PL423865A1 - Method for producing biodegradable external stents intended for putting over blood vessels and the biodegradable external stent intended for putting over blood vessels, obtained by this method - Google Patents

Method for producing biodegradable external stents intended for putting over blood vessels and the biodegradable external stent intended for putting over blood vessels, obtained by this method

Info

Publication number
PL423865A1
PL423865A1 PL423865A PL42386517A PL423865A1 PL 423865 A1 PL423865 A1 PL 423865A1 PL 423865 A PL423865 A PL 423865A PL 42386517 A PL42386517 A PL 42386517A PL 423865 A1 PL423865 A1 PL 423865A1
Authority
PL
Poland
Prior art keywords
fiber
biodegradable
stent
blood vessels
diameter
Prior art date
Application number
PL423865A
Other languages
Polish (pl)
Other versions
PL236613B1 (en
Inventor
Grzegorz Suwalski
Paweł Sajkiewicz
Judyta Dulnik
Piotr Denis
Original Assignee
Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk filed Critical Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk
Priority to PL423865A priority Critical patent/PL236613B1/en
Publication of PL423865A1 publication Critical patent/PL423865A1/en
Publication of PL236613B1 publication Critical patent/PL236613B1/en

Links

Abstract

Przedmiotem zgłoszenia jest biodegradowalny stent zewnętrzny, przeznaczony do nakładania na naczynia krwionośne, w postaci cylindrycznej rurki, który obejmuje żebrowanie zarówno zewnętrznej jak i wewnętrznej powierzchni ściany stentu, przy czym w przekroju podłużnym stentu żebrowanie ściany jest zbliżone profilem do sinusoidy, której dwa grzbiety są w odległości odpowiadającej skokowi nawoju sprężyny na walcu, przy czym średnica żebra (g) mieści się w zakresie od 6,5 do 13,5% średnicy wewnętrznej (d) stentu, skok nawoju żebrowania (s) mieści się w zakresie od 200 do 800% średnicy żebra (g), a kąt nawoju jest zasadniczo taki sam na całej długości nawoju, przy czym ściany stentu wykonane są z materiału włóknistego zawierającego włóknotwórczy, biodegradowalny poliester alifatyczny i biopolimer białkowy, przy czym włóknotwórczy, biodegradowalny poliester alifatyczny ma czas biodegradacji in vivo nie krótszy niż 6 miesięcy, przy czym korzystnie produkty jego rozkładu nie wywołują reakcji zapalnej. Przedmiotem zgłoszenia jest także sposób wytwarzania biodegradowalnych stentów zewnętrznych przeznaczonych do nakładania na naczynia krwionośne, który obejmuje etapy: a) przygotowania roztworu włóknotwórczego, biodegradowalnego poliestru alifatycznego oraz biopolimeru białkowego w rozpuszczalniku organicznym, przy czym włóknotwórczy, biodegradowalny poliester alifatyczny ma czas biodegradacji in vivo nie krótszy niż 6 miesięcy, przy czym korzystnie produkty jego rozkładu nie wywołują reakcji zapalnej, b) elektroprzędzenia roztworu włóknotwórczego z pkt. a), z wykorzystaniem niskoprądowego generatora wysokiego napięcia, pompy dozującej wymieniony roztwór włóknotwórczy, kolektora obrotowego, przy czym aktywną funkcję zbierania włókien pełni walec z żebrowaną w sposób spiralny powierzchnią, przy czym średnica żebra (g) mieści się w zakresie od 6,5 do 13,5% średnicy walca (d) i skok nawoju żebrowania (s) mieści się w zakresie od 200 do 800% średnicy żebra (g) i przy czym kąt nawoju jest zasadniczo taki sam na całej długości nawoju. Zgłoszenie dotyczy również biodegradowalnego stentu zewnętrznego wytwarzanego tym sposobem.The subject of the application is a biodegradable external stent, intended for application to blood vessels, in the form of a cylindrical tube, which includes ribbing of both the external and internal surface of the stent wall, where in the longitudinal section of the stent the ribbing of the wall is similar to a sinusoid, whose two ridges are in distance corresponding to the spring winding stroke on the cylinder, with the rib diameter (g) in the range from 6.5 to 13.5% of the inner diameter (d) of the stent, the pitch of the ribbing (s) in the range from 200 to 800% rib diameter (g) and the winding angle is essentially the same over the entire length of the winding, with the walls of the stent being made of a fibrous material containing a fiber-forming, biodegradable aliphatic polyester and a protein biopolymer, wherein the fiber-forming, biodegradable aliphatic polyester has no in vivo biodegradation time less than 6 months, with root Only its degradation products do not cause an inflammatory reaction. The subject of the application is also a method for producing biodegradable external stents for application to blood vessels, which includes the steps of: a) preparing a fiber-forming solution, a biodegradable aliphatic polyester and a protein biopolymer in an organic solvent, where the fiber-forming, biodegradable aliphatic polyester has in vivo biodegradable time than 6 months, but preferably its decomposition products do not cause an inflammatory reaction, b) electrospinning of the fiber-forming solution from point a), using a low-voltage high-voltage generator, a dosing pump for said fiber-forming solution, a rotary collector, the active function of fiber collection is a roller with a spirally ribbed surface, the diameter of the rib (g) being in the range from 6.5 to 13.5% of the cylinder diameter (d) and the pitch of the finning rib (s) are in the range from 200 to 800% of the rib diameter (g) and the winding angle is substantially the same over the entire length of the bundle. The application also relates to a biodegradable external stent produced by this method.

