PL416745A1 - Method for densification of solutions and the device for densification - Google Patents

Method for densification of solutions and the device for densification

Info

Publication number
PL416745A1
PL416745A1 PL416745A PL41674516A PL416745A1 PL 416745 A1 PL416745 A1 PL 416745A1 PL 416745 A PL416745 A PL 416745A PL 41674516 A PL41674516 A PL 41674516A PL 416745 A1 PL416745 A1 PL 416745A1
Authority
PL
Poland
Prior art keywords
concentrated solution
solution
evaporative
evaporation
outlets
Prior art date
Application number
PL416745A
Other languages
Polish (pl)
Inventor
Dariusz Okoniewski
Original Assignee
Dariusz Okoniewski
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dariusz Okoniewski filed Critical Dariusz Okoniewski
Priority to PL416745A priority Critical patent/PL416745A1/en
Priority to PCT/PL2017/000036 priority patent/WO2017176134A2/en
Publication of PL416745A1 publication Critical patent/PL416745A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0088Cascade evaporators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/22Evaporating by bringing a thin layer of the liquid into contact with a heated surface
    • B01D1/222In rotating vessels; vessels with movable parts
    • B01D1/223In rotating vessels; vessels with movable parts containing a rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/26Multiple-effect evaporating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • B01D3/146Multiple effect distillation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Przedmiotem wynalazku jest sposób uzyskania bardzo wysokiego stopnia wykorzystania pary zasilającej w procesie zagęszczania roztworów, w wyparkach, składających się z wielu stożkowych wirujących zespołów wyparnych i urządzenie do takiego zagęszczania. W sposobie zagęszczany roztwór rozprowadzany jest na sześć lub więcej stożkowych powierzchni odparowania, zespolonych kaskadowym oddawaniem ciepła, przy czym z wybranych stopni wyparnych koncentrat odbierany jest osobno i łączony z roztworem pierwotnym podawanym do urządzenia. Ponadto roztwór u nasady stożków odparowania wypływa prostopadle do promienia ich obrotu powodując wir w przestrzeni rozprowadzania. Urządzenie wyparne składa się z jednego lub kilku wirujących wielostopniowych zespołów wyparnych, o kształcie odwróconych ściętych stożków, obwodowo zamkniętych monolitycznymi ścianami (6), a przyosiowo krawędziami trwale zespojonych z cylindrami (7), o średnicy znacznie większej niż wał (15), posiadającymi otwory (8) zasilania zagęszczanym roztworem, każdej stożkowej powierzchni odparowania i osadzonych kształtkami (9) skrajnymi, szczelnie, na elemencie (16) nośnym wydrążonego wału (15), z bocznymi otworami, połączonego z jednej strony z głowicą zasilającą w zagęszczany roztwór, z drugiej z głowicą parową. W zamkniętej przestrzeni pomiędzy wałem (15) i cylindrami (7) osadzone są szczelnie z otworami (8) zasilania walce (22) zaworów. Ze ścian (6) wychodzą króćce wypływowe końcowo zagęszczonego roztworu, króćce wypływowe wstępnie zagęszczonego roztworu i króćce wypływowe skroplin. Ich skraje odpowiednio wchodzą w przestrzeń pionowych koryt przepływowych, z przelewami, zamocowanych do kolistych obrzeży elementów (16) nośnego i (19) górnego. Zbiorczo dla każdego ciągu króćców uzyskuje się efekt U-rurki. Przelewy w odśrodkowych dnach koryt posiadają otwory wypływowe wstępnie i końcowo zagęszczonego roztworu na odpowiednich wysokościach tak, że wstępnie zagęszczony roztwór wyłapywany jest przez cylinder (33), a końcowo zagęszczony roztwór wyrzucany jest na ścianę (49) obudowy bocznej komory oparów. Zastosowane rozwiązania dają możliwość konstruowania urządzeń o zwiększonej ilości stopni wyparnych z zachowaniem efektywności ekonomicznej, ponieważ wszystkie stopnie wyparne posiadają taki sam, bardzo wysoki współczynnik przenikania ciepła. Konstrukcje posiadają bardzo szerokie spektrum zastosowań ze względu na sekundowy czas zagęszczania i pokonanie ograniczeń, wynikających z wysokiej lepkości koncentratu.The subject of the invention is a method of obtaining a very high degree of use of feed steam in the concentration of solutions, in evaporators, consisting of many conical rotating evaporative assemblies and a device for such concentration. In the method, the concentrated solution is distributed to six or more conical evaporation surfaces, combined with cascade heat release, with the concentrate selected from the evaporative stages separately and combined with the original solution fed to the device. In addition, the solution at the base of the evaporation cones flows perpendicular to the radius of their rotation, causing a vortex in the distribution space. The evaporation device consists of one or several rotating multi-stage evaporative assemblies, in the shape of inverted truncated cones, circumferentially closed with monolithic walls (6), and axially joined edges permanently connected to cylinders (7), with a diameter much larger than the shaft (15), having holes (8) supplying the thickened solution, each conical evaporation surface and the molded (9) outermost, tightly, on the supporting element (16) of the hollow shaft (15), with lateral openings, connected on one side with the supply head to the concentrated solution, on the other with a steam head. In the closed space between the shaft (15) and the cylinders (7) they are sealed tightly with the holes (8) for supplying the rollers (22) to the valves. Outlets of the final thickened solution, outlets of the pre-concentrated solution and condensate outlets exit from the walls (6). Their edges respectively enter the space of vertical flow troughs, with overflows, attached to the circular edges of the (16) support and (19) upper elements. Collectively, a U-tube effect is obtained for each string of connections. Overflows in the centrifugal bottoms of the troughs have outlet holes of the pre-concentrated and finally concentrated solution at appropriate heights, such that the pre-concentrated solution is captured by the cylinder (33), and the finally concentrated solution is thrown onto the wall (49) of the side vapor chamber housing. The applied solutions make it possible to construct devices with an increased number of evaporative stages while maintaining economic efficiency, because all evaporative stages have the same, very high heat transfer coefficient. The constructions have a very wide spectrum of applications due to the second compaction time and overcoming the limitations resulting from the high viscosity of the concentrate.

