PL409987A1 - Method and the system for measurements of relative changes in concentration of stresses in front of the mining longwall face - Google Patents

Method and the system for measurements of relative changes in concentration of stresses in front of the mining longwall face

Info

Publication number
PL409987A1
PL409987A1 PL409987A PL40998714A PL409987A1 PL 409987 A1 PL409987 A1 PL 409987A1 PL 409987 A PL409987 A PL 409987A PL 40998714 A PL40998714 A PL 40998714A PL 409987 A1 PL409987 A1 PL 409987A1
Authority
PL
Poland
Prior art keywords
suppression
tomography
longwall
stress
speed
Prior art date
Application number
PL409987A
Other languages
Polish (pl)
Other versions
PL230218B1 (en
Inventor
Zbigniew Isakow
Marek Dworak
Adam Gołąbek
Original Assignee
Instytut Technik Innowacyjnych Emag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instytut Technik Innowacyjnych Emag filed Critical Instytut Technik Innowacyjnych Emag
Priority to PL409987A priority Critical patent/PL230218B1/en
Priority to RU2015101765/03A priority patent/RU2604532C2/en
Priority to CN201480002445.1A priority patent/CN105765409B/en
Priority to PCT/PL2014/000124 priority patent/WO2015002557A2/en
Priority to UAA201501086A priority patent/UA118088C2/en
Publication of PL409987A1 publication Critical patent/PL409987A1/en
Publication of PL230218B1 publication Critical patent/PL230218B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/003Seismic data acquisition in general, e.g. survey design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/303Analysis for determining velocity profiles or travel times
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/12Signal generation
    • G01V2210/123Passive source, e.g. microseismics
    • G01V2210/1236Acoustic daylight, e.g. cultural noise
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/612Previously recorded data, e.g. time-lapse or 4D
    • G01V2210/6122Tracking reservoir changes over time, e.g. due to production
    • G01V2210/6124Subsidence, i.e. upwards or downwards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/622Velocity, density or impedance
    • G01V2210/6222Velocity; travel time

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Sposób pomiaru względnych zmian koncentracji naprężeń przed frontem ściany wydobywczej polega na tym, że serwer rejestrująco-sterujący (6) rejestruje sygnały pomiarowe drgań z zainstalowanych w chodnikach przyścianowych (A) trójskładowych geofonowych sond pomiarowych zorientowanych przestrzennie synchronicznie we wszystkich kanałach pomiarowych i w synchronizowanym interwale czasowym oraz w ścisłej korelacji z sygnałami informującymi o trybie pracy i o położeniu kombajnu ścianowego (15) w wyrobisku ścianowym (B) i na tej podstawie przy współpracy z serwerem przetwarzającym (10) lokalizuje zjawiska sejsmiczne. Z kolei po zakończeniu każdego skrawu przez kombajn ścianowy (15) dokonuje analizy względnych zmian naprężeń w caliźnie węglowej (C) przed frontem ściany wydobywczej metodą tomografii osłabieniowo - tłumieniowej z wykorzystaniem zarejestrowanych energii fali (FK). Natomiast po zakończeniu skrawu podczas postoju kombajnu ścianowego (15) dokonuje aktywnej tomografii prędkościowej lub tłumieniowej poprzez prześwietlanie górotworu pomiędzy chodnikami przyścianowymi (A) przy pomocy fal sejsmicznych (FS), po czym dokonuje analizy naprężeń metodą tomografii pasywnej prędkościowej i/lub tłumieniowej z wykorzystaniem jako źródła prześwietlającej fali sejsmicznej (FP). Następnie okresowo korzystnie kilka razy na zmianę wydobywczą sporządza uśrednioną skumulowaną mapę tomograficzną koncentracji względnych zmian naprężeń i/lub sporządza mapy z poszczególnych tomografii. Układ zawiera co najmniej sześć uniwersalnych modułów inicjacji i pomiaru drgań (1) usytuowanych w każdym z chodników przyścianowych (A), które połączone są iskrobezpiecznymi liniami transmisji cyfrowej (2) z lokalnym koncentratorem danych pomiarowych (3), który z kolei połączony jest z iskrobezpiecznym zasilaczem buforowym (4) oraz poprzez światłowodową sieć ETHERNET (5) z serwerem rejestrująco - sterującym (6) połączonym z kopalnianym system dyspozytorskim (7), z modułem globalnego pozycjonowania satelitarnego (8), z modułem wyznacznika czasu wewnętrznego (9) oraz z serwerem przetwarzającym (10). Z kolei do serwera przetwarzającego (10) podłączony jest panel wizualizacji tomografii skumulowanej (14) i korzystnie panel wizualizacji aktywnej tomografii osłabieniowo - tłumieniowej (11), panel wizualizacji aktywnej tomografii prędkościowej lub tłumieniowej (12), panel wizualizacji tomografii pasywnej prędkościowej lub tłumieniowej (13).The method of measuring relative changes in stress concentration in front of the mining wall is based on the fact that the registration and control server (6) records the vibration measurement signals from the three-component geophone measurement probes installed in the wall walkways (A) synchronously spatially oriented in all measurement channels and in a synchronized time interval, and in close correlation with signals informing about the operating mode and location of the longwall shearer (15) in the longwall (B) and on this basis, in cooperation with the processing server (10), locates seismic phenomena. In turn, after each cut is completed by a shearer (15), it analyzes the relative changes in stress in the coal plain (C) in front of the mining wall by the method of attenuation and suppression tomography using recorded wave energy (FK). On the other hand, after the cutting process when the shearer stops (15), it performs active speed or suppression tomography by X-raying the rock mass between longwall galleries (A) using seismic waves (FS), and then performs stress analysis using the method of passive speed and / or suppression tomography sources of translucent seismic wave (FP). Then, periodically, preferably several times per mining shift, it prepares an average cumulative tomographic map of the concentration of relative stress changes and / or prepares maps from individual tomographies. The system contains at least six universal initiation and vibration measurement modules (1) located in each of the longwall walkways (A), which are connected by intrinsically safe digital transmission lines (2) with the local measurement data concentrator (3), which in turn is connected to intrinsically safe buffer power supply (4) and through the fiber optic ETHERNET network (5) with a recording and control server (6) connected to the mine dispatcher system (7), with a global satellite positioning module (8), with an internal time indicator module (9) and with a server processors (10). In turn, the processing server (10) is connected to a cumulative tomography visualization panel (14) and preferably an active suppression and suppression tomography visualization panel (11), an active speed or suppression tomography visualization panel (12), a speed or suppressive tomography visualization panel (13) ).

