, retains its activity over a long period of use. During the tests, it maintained almost no reduced activity during 12 months of use. The prolonged activity of the enzyme catalyst simplifies the process and reduces costs. The method according to the invention with the use of an enzyme deposited on a fiber-structured carrier brings clear benefits. The method of enzymatic production of 6-aminopenicillanic acid of formula II according to the invention consists in significantly improving the quality of the product, simplifying the technological operations and reducing the production costs. A group of 1-10 carbon atoms, an alkenyl group of 3-10 carbon atoms, an aralkyl group, an R'-OCH2- group or a R'-SCH2- group, in which R 'is an alkyl, alkenyl, phenyl group, optionally monosubstituted with a halogen atom , a nitro, alkyl, alkenyl or alkoxy group in an aqueous solution with a concentration of 1-6% (by weight) is subjected to enzymatic hydrolysis under With a penicillin acylase deposited on a polymeric support with a fibrous structure, at a pH of about 8, at a temperature of up to 60 ° C, preferably 37-40 ° C, the resulting hydrolysis product separates. It is preferable to use a salt solution of a suitable penicillin. The term natural penicillin denotes the penicillin line produced during fermentation by Penicillium chrisogenum in the presence of suitable precursors. The enzyme, penicillin acylase, can be obtained from a variety of sources. In the present invention, it is preferred to use penicillin acylase derived from the cells of Escherichia Coli bacteria, especially strain E. Coli ATCC No. 9637. The insoluble enzyme catalyst is prepared as described in Italian patent No. 836,462. According to this patent, a fibrous carrier with an embedded enzyme is obtained from a solution of a polymer capable of forming a fibrous structure in which the enzyme preparation is dispersed. From the emulsion obtained in this way, it is possible to obtain dry-wet fibers with very small pores inside, in which the enzyme is embedded, which is encased in a very thin membrane that prevents the enzyme from passing into the reaction medium but, on the other hand, allows a catalytic interaction. Polymers on which the enzyme can be deposited include polymers of cellulose esters and nitrates, polyolefins, polymers and copolymers made of acrylonitrile, acrylates, methacrylates, vinyl esters, vinyl chloride, vinylidene chloride, styrene and polyamides, polyvinyl butyral and the like. The carrier with embedded enzyme, after the coagulation process has been completed and the fiber structured, is washed in order to remove absorbed protein contaminants that could be released into the environment. The catalyst prepared in this way can be used to catalyze the reaction. In this way, a high-purity product is obtained, completely free from protein contamination, which could cause allergic reactions. The enzyme catalyst can be used in a batch manner, in which case, after hydrolysis of the penicillin, the reaction mixture is removed and replaced with a fresh batch. The same enzyme catalyst can be used in a continuous process using a column. In continuous processes to avoid maintenance difficulties A buffered penicillin solution is used to maintain a constant pH at different levels of the column. The buffered penicillin solution is passed through a column packed with the enzyme catalyst. The pH value is maintained at 8 by automatic addition of the alkaline solution. The following examples illustrate the process according to the invention without limiting the scope of its application, however, by maintaining an appropriate flow rate and using the appropriate amount of catalyst. Example 1: 20 g of cellulose triacetate (Fluka) dissolved with stirring in 280 ml methylene chloride / C. Erba /. The enzyme solution was prepared separately by adding 60 g / wet product / cells obtained from E. Coli fermentation on a suitable medium in the presence of phenylacetic acid to 632 4 0.01 molar phosphate buffer at pH 7.0. The resulting material was heated for 3 minutes at temperature 50 ° C. and then lost with ammonium sulfate at pH 5.5, collecting the fractions that lost at 25-75% saturation. These fractions were dissolved in 0.01 M phosphate buffer pH 8.0 containing 30% by volume glycerin. The enzyme solution obtained was added to the cellulose triacetate solution and emulsified by vigorously stirring for 30 minutes at 0 ° C, then the obtained emulsion was poured into a small container and the fibers were pressed out with nitrogen pressure at -6 ° C and the fibers were coagulated in. toluene at room temperature. The obtained fibers were dried under reduced pressure for one hour to remove the toluene. 37 g of the catalyst obtained were placed in a glass column measuring 70 × 3 cm, provided with a thermostatic coat, and washed with water and glycerin until the proteins disappeared. Then 600 ml of a 2% aqueous solution of penicillin G (Sauibb) potassium salt were passed in closed circulation, while the pH was kept at 8 by continuous addition of 0.5N NaOH solution. The columns were thermostated at 37 ° C. After five hours, when the NaOH consumption had dropped to 1/20 of the initial consumption, the reaction mixture was cooled to 3 ° C, acidified to pH 3.0 with 33.5 ml of 2N hydrochloric acid and extracted with 2 × 200 ml of butyl acetate. In the first extract, the content of penicillin, determined by the hydroxylamine method, was 298 mg, and in the second extract / 2 mg. Relative to the 12 g of penicillin used, the conversion efficiency to 6-AP acid was 97%. No decomposition products were found chromatographically. A water layer of 800 ml, free of penicillin and phenylacetic acid residues, was basified to pH 7.0 with 33 ml of 2N NaOH 40 and then concentrated under reduced pressure at 37 ° C, up to a volume of 110 ml. The denatured 6-AP acid solution was cooled to 0 ° C. and the pH was adjusted to 4.2 with 3N hydrochloric acid. The precipitated acid was filtered off and dried in vacuo at 45 ° C. to a constant weight, yielding 6.6 g of the product. 