PL416745A 2016-04-04 2016-04-04 Method for densification of solutions and the device for densification PL416745A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL416745A PL416745A1 (en) 2016-04-04 2016-04-04 Method for densification of solutions and the device for densification
PCT/PL2017/000036 WO2017176134A2 (en) 2016-04-04 2017-04-04 Method for concentrating solutions and a device for concentrating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL416745A PL416745A1 (en) 2016-04-04 2016-04-04 Method for densification of solutions and the device for densification

Publications (1)

Publication Number Publication Date
PL416745A1 true PL416745A1 (en) 2017-10-09

Family

ID=59227797

Family Applications (1)

Application Number Title Priority Date Filing Date
PL416745A PL416745A1 (en) 2016-04-04 2016-04-04 Method for densification of solutions and the device for densification

Country Status (2)

Country Link
PL (1) PL416745A1 (en)
WO (1) WO2017176134A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108423728A (en) * 2018-03-21 2018-08-21 国电山东电力有限公司 A kind of thermal wastewater concentration systems that air Natural Circulation water is in line and method
CN116492707B (en) * 2023-06-26 2023-08-29 山东兴达化工有限公司 Evaporation crystallization integrated equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA696789A (en) * 1964-10-27 Aktiebolaget Separator Method and apparatus for evaporating liquids
FR2540739A1 (en) * 1983-02-11 1984-08-17 Elf France DEVICE AND FACILITIES FOR THIN-FILM EVAPORATION DISTILLATION, ESPECIALLY FOR HYDROCARBONS, AND METHOD OF IMPLEMENTING SAID DEVICE
US5395483A (en) * 1992-07-31 1995-03-07 Al-Hawaj; Osamah M. Rotary apparatus for combined multi flashing and boiling liquids

Also Published As

Publication number Publication date
WO2017176134A3 (en) 2017-12-07
WO2017176134A2 (en) 2017-10-12

Similar Documents

Publication Publication Date Title
CN106662382B (en) Downward film evaporator
PL416745A1 (en) Method for densification of solutions and the device for densification
US11365938B2 (en) Combined convector
CN109420354B (en) Multistage distillation device
JP2016530096A5 (en)
US20120324911A1 (en) Dual-loop cooling system
CN106440851B (en) Modularization heat exchange columns and the method for assembling the modularization heat exchange columns
JP5832922B2 (en) Heat exchanger equipment
WO2018189887A1 (en) Falling film type heat exchanger
US10054317B2 (en) Food cooking oven with a device for distributing water inside the cooking chamber of the oven, for producing steam inside the chamber
CN106659943A (en) Contacting device and method
EP3690335A1 (en) Improved high pressure water extraction device with shave off edge that feeds a low pressure chamber to improve water collection and drainage
US11333451B2 (en) Plate and shell heat exchanging system having a divided manifold tube
US10427066B2 (en) Multi-stage distillation system, method for the operation thereof
US3430690A (en) Centrifugal apparatus for heat exchange
US1224560A (en) Drying apparatus.
RU2549277C1 (en) Steam and water heater
RU2334930C1 (en) Mechanical-draft tower
KR20150079682A (en) A system for controlled concentration and solids recovery
US20140165641A1 (en) Distributor for evaporative condenser header or cooler header
RU2462286C1 (en) Method of fluid evaporation in evaporator
US10371456B2 (en) Method using heat pipes with multiple evaporator/condenser zones and heat exchangers using same
RU2013126336A (en) METHOD FOR GAS DISTRIBUTION IN A SHAFT GRAIN DRYER AND DEVICE FOR ITS IMPLEMENTATION
US589553A (en) Half to francis j
RU160278U1 (en) MODIFIED PERFORATED CANVAS FOR HEAT AND MASS EXCHANGE DEVICES