PL423865A 2017-12-13 2017-12-13 Method for producing biodegradable external stents intended for putting over blood vessels and the biodegradable external stent intended for putting over blood vessels, obtained by this method PL236613B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL423865A PL236613B1 (en) 2017-12-13 2017-12-13 Method for producing biodegradable external stents intended for putting over blood vessels and the biodegradable external stent intended for putting over blood vessels, obtained by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL423865A PL236613B1 (en) 2017-12-13 2017-12-13 Method for producing biodegradable external stents intended for putting over blood vessels and the biodegradable external stent intended for putting over blood vessels, obtained by this method

Publications (2)

Publication Number Publication Date
PL423865A1 true PL423865A1 (en) 2019-06-17
PL236613B1 PL236613B1 (en) 2021-02-08

Family

ID=66809799

Family Applications (1)

Application Number Title Priority Date Filing Date
PL423865A PL236613B1 (en) 2017-12-13 2017-12-13 Method for producing biodegradable external stents intended for putting over blood vessels and the biodegradable external stent intended for putting over blood vessels, obtained by this method

Country Status (1)

Country Link
PL (1) PL236613B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0137605B1 (en) * 1983-08-03 1988-06-08 Shiley Incorporated Vascular graft prosthesis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0137605B1 (en) * 1983-08-03 1988-06-08 Shiley Incorporated Vascular graft prosthesis

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ATSUHIKO SATO, A NOVEL BIODEGRADABLE EXTERNAL MESH STENT IMPROVED LONG­TERM PATENCY OF VEIN GRAFTS BY INHIBITING INTIMAL-MEDIAL HYPERPLASIA IN AN EXPERIMENTAL CANINE MODEL, 2016 *
MITSURU SATO, MEDIAL REGENERATION USING A BIODEGRADABLE FELT AS A SCAFFOLD PRESERVES INTEGRITY AND COMPLIANCE OF A CANINE DISSECTED AORTA, November 2012 (2012-11-01) *
VEERAM REDDY SR, A NOVEL BIODEGRADABLE STENT APPLICABLE FOR USE IN CONGENITAL HEART DISEASE: BENCH TESTING AND FEASIBILITY RESULTS IN A RABBIT MODEL, February 2014 (2014-02-01) *
VIJAYAN V.ET, LONG-TERM REDUCTION OF MEDIAL AND INTIMAL THICKENING IN PORCINE SAPHENOUS VEIN GRAFTS WITH A POLYGLACTIN BIODEGRADABLE EXTERNAL SHEATH, November 2004 (2004-11-01) *

Also Published As

Publication number Publication date
PL236613B1 (en) 2021-02-08

Similar Documents

Publication Publication Date Title
Feng et al. Highly aligned poly (3, 4-ethylene dioxythiophene)(PEDOT) nano-and microscale fibers and tubes
Jin et al. Effect of alkaline hydrolysis on cyclization reaction of PAN nanofibers
Sun et al. Polypyrrole-coated poly (l-lactic acid-co-ε-caprolactone)/silk fibroin nanofibrous nerve guidance conduit induced nerve regeneration in rat
Reddy et al. A review on electrospun nanofibers based advanced applications: From health care to energy devices
Van der Schueren et al. Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system
CN104383606B (en) A kind of high-strength high-elasticity intravascular stent and preparation method thereof
US9770529B2 (en) Tissue repair scaffold
IN2012DN02529A (en)
JP7369818B2 (en) Medical devices with controlled biodegradation
CN203829090U (en) Nanofiber neural graft
CN103230622A (en) Conduit for tissue-engineered nerve transplanting and preparation method thereof
CN202637199U (en) Spiral degradable esophageal stent
CN104998302A (en) Nano cartilage repair material taking aligned nanofiber mat as skeleton and preparation method of nano cartilage repair material
Hamano et al. Cellulose acetate nanofiber mat with honeycomb-like surface structure
WO2016192697A3 (en) Linear fibrous formation with a coating of polymeric nanofibers enveloping a supporting linear formation constituting a core, a method and a device for producing it
PL423865A1 (en) Method for producing biodegradable external stents intended for putting over blood vessels and the biodegradable external stent intended for putting over blood vessels, obtained by this method
Liu et al. Electrospun core–sheath fibers for integrating the biocompatibility of silk fibroin and the mechanical properties of PLCL
CN102755670A (en) Preparation method of traceable biodegradable polymer bracket
RU2012115855A (en) IMPLANTED DEVICES FOR MODULATION OF THE PROCESSES FOR THE RELEASE OF THE BIOLOGICALLY ACTIVE COMPONENT
Zainuddin et al. Continuous yarn electrospinning
RU2018116072A (en) ENDLESS FIBERS OF TYPE Kernel-Shell Based on Hyaluronan or its C11-C18 Acylated Derivatives, METHOD FOR PRODUCING AND USING THEM, STAPLE FIBERS, YARN AND TEXTILE MATERIAL, ITSENILE, AND ITSENILE, ITSENIE,
Shin et al. Direct coating of bioactive sol–gel derived silica on poly (ε-caprolactone) nanofibrous scaffold using co-electrospinning
Hossain et al. Tubular scaffold with shape recovery effect for cell guide applications
JP2016195642A (en) Nerve regeneration tube and manufacturing method of nerve regeneration tube
CN105688275B (en) The preparation method of nano-elastic patching material for Pelvic pain syndrome