PL409987A 2014-10-30 2014-10-30 Method and the system for measurements of relative changes in concentration of stresses in front of the mining longwall face PL230218B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL409987A PL230218B1 (en) 2014-10-30 2014-10-30 Method and the system for measurements of relative changes in concentration of stresses in front of the mining longwall face
RU2015101765/03A RU2604532C2 (en) 2014-10-30 2014-10-31 Method of stress concentration relative changes measuring in front of mining face front
CN201480002445.1A CN105765409B (en) 2014-10-30 2014-10-31 For measuring the method and system for the opposite variation that the stress in front of longwell is concentrated
PCT/PL2014/000124 WO2015002557A2 (en) 2014-10-30 2014-10-31 Method and system for measuring relative changes in stress concentration in front of a longwall
UAA201501086A UA118088C2 (en) 2014-10-30 2014-10-31 Method and system for measuring relative changes in stress concentration in front of a longwall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PL409987A PL230218B1 (en) 2014-10-30 2014-10-30 Method and the system for measurements of relative changes in concentration of stresses in front of the mining longwall face

Publications (2)

Publication Number Publication Date
PL409987A1 true PL409987A1 (en) 2016-05-09
PL230218B1 PL230218B1 (en) 2018-10-31

Family

ID=52021409

Family Applications (1)

Application Number Title Priority Date Filing Date
PL409987A PL230218B1 (en) 2014-10-30 2014-10-30 Method and the system for measurements of relative changes in concentration of stresses in front of the mining longwall face

Country Status (5)

Country Link
CN (1) CN105765409B (en)
PL (1) PL230218B1 (en)
RU (1) RU2604532C2 (en)
UA (1) UA118088C2 (en)
WO (1) WO2015002557A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291702A (en) * 2016-10-17 2017-01-04 中国矿业大学 A kind of Time-lapse Seismic Monitoring method of mining areas of mine area of stress concentration
CN107091089B (en) * 2017-07-04 2019-01-11 中国矿业大学 Automatic lifting of shearer device and method based on coalcutter focus forward probe
CN108956933B (en) * 2017-08-25 2023-07-14 山东科技大学 Method and device for simulating reverse fault formation in laboratory
CN110261901B (en) * 2019-06-10 2020-06-23 武汉大学 Deep rock mass rockburst intensity evaluation method based on induced vibration
CN111413735B (en) * 2020-05-11 2022-08-26 安徽理工大学 Coal face rapid earthquake transmission chromatography method capable of simultaneously exciting multiple seismic sources
CN111812714B (en) * 2020-06-08 2022-11-15 中煤科工集团西安研究院有限公司 Coal seam longitudinal and transverse wave velocity obtaining method based on refracted longitudinal waves and high-frequency trough waves
RU2768768C1 (en) * 2021-06-02 2022-03-24 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Method for determining the stress state of rock formations
CN113779789B (en) * 2021-09-06 2022-06-21 重庆大学 Intelligent working face overlying rock stress sensing method based on support dynamic pressure difference index
CN114089438B (en) * 2021-10-27 2024-05-28 中矿中和智能地质工程(江苏)研究院有限公司 Intelligent monitoring system for coal mine land survey prevention and control water