0.4% of 6-AP acid remained in the mother liquors (130 ml). The purity of the crystalline product, determined by the hydroxylamine method, was 97.5%. The infrared spectrum, chromatographic studies, and a cursory test showed that it is practically pure product. Following the same procedure, 100 6-AP acid preparation was made over the course of 6 months, using the same enzyme catalyst continuously. not showing any apparent reduction in its activity. Example II. By repeating the procedure of Example I, an enzyme catalyst was prepared from E. Coli cells, but purifying it 15 times compared to the catalyst of the previous example, led to a 10-fold increase in activity. In a column of size 65 as in Example 1 (volume 480 ml), 37 g of the enzyme catalyst were placed, which were washed with water and glycerin until the proteins disappeared. In a 5 liter tank, 3 liters of a 2% aqueous solution of penicillin G potassium salt were prepared. Using a peristaltic pump, the penicillin solution was passed through the column at a rate of 500 ml / min while vigorously mixing the solution in the tank to ensure homogeneity during hydrolysis. The pH value, constantly at 8.0, was maintained by a pH stat to add 0.5N aqueous NaOH solution. The column was thermostated at 37 ° C. The recording of the consumption of the NaOH solution allowed the kinetics of the hydrolysis to be followed. After 2 hours and 10 minutes, the consumption of NaOH had dropped to 5% of the original, the hydrolysis was then complete. The consumption of the 0.5N solution was 310 ml. 3,300 ml of an aqueous solution containing 6-APA, residual penicine and phenylacetic acid formed during hydrolysis were obtained for further processing. This solution was placed in a 6 liter vessel equipped with a stirrer, cooled to 5 ° C, acidified with 1N hydrochloric acid to pH 3, then 1,100 ml of butyl acetate was added and stirred for 15 minutes with 1N hydrochloric acid to keep it steady. Low pH value. The mixture was allowed to decant for 20 minutes at 5 ° C. Three layers were obtained: aqueous, organic and acetate-in-water emulsions. After phase separation in a separator, the emulsions were separated by centrifugation. The combined aqueous layers were re-extracted with 1 100 ml of butyl acetate. A total of 180 ml of 1N hydrochloric acid was used during both extractions. The first acetate extract contained, according to the hydroxylamine value, 3 mM / liter of penicillin, in the second extract no penicillin was found. The aqueous layer was basified to pH 6.9 at with 165 ml of 1N NaOH solution and then concentrated under reduced pressure to 1/8 volume while maintaining the following conditions: bath temperature 45 ° C, coolant temperature -5 ° C, pressure 1 mm Hg, concentration time - hours. The residue was cooled to 2 ° C and the pH was adjusted to 4.2 with 6N hydrochloric acid. A crystalline precipitate of 6-AP acid then precipitated, which was dried under vacuum (0.5 mm Hg, 45 ° C) after filtration to a constant weight. 32.4 g of 6-AP acid were retained. The post-crystallization liquors (450 ml) contained, according to the hydroxylamine determination, 180 nM / liter of 6-AP acid, which is 0.39% by weight. Crystalline 6-AP acid, determined by the hydroxylamine method, showed a purity of 98.5 against the pure product standard. Thus, from 161 mM of penicillin, 32.4 × 0.985 216 - = 147 mM of 6-AP acid were obtained. Assuming high purity of the starting material, 91.4% yield of 6-AP acid was obtained. During subsequent hydrolysis tests, liquors from previous crystallizations were used, thus increasing the yield to 95%. Example III. By repeating the procedure of Example 1, an insoluble enzyme catalyst was prepared from 100 g of mycelium (wet weight) from a fermentation of Penicillium chrysogenum. 30 g of catalyst was placed in a 70 × 3 cm column, thermostated at 37 ° C. 600 ml of an aqueous solution of penicillin V potassium salt was passed through, maintaining the pH at 8.0. After 5-7 hours, approximately 90% of the initial penicillin V was hydrolyzed. A series of successive hydrolyses were carried out without any appreciable decrease in enzymatic activity. Example IV. 16 g of ethylcellulose (type N-200, produced by Hercules) was dissolved in 184 g of toluene. Separately, an enzyme solution was prepared by mixing 60 g / weight of wet material / cells obtained from the E. coli fermentation, which, after being drained, dissolved and lost with ammonium sulfate, was dissolved in 30 ml of glycerol. The resulting solution was added to the polymer solution and emulsified with vigorous stirring at 0 ° C for 30 minutes, and the resulting emulsion was poured into a small vessel and at a temperature of * -6 ° C under nitrogen pressure, the fibers were squeezed out and coagulated in petroleum ether. at a temperature of 20 ° C. Using 30 g of the enzyme catalyst and following the steps in example 1, after 5 hours of hydrolysis, the amount of 6-AP acid was always almost the same, amounting to 5.15 g. Example V. By repeating the procedure with In Example 4, an insoluble enzyme catalyst was prepared using polymethylglutamate / type PLG-30, manufactured by Kjowa Hakko Kogyo Co. Ltd./. Coagulation was carried out in toluene at room temperature. Using 30 g of the enzyme catalyst prepared in this way, about 6 g of 6-AP acid were obtained after 5 hours of hydrolysis. PL