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2032103B (en) * 1978-10-20 1983-01-19 Coal Industry Patents Ltd Method and apparatus for locating flaws in a mineral seam
PL152339B1 (en) 1986-12-03 1990-12-31 System of a multichannel seismic apparatus
US4819759A (en) 1988-03-14 1989-04-11 Atlantic Richfield Company Telescoping actuator for impulsive seismic source
DE19944032B4 (en) 1999-09-14 2008-01-03 Geoforschungszentrum Potsdam Apparatus and method for generating seismic vibrations
CN1969199A (en) * 2004-04-21 2007-05-23 顶峰技术公司 Microseismic fracture mapping using seismic source timing measurements for velocity calibration
PL202149B1 (en) 2004-05-10 2009-06-30 Ct Elektryfikacji I Automatyza System for continuous monitoring of relative changes in stresses occurring before the longwall
PL207323B1 (en) 2006-01-23 2010-12-31 Głowny Inst Gornictwa Method of determination of the value of the effective seismic waves energy absorption factor in front of the mining wall machined with a combine
CN101581789A (en) * 2009-06-23 2009-11-18 刘盛东 Mine working face inter-lane seismic wave CT detection method
CN101762830B (en) * 2009-09-29 2013-01-02 中国矿业大学 Distributed coal mine rock burst monitoring method
RU2011112877A (en) 2011-04-05 2012-10-10 Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования "Уральский гос METHOD FOR MONITORING STRESSED-DEFORMED STATE OF MOUNTAIN ARRAY
CN102279410A (en) 2011-06-21 2011-12-14 北京蓝尊科技有限公司 Real-time monitoring system and method for underground mining activities of mine
RU2485551C1 (en) 2011-10-24 2013-06-20 Анатолий Фёдорович Косолапов Borehole seismic source
RU122119U1 (en) * 2012-05-05 2012-11-20 Общество с ограниченной ответственностью "Инситу" SYSTEM OF CONTROL OF THE STATE OF ARRAYS OF ROCKS AT UNDERGROUND MINING

Also Published As

Publication number Publication date
WO2015002557A3 (en) 2015-09-11
RU2015101765A (en) 2016-08-27
WO2015002557A2 (en) 2015-01-08
CN105765409A (en) 2016-07-13
CN105765409B (en) 2019-07-12
RU2604532C2 (en) 2016-12-10
PL230218B1 (en) 2018-10-31
UA118088C2 (en) 2018-11-26

Similar Documents

Publication Publication Date Title
PL409987A1 (en) Method and the system for measurements of relative changes in concentration of stresses in front of the mining longwall face
RU2587521C1 (en) Method and scheme for analysis of geological structure and relative changes of stress in layers located over openings of underground mine
PL409988A1 (en) Method and the system for detecting and minimising methane hazard within the excavation longwall area
CA3162984A1 (en) System and method for detecting a defect in a railway track rail
NO20150416A1 (en) Synchronization of distributed measurements in a borehole
Collins et al. 3D velocity model with complex geology and voids for microseismic location and mechanism
Xu et al. Optimal design of microseismic monitoring networking and error analysis of seismic source location for rock slope
LU504006B1 (en) Interconnected microseismic monitoring system for mine water inrush disaster
NO20141369A1 (en) System and method for monitoring microseismic events in a subsurface structure
CN111350545A (en) Mine dynamic disaster system and method based on multi-dimensional monitoring
Gardine et al. Evidence of magma intrusion at Fourpeaked volcano, Alaska in 2006–2007 from a rapid-response seismic network and volcanic gases
JP5186538B2 (en) Natural mountain exploration method
KR101780123B1 (en) Earthquake Monitoring Device and Method Using GNSS
CN101825719A (en) Scheme for predicting earthquake by deep sonar diagnosis
Gladyr et al. Software and hardware improvement for the Streltsov ore field geodynamic testing area
Besedina et al. Low-magnitude seismicity monitoring in rocks
Luo et al. Passive seismic monitoring of mine-scale geothermal activity: a trial at Lihir open pit mine
Luo et al. Sensing roof conditions ahead of a longwall mining using the shearer as a seismic source
CA3192289A1 (en) System and method for detecting faults in extended waveguides
JP2019045366A (en) Geological survey method and geological survey system
Valley et al. Rock mass change monitoring in a sill pillar at Vale’s Coleman mine (Sudbury, Canada)
Shcherbina et al. Study of the piezoelectric sensor KD-35 properties on the calibration device by the method of external pulse and on a real Earth track
Zappone et al. The DemoUpStorage Project: monitoring mineral carbonation in Icelandic basalts
CN116378762A (en) Method for preventing coal and rock dynamic disasters by multiple systems based on resonance frequency monitoring
Olivier et al. Ambient seismic noise cross-correlations in an active